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Applications of the extended Boltzmann-Uehling-Uhlenbeck model
to participant and spectator dynamics
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The Boltzmann-Uehling-Uhlenbeck model is extended to include fluctuations. The model is
then applied to study both spectator and participant physics. The model is capable of providing a
unified, parameter-free description of wide-ranging phenomena in intermediate energy heavy-ion
collisions.

I. INTRODUCTION

In this paper, we present some results from a model in
which at initial time we have two ions approaching each
other; at the end the nuclei break up into fragments
moving with different velocities. The model is essential-
ly parameter-free in the sense that the ingredients for the
calculation are the nuclear mean field and scattering
cross sections which are fixed by other data.

The model allows us to examine theoretically many as-
pects of heavy ion collisions. Experience at Bevalac en-
ergy has taught us that for nonzero impact parameters
we expect to see spectators which are only mildly per-
turbed as opposed to participants which are at the seat
of violent collisions. As the beam energy decreases such
clear distinction ultimately will vanish. Our model al-
lows us to study this transition region. We are able to
calculate the velocity distribution of the spectators and
their slowing down in a fully microscopic model. Like-
wise we are also able to study, simultaneously, the frag-
mentation of the participants. This last topic has be-
come the subject of much study in recent years. The
model gives a mass distribution; for reasons to be ex-
plained later, quantitative fits, isotope by isotope, are not
expected. Nonetheless gross features are expected to
emerge. At the very least, the model is useful for under-
standing the change of dynamics as the beam energy is
altered. In the present study we have analyzed Ne on

Ne and Ca on Ca in the energy range 50—100
Me V/nucleon.

The model is a straightforward generalization of the
Boltzmann-Uehling-Uhlenbeck (BUU) model' which
has proven to be very useful in the theoretical analysis of
heavy ion collisions.

The collision cross section between nucleons is taken to
be 40 mb, although we have also used energy dependent
total cross sections to ascertain if any significant
differences would be seen. There were none. In the usu-
al BUU model, the initial phase space density is
represented by a large number of test particles. If the
nucleus A has nucleon number X~ then we represent
the initial phase-space density of this nucleus by X&X
test particles. Similarly the phase-space density of the
nucleus 8 is represented by XzN test particles. For Ne
on Ne we take N =200; for Ca on Ca we take N =100.
Each test particle carries an isospin index. The density
is defined in cubes of volume 1 fm; p(r) =n /(51) X
where n is the number of test particles in the cube and
61 =1 fm. In the BUU model the test particles propa-
gate in time according to p(t)= —V„U and r(t)=p/m
except when they collide. This collision cross section is
o„„/X. The Pauli blocking is checked for each col-
lision. When two test particles collide they change from
(r, , p, )(r2, pz) to (r, , p', )(r2, p2). We build a sphere of ra-
dius r around r& and radius p around p'& such that eight
test particles in this phase space volume imply complete
filling. Define f, =ni/(8 —1), where ni is the number
of test particles not including the test particle at (r„p', ).
Similarly f2

——n2/7. The probability of scattering is tak-
en to be (1 f i )(1—f2). For l—ow beam energy we have
also sometimes used the following preselection rule. Let
+po be the beam momentum per particle in the c.m. of
colliding ions. In a collision we have p, +p2 ——p', +p2
and p &+p2 =p'& +p2. For 1 and 2 to be thrown out of
the two Fermi spheres we need (p', +po) &pF and
(p2+po) &pF. Using the conservation laws, a necessary
(but by no means sufficient) condition for this to happen
is

II. THE EXTENDED BUU MODEL

The work presented here is based on the model report-
ed in Ref. 3 except for some changes. We first need to
describe some details of the numerical methods to solve
the BUU model before we can explain the modifications
needed for the extended version. The mean field is taken
to be of the form

U(p) =[—124(p/po)+70. 5(p/po) ] MeV .

(Pl+Po) +(P2+Po) &2PF .

At high energy this is not a good rule as it neglects the
depletion in the Fermi sphere, but at low energy we find
this is a useful preselection and cuts down on comput-
ing. Once the preselection rule is satisfied the test parti-
cles are allowed to scatter; afterwards the Pauli block-
ings for p& and p2 are tested by drawing spheres in phase
space as described earlier. The numbers of collisions we
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find in our calculation are consistent with what has ap-
peared in the literature before. '

The BUU model treats collisions as a continuous
source and will show no fluctuations. In the extended
BUU model collision is treated stochastically. The fol-
lowing is the basic prescription. We suppress collisions
between two test particles by a factor of 1/N, but if a
collision occurs after the suppression not only do two
test particles suffer momenta change but 2(N —1) other
test particles change mornenta also. Physically this cor-
responds to two actual particles colliding. Suppose two
test particles i and j with isospin indices ~, and r suc-
cessfully collided and suffered momenta change Ap and
—hp. We choose (X —1) test particles with the same
isospin ~, closest to i in phase space and ascribe to all of
them the same momentum change Ap. This requires
defining a distance in phase space. We define

d;q ~ (p; —pk ) +(pF /R) (r; —rq )

Here pF is the Fermi momentum and R the normal ra-
dius of the nucleus. The process is repeated for test par-
ticles closest to j and they are ascribed a momentum
change —Ap.

The prescription above conserves total momentum but
usually not the total energy. With a slight modification
both the total momentum and the total energy can be
conserved. We choose N —1 particles closest to i as be-
fore. Now calculate the average momentum of these
particles (including the ith test particle). Call this

similarly calculate (p ). We now recalculate b,p and
—Ap from a collision between (p, ) and (p~ ). This Ap
is now attributed to all the test particles in the ith set
and —Ap to all the particles in the jth set. It is easy to
verify that this procedure conserves both total momen-
tum and total energy.

We have done calculations both with and without the
Coulomb force. We compute p, (r) in 1 fm boxes where

p, (r) is the charge density. The Coulomb potential is
then obtained from numerical solution of Poisson's equa-
tion. The numerical technique is the same as used in
time dependent Hartree-Fock (TDHF) calculations ex-
cept that in our case no symmetry is assumed.

In the beginning of the calculation we have two nuclei
approaching each other; the initial phase-space density
of each nucleus is modeled to be sharp spheres in
configuration and momentum space. For further details,
see the Appendix of Ref. 6. At the end one has a few lo-
cal pockets of density comparable to normal nuclear
density against a diffuse background. We interpret such
local pockets as clusters. A fragment is defined as the
connected volume in space where the density exceeds a
certain threshold value (10% of normal nuclear density).
The number of nucleons in this connected volume gives
the number of nucleons in the cluster. We ignore all
clusters where the total nucleon number is less than 0.5.
Depending upon the situation, the code is run up to time
80—150 fm/c after the two nuclei initially touch each

other. On Vax 785 each run takes 45 min without the
Coulomb interaction. Inclusion of the Coulomb interac-
tion approximately doubles this time.
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FIG. 1. Participants and spectators. Part 2 overlaps with
part B. They are participants. Parts 2 ' and B' are spectators.

For heavy ion collisions at high energy, the partici-
pant spectator model proved to be very useful. Consider
the collision of two heavy ions at a given impact param-
eter (Fig. 1). A given part A of one ion will meet a cer-
tain part B of the other ion. Now the binding energy
per nucleon in nuclei is about 8 MeV. Thus if the ener-

gy of collision is high, the fact that 3' was attached to
is incidental; 3 will fly off after the collision with

essentially unchanged velocity. Thus 3 ' can be called
the spectator in this collision. Similarly there will be a
spectator B' from the other ion. 3, however, will hit B.
They are the participants. The participants will usually
disintegrate, giving rise to many objects.

We do not expect such a clear picture to emerge in
the energy range we are considering. Clearly, below a
certain beam energy the model of the whole of (3 + A ')
interacting with the whole of (B +B') is more appropri-
ate. An intermediate picture between these two ex-
tremes is also possible. Further, the applicability of each
model depends not only upon the beam energy but also
upon the masses of the colliding ions involved. These
complications become important at intermediate impact
parameters. We will deal with such situations later. For
the moment we turn to more peripheral collisions where
one clearly sees spectatorlike fragments. Experimental
results for projectilelike spectators in the beam energy of
interest here can be found in Refs. 7 —9.

Comparison with experimental data requires integra-
tion over impact parameters and (depending upon the
charges of the ions and the beam energy) inclusion of the
Coulomb force in addition to the nuclear force. To be
able to discuss the physics easily we will first consider a
fixed impact parameter and ignore the Coulomb force.
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at 100 MeV/nucleon laboratory energy. Here R is the
radius of each ion. In a simple geometrical model (Fig.
1) the participants are decided by the geometrical over-
lap of the two ions; the rest are spectators. There are
two spectators; one projectilelike and one targetlike.
The number of nucleons in each spectator is predicted to
be 16.6 in the geometrical model for this specific b. In a
dynamical model one would expect a distribution in
mass numbers. The distribution obtained from 21 runs
is shown in Fig. 2. Each run produces two pieces of
data since we are considering equal ion collisions and we
can include both projectilelike and targetlike spectators
to increase statistics. The spectators have a distribution
of momenta. In the Goldhaber model' the width of this
momentum spread in the projectile frame is

( 2 )
K(A —K)

Pic A —1
(2)

Here A is the mass of the projectile, K is the mass of the
spectator, Pzz is the momentum of the spectator in the
Z direction in the projectile frame, and o.

~~

——o.z =80
MeV/c in the high energy situation.

In our case we have a distribution of K values and we
find it more convenient to rewrite the above equation

K(A —1) 2 — 2

A —K (Pz~ /K Pz~ /K ) = cr
~~

(3)

Here Pzx /K is the average slowing down in the projec-
tile frame. The Goldhaber model is based solely on
counting and thus cannot predict a slowing down. How-
ever, this is expected in dynamical models and also seen
in experiments. We expect Pzz /K to be independent of
K but dependent on 6, the impact parameter. Hence for
this fixed b value we calculate Pzz /K from all K values
and use this in Eq. (3) to estimate o ~. We find cr~~--70

b= 4. 3't fm

The effect of impact parameter integration and the
Coulomb force will be indicated later. We consider Ne
on Ne at impact parameter

b =R(&2/3+&1/3)=4. 31 fm

MeV/c. A decrease in the value of o.
~~

at lower energy
was predicted on theoretical grounds. " The quantity
Pz~/K is found to be —33 MeV/c compared to the ex-
perimental value of —23 MeV/c seen in experiments at
92 MeV/nucleon beam energy. Precise comparison
with experiment should not be made at this stage as
Pz~/K is dependent upon b, the magnitude falling with
increasing b.

We digress here temporarily to indicate the numerical
accuracy in our calculation. The collision subroutine
conserves momenta and energy. The only inaccuracy in
our calculations is in solving the Vlasov propagation.
This was tested by calculating conserved quantities for
an isolated nucleus at time t =0 and t =100 fm/c at
which time the majority of our calculations can be
stopped. We have also considered more complicated sit-
uations where again one can test conserved quantities.
Of interest here is the fluctuation in the total momentum
in a direction, say y, and the loss in the number of parti-
cles due to numerical inaccuracy in the Vlasov propaga-
tion. Both of these effects are small, at a less than 5 per-
cent level of the value of the observables we are trying to
calculate.

It is likely that the spectators will also have an aver-
age transverse momentum. This, of course, is outside
the scope of the Goldhaber model. In our calculation
we take b to be in the X direction. It is possible for
Pzz /K =pz to be nonzero. Naturally we expect p =0.
This is borne out in our calculations. In the present ex-
ample we find p~= —29.4 MeV/c. (Similar results have
been found by Tsang in BUU calculations. '

) However,
the value of p~ is a function of both the impact parame-
ter and the energy. For this energy it has a negative
value; the magnitude initially grows with impact param-
eter, reaches a maximum (near b =4.31 fm), and then
begins to fall. A net nonzero value of pz will tend to de-
viate the spectators away from the forward direction.
This would imply that do. /dA maximizes not at 0, but
at some finite angle. Relevant experimental data in-
dicate that the maxima, if not at 0', are between 0' and
2'. We will later show that, at this energy, the Coulomb
interaction acts the opposite way and integration over
impact parameter will push the maximum of do. /dQ to-
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FIG. 2. For Ne on Ne collisions at 100 MeV/nucleon the
distribution in masses of the spectators for impact parameter
b =4.31 fm. The results from 21 runs are shown. Each run
gives two spectators.

ZK/K ZK/K

FIG. 3. Distribution of the z component of the momentum
of the spectatorlike fragments. The case shown is for Ne on
Ne at b =4.31 fm; the beam energy is 100 MeV/nucleon.
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wards O'. For the moment, we will continue discussing
this one impact parameter and without the Coulomb
force.

A formula similar to Eq. (3) can be used to calculate
o.z and o. z. In this specific case we verify that
o.z =o. z = o.z . One can test if the momentum distribu-
tion is Gaussian,

we extract pz, pz, and width from the Monte Carlo
simulations and use the Gaussian assumption [Eq. (4)) to
compute d o. /dE d 0, . Let 0 be the angle the detector
makes with respect to the beam axis and Z —L be the
plane containing the beam and the detector, then a frag-
ment of momentum Pz reaching the detector has the
following momentum decomposition:

cr(Pzx ) cc exp[ —(Pic zoic) /2~( zx Pzz) ~] . (4)

A histogram of the distribution seen in the present ex-
ample is shown in Fig. 3. A Gaussian conjecture ap-
pears to be a reasonable approximation, although many
more runs are required to establish a shape unambigu-
ously.

Experimentally one usually measures d o. /dE d 0, for
projectilelike fragments at a small angle 0 with respect
to the beam axis. To calculate this directly in Monte
Carlo simulation would take prohibitively long. Instead

P& ——P~ cos OZ +P& sin 0% .

The cross section for the event is

A3u C7

xp[ ( tc PzxZ Ptxn—t) /2crz] .
d P~

In Eq. (5), Pz~ is the average momentum in the Z direc-
tion, P~~ is the average transverse momentum, and 6~ is
the direction of the impact parameter which is not
known and needs to be averaged. When this is done, Eq.
(5) leads to

2

P[ ( r+.zoic +P ix. 2P~ Pzz c—osO)/2a~ ] exp(2P& isnPO&& cosO& 2/o &~ )d O& /2n .dE dO 0
(6)

The last integral in Eq. (6) is the Bessel function
Jo( i' sin—OP~x /o. x ). In our specific example we
choose E = 1 5; at 0 =3.5' numerical calculation using
Eq. (6) gives a full width at half maximum (FWHM) of
143 MeV. This is to be compared with the value = 1 60
MeV seen in experiments at 85 MeV/nucleon laboratory
energy. Again, since impact parameter integration has
not been done, 143 MeV is a rough estimate.

We now return to the discussion of a net p ~ in the
spectator. If this is large it signifies a measurable
defiection away from the forward direction. (We have
verified that at higher energy, 200 MeV/nucleon, the
efFect is negligible. ) We have chosen b =4.31 fm, where
p (bt) due to nuclear forces is about maximum in magni-
tude. It has a negative value which implies negative an-
gle scattering. A quantitative estimate of the deflection
away from the 0 degree can be obtained by plotting a
histogram of the spectator angles as obtained in Monte
Carlo simulations directly; alternatively we calculate o.~
Pzz, and P~~ from our simulations, use these values in
Eq. (6), and integrate J (d 0 /dE dA)dE to obtain
d o. /d A as a function of 6 . In Fig. 4 we have done both
and obtained the results with and without the Coulomb
force. The Coulomb force by itself would impart a posi-
tive p~ and thus, in this example, brings the maximum
closer to 0'.

Several other representative calculations were done
which lead us to believe that the model can at least semi-
quantitatively describe spectator dynamics. We can ac-
count for the slowing down of the spectators. In experi-
ments the slowing down per particle is the largest for
smaller fragments. This is easily explained in the mod-
el; the lighter projectilelike fragments originate from
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FIG. 4. Distribution in angle for spectatorlike fragments
without (a) and with (b) the Coulomb force included. The his-
tograms are obtained by binning the spectator angles as ob-
tained from the runs; the continuous curves are obtained from
the Cxaussian assumption [Eq. (6)] where the constants a+,
PIIr. and P«are determined from the runs. Here K = 1 5.
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lower impact parameter and the mean field is more
effective in decelerating the projectile. We have seen
that apart from the Coulomb field, the nuclear mean
field, can, by itself, impart a transverse momentum.
This depends upon the beam energy but also upon the
nuclear masses; this has an important effect on the angu-
lar distribution. In the future we will make detailed cal-
culations to compare with all the available experimental
data in this energy range.
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IV. MASS DISTRIBUTION OF PARTICIPANTS
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We now turn to more central collisions and ask the
following question: What is the mass distribution of
fragments which are not spectatorlike? A variety of ap-
proaches have been used to answer this question: micro-
canonical ensemble simulations, ' ' the evaporation
model, ' various models of liquid-gas phase transition
(see Ref. 17 and references therein), the Cascade-Vlasov
approach, and various other models. ' '

For central collisions (b =0), a mass distribution was
obtained in Ref. 3 for Ne on Ne collision at 100
MeV/nucleon in a calculation very similar to the present
one. To be able to compare with experimental data we
need to integrate over impact parameter. We would also
like to see how the theoretical predictions change as the
beam energy is varied.

Figure 5 shows our results for Ca on Ca collision at 92
MeV/nucleon. Thirty runs spanning the impact param-
eter b =0 to 4.2 fm were taken. To reduce statistical
fluctuations, the results have been averaged over 3 mass
units for each bin. Figure 5 gives the histogram of all
the clusters and also a filtered histogram where we re-
move spectatorlike fragments. We use the following cri-
terion: In the c.m. of the colliding ions, the initial
momentum per particle in each ion is +pz. After the

collision if the absolute value of the Z component of the
momentum per particle in the cluster is ~ 0.6pz in the
c.m. , we leave them out. This means (a) we rule out
those projectilelike fragments whose Z component of
momentum per particle in the laboratory is greater than
0. 8(pz )„b, and (b) we rule out targetlike spectators
which are slowly moving in the lab. For this beam ener-

gy this amounts to ruling out targetlike spectators whose
kinetic energy in the laboratory is less than (3.65 A
MeV), where A is the number of nucleons in the cluster.

In our calculation (Fig. 5), we see that the yield Y( 3 )

from participants falls off with A with some leveling
occurring around 3 =12. There are some recent data
obtained in experiments of Ar on Ca at 92
MeV/nucleon. The falloff seen in experiments is faster
than what the calculation gives. If we constrain our-
selves to fit both the experimental data and the theoreti-
cal calculation by a power law Y( A ) = 4 ', then experi-
ment gives ~=3.0, whereas theory gives ~= 1.5. Experi-
mental data do not go beyond 3 =12, but there is some
indication of the cross section flattening out around
3 =10. The main failure of the model therefore is that
the initial falloff is too slow.

Figure 6 shows results of a similar calculation for Ne
on Ne at 100 MeV/nucleon. Here 25 runs spanning
b =0 to 3.9 fm were taken. In the data shown in Fig. 6
the Coulomb interaction is included; however, for frag-
mentation of Ca on Ca or Ne on Ne, the Coulomb in-
teraction is unimportant. Remembering that in the
latter case the total number of nucleons is half compared
to the case for Ca on Ca, the mass distribution in the
case of Ne on Ne is similar to that of Ca on Ca.

The model fails at low beam energy. At high energy,
the two nuclei, upon impact, quickly break up and nu-
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FICx. 5. Mass distributions for Ca on Ca collisions at 92
MeV/nucleon. This is the result from 30 runs spanning the
impact parameter b from 0 to 4.2 fm; the top curve (a) includes
all clusters; in (b) we separate out contributions from partici-
pants (solid line) and spectators (dashed line); for the latter a
cut in the momentum of the fragments in the c.m. of the collid-
ing ions is imposed for the distinction. The yield Y(A) given
by the solid curve in (b) falls off slower than what is seen in ex-
periment (Ref. 20).
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FICi. 6. Same as in Fig. 5 except that we consider Ne on Ne
at 100 MeV/nucleon.
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Figure 7 shows our calculation for Ca on Ca at 72
MeV/nucleon. We have no reason to believe that at this
energy the model will break down qualitatively. The
most noticeable feature is the U shape of the reaction
cross section as a function of A. This shape remains
after one removes from the histogram spectatorlike frag-
ments. Recent experimental data have not established
this increase of Y(A) vs A beyond A =12, but there is
at least a hint of this occurring in the experiment of Ar
on Ca at 42 MeV/nucleon. Unfortunately the data do
not go beyond 2 = 12; for equal ion collisions data up to
3 =24 would be a very useful test of the model.

V. SUMMARY AND DISCUSSION

(b)

12 18 24
1

30

cleons which are close together in phase space will
remain bound to produce clusters. At low beam energy
the scenario is different; energy is dumped into a region
of configuration space but it is not enough to break up
the system quickly. Consequently, other processes like
evaporation, which cannot be accommodated in the
present framework, will become a major mechanism in
deciding the mass distribution. A beam energy of 50
MeV/nucleon is already too low for this model.

FIG. 7. Same as in Fig. 5 except that this is for Ca on Ca at
72 MeV/nucleon. Note that the yield Y( 3 } vs .0 for the parti-
cipantlike fragments [solid curve in (b)] shows a minimum
around 3 =12.

The extended BUU model is a direct generalization of
the BUU model which has become a very useful theoret-
ical tool for intermediate energy heavy ion collisions.
We therefore felt that it is important to test the predic-
tive power of the extended BUU model. It is a
parameter-free model which addresses a very complex
problem. It is gratifying to see that the main features of
spectator physics come out rather well from the model ~

In future work we will include the diffuseness of the sur-
face carefully, as one expects this to play a significant
role for precise comparison with experiments. Our
present treatment does not treat the surface properly.
This is related with the larger problem of treating the
surface in the Vlasov prescription. For mass distribu-
tions in more central collisions between equal ions, the
most interesting prediction is that we expect to see a
minimum in the Y(A ) vs 3 curve. This should happen
between 50 and 100 MeV/nucleon beam energy.

Note added. The average properties of spectators can
be studied in the standard BUU model ~ Recent work
can be found in Refs. 21 and 22. We thank C. Gregoire
for bringing this to our attention.
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