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The real part of the central neutron- Pb mean field is the sum of a Hartree-Fock component
plus a dispersive component. In keeping with theoretical expectations, the Hartree-Fock field is

assumed to have a Woods-Saxon shape whose depth decreases exponentially with increasing ener-

gy and whose radius and diff'useness are independent of energy. The dispersive component is
determined from the imaginary part of the optical-model potential by making use of the dispersion
relation which connects these two quantities. The imaginary part is written as the sum of a
volume and a surface-peaked contribution. The dispersion relation then implies that the real
dispersive contribution is also the sum of volume and surface-peaked components. The parame-
ters of the complex mean field are determined by fitting the available differential and polarization
cross sections in the energy domain [4, 40 MeV] and the total cross sections in the domain [1,120
MeV]; these data are contained in previous published or unpublished reports, but new measure-
ments of the total cross sections are presented from 1 to 25 MeV. Good fits to these cross sec-
tions, and also to unpublished total cross sections for energies up to 165 MeV, are obtained despite
the fact that the number of adjusted parameters is quite small because of our use of the constraint
implied by the dispersion relation. The real part of the mean field is well approximated by a
Woods-Saxon shape whose radius decreases with increasing energy between 5 and 25 MeV; its
depth is approximately constant from 5 to 15 MeV and then decreases with increasing energy;
these findings are in keeping with recent empirical evidence. When the neutron energy decreases
below 2.5 MeV, the potential radius decreases; it increases again when the neutron energy de-
creases below —14.5 MeV. In the domain —20 MeV &E &0 the deduced potential accurately
reproduces the experimental single-particle energies as well as the asymptotic values of the single-
particle wave functions as measured from sub-Coulomb pickup reactions; it also yields excellent
agreement with the spreading width of the deeply bound 1h»z& hole state. The rms radii, absolute
spectroscopic factors, and occupation numbers are calculated for the valence particle and hole
states. At the Fermi energy ( —6 MeV), the mean field can be identified with the Hartree-Fock po-
tential, for which the present analysis yields a depth of 46.4 MeV, a radius of 1.243 ' fm, and a
diffuseness of 0.68 fm. In the energy domain 4 & E & 10 MeV, the already good agreement between
the predicted and measured cross sections is further improved if the imaginary part of the mean
field is allowed to have its strength depend upon the neutron orbital angular momentum, and its
surface diffuseness is allowed to be energy dependent.

I. INTRODUCTION V(r;E)= V, (E)f(X,), (1.2)

For bombarding energies E larger than a few MeV,
accurate fits to the experimental nucleon elastic scatter-
ing cross sections can be obtained from an optical-model
potential whose central part is local, viz. ,

At(r;E) =V(r;E)+i '1V(r;E) .

where

f (X, ) = [1+exp(X„)]

X, =(r —R, )/a, ,

(1.3a)

(1.3b)

(1.3c)

Although the experimental data (differential, polariza-
tion, and total cross sections) at a given energy E can be
quite detailed, they are not sufficient to enable one to
carry out an accurate determination of the radial depen-
dence of V(r;E) and %'(r;E) from purely phenomeno-
logical analyses. ' Accordingly, these analyses assume
a priori some radial dependence for V(r;E) and
'K(r;E). They often adopt a Woods-Saxon shape for
V(r;E), namely

Good fits to the experimental data at various energies
are usually obtained by simply allowing the potential
depth V, to vary linearly with energy, while r„and a,
are kept constant. However, recent accurate measure-
ments and phenomenological analyses of the scatter-
ing of neutrons by Pb for energies between 4 and 40
MeV suggest the following empirical trends. (i) The well
depth V, is almost independent of energy between 4 and
about 20 MeV, while for larger energy

~

V„decreases
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with increasing E. (ii) The potential radius R, decreases
with increasing energy between 4 and about 20 MeV,
and remains approximately constant for larger energies.
These features are compatible with the usual property
that the volume integral per nucleon decreases with in-
creasing scattering energy for E greater than a few MeV.

In the present paper we show that the empirical
trends (i) and (ii) are in qualitative agreement with
theoretical predictions based on the following dispersion
relation (DR), which connects the real and the imagi-
nary parts of the optical-model potential:

V(r;E) =VH(r;E)+ KV(r;E), (1.4)

b, V(r;E) =—J, ' dE' .E' —E (1.5)

Here, P denotes a principal value integral and VH(r;E)
the Hartree-Fock contribution to the mean field. The
quantity AV(r;E) is the dispersive contribution to
V(r;E); essentially, it is the correction to VH(r;E)
which is due to the fact that the target does not remain
in its ground state during the elastic scattering process.

The energy dependence of VH(r;E) is expected to be
quite smooth (Sec. II B). This is not the case for
EV(r;E). Indeed, the DR, Eq. (1.5), has two main im-
plications: (i) EV(r;E) has a distinct energy dependence
for small

~

E
~

since
~

%'(r;E')
~

rapidly decreases with
decreasing E' because of threshold effects. (ii) bV(r;E)
is the sum of a volume contribution (Woods-Saxon
shape) and of a surface-peaked component (derivative of
a Woods-Saxon shape), since 'lV(r; E) is empirically
found to be described by that radial structure. There-
fore, the dispersive contribution b V(r;E) gives rise not
only to an energy dependence of the central depth of
V(r;E), but also to an energy dependence in the radial
shape (since a surface-peaked contribution, in effect,
changes the radius of the Woods-Saxon potential to
which it is added ). We shall see that this energy depen-
dence is not simple at small energies, in contrast to that
of VH(r;E). Accordingly, it appears appropriate to
take the constraint (1.5) explicitly into account in
optical-model analyses.

The DR constraint proves particularly crucial when
one extrapolates the optical-model potential toward neg-
ative energies, i.e., if one wants to study the smooth but
nontrivial transition between the optical-model potential
and the shell-model potential. Here we use the tradi-
tional terminology in which A(r;E) is called "the
optical-model potential" for E ~0 (scattering states) and
"the shell-model potential" for E &0 (bound states). We
emphasize, however, that JN(r;E) is a con, tinuous func-
tion of E. One of our primary purposes is to extrapolate
JR(r;E) from positive E, where many experimental data
are available, towards negative E, where the experimen-
tal information is much more scarce.

Our main aim is therefore twofold. Firstly, we imple-
ment the DR constraint, Eq. (1.5), in the optical-model
analysis of the experimental scattering data for neutrons
on Pb. Secondly, we extrapolate the constructed po-
tential V(r;E) towards negative energies; there we com-
pare the eigenvalues associated with V(r;E) to the ex-

perimental energies of weakly and deeply bound single-
particle valence and hole states. %'e also compare the
single-particle wave functions at large distance with the
experimental values obtained from the analysis of sub-
Coulomb pickup reactions.

Our presentation will be the following. A simple
"fixed-geometry" model is described in Sec. II, where we
specify our assumptions and procedure. This simple
model contains only a few unknown constants. These
unknowns are determined in Sec. III from the analysis of
a quite complete set of experimental cross sections
(differential and polarization cross sections between 4
and 40 MeV, and total cross sections between 1 and 120
MeV). Most of these data have been published previous-
ly, but we shall also present previously unpublished total
cross sections. %'e show that the model yields very good
agreement with these experimental data, despite the fact
that only a few adjustable parameters are available, be-
cause of our use of the DR. Section IV deals with the
extrapolation of the potential V(r;E) towards negative
energies, where it should be identified with the shell-
model potential. %'e demonstrate that our extrapola-
tion, which is analytic and involves no additional param-
eter, yields very good agreement with the experimental
energies of the weakly and deeply bound single-particle
states and the spreading width of the deeply bound
1h» &2 hole state. We also show that the predicted
single-particle wave functions at large distance are in ex-
cellent agreement with the experimental values deduced
from sub-Coulomb pickup experiments. The "absolute'*
spectroscopic factors and occupation numbers are also
computed. The energy dependence of the radial shape
of V(r;E) is discussed in Sec. V. We show that the
model accounts for the main empirical findings of Refs.
2 —4, namely (i) Woods-Saxon shape with approximately
constant depth but decreasing radius when E increases
from 4 to about 20 MeV and, (ii) Woods-Saxon shape
with decreasing depth and nearly constant radius for
20&E &40 MeV. For —14.5&E &2.5 MeV, we find
that the potential radius decreases with decreasing ener-
gy. Two possible refinements are considered in Secs. VI
and VII. In Sec. VI we allow the geometry parameters
of the surface absorptive potential to vary with energy
for E(10 MeV. In Sec. VII we consider a model in
which %'(r;E) depends on the neutron orbital angular
momentum; via the DR this also gives rise to an
angular-momentum dependence for the real part
V(r; E). This refined model not only improves the
agreement with the experimental cross section in the low
energy domain 4 &E & I I MeV, but also yields a better
description of the empirical V(r;E) in the framework of
the DR approach. Finally, Sec. VIII contains our con-
clusions.

II. MEAN FIELD MODEL WITH DR CONSTRAINT

A. Spin-orbit coupling

In addition to its central component, Eq. (1.1), the
mean field contains a spin-orbit component for which we
take the standard form
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V„(r;E)=(cr 1)(fi/m c) V„— f(X„),1 d
d7

(2.1)

B. Hartree-Fock contribution

The Hartree-Fock (HF) contribution can be interpret-
ed as the mean field that would be obtained if one would
make the approximation that the target remains in its
ground state throughout the scattering process and,
furthermore, that this ground state is described by the
independent particle model, i.e., that no nucleon-nucleon
correlations exist in the target. This interpretation is
natural in view of Eqs. (1.4) and (1.5): V&(r;E) is the
mean field obtained in the approximation where %'(r;E)
is set equal to zero, i.e., where collisions are neglected.

The HF contribution V&(r;E) is the local equivalent
of a nonlocal energy independent operator V&(r, r'): the
energy dependence of V&(r;E) is due to the replace-
ment of a nonlocal potential by a local one. The avail-
able Hartree-Fock calculations indicate that, in a heavy
nucleus such as Pb, V&(r;E) can be approximated by
a Woods-Saxon potential:

where f (X„) is the Woods-Saxon form factor defined by
Eqs. (1.3a) —(1.3c). Throughout the present paper, we
adopt the same spin-orbit parameters as in Ref. 4, name-
ly

V„=5.75 MeV, r„=1.105 fm, a„=0.50 fm . (2.2)

We therefore no longer explicitly refer to this spin-orbit
coupling; accordingly, we make no distinction between
the full mean field and its central component W(r;E),
Eq. (1.1).

a=(m/2A )P (2.6)

Equation (2.5) suggests that V&(E) can be approximated
by an exponential function of E:

V~(E) = V~(0)exp( aE—) . (2.7)

C. Imaginary part of the mean field

Phenomenological optical-model analyses indicate that
the imaginary part IV(r;E) of the optical-model poten-
tial can be represented by the sum of "volume" and
"surface" contributions, viz. ,

'lV(r;E) ='%„(r;E)+'lg, (r;E) . (2.8)

We shall make the usual assumption that the volume
component has a Woods-Saxon shape and that the sur-
face contribution is proportional to the radial derivative
of a Woods-Saxon form factor:

lV, (r;E)= 8', (E)f(X~), (2.9)

—50 I I

-40

-30

This approximation is expected to be realistic for
E & 150 MeV; it would become unrealistic at high ener-

gy (E & 200 MeV) where V~(E) is empirically known to
change sign. The dashed curve in Fig. 1(a) illustrates an
exponential dependence for VII(E) for the 150-MeV en-

ergy domain above the Fermi energy EF.

V~(r;E) = V~(E)f(X~ ) . (2.3) -20

In the case of Skyrme-type effective nucleon-nucleon
interactions, the geometric parameters r~ and a~ are
practically independent of energy. Likewise, the
Brueckner-Hartree-Fock approximation to the real part
of the optical model yields a radial shape which is prac-
tically independent of energy. ' We shall accordingly
make the assumption that the HF geometrical parame-
ters r& and a& are independent of energy.

The Hartree-Fock potential associated with a
Skyrme-type effective nucleon-nucleon interaction leads
to a linear energy dependence of V&(E). This is a
specific feature of the type of momentum dependence of
the Skyrme interaction. It is not realistic when a wide
range of energies is considered. A more realistic pa-
rametrization was postulated by Percy and Buck' in
their pioneering work, in which the nonlocality of
V&(r, r') has a Gaussian form:
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V&(r, r')=V(r)exp( —
~

r —r'
~

/p'-), (2.4)

where P is the range of nonlocality. The local energy
approximation then yields'

Vz(E) = V&(0)exp[ —a V~(0)]exp[ —a[E —V~(E)]I,
(2.5)

where

FIG. 1. The solid straight lines in the middle and lower
drawings show the dependence upon E —EF (El: = —6 MeV)
of the quantities W„(E) and W, (E) in the mean field model of
Sec. III, while the dashed curves represent the corresponding
values of 6 V, (E) and 6 V, (E) as calculated from the DR,
(2.19). The dashed curve in the upper drawing gives the
Hartree-Fock depth V&(E), while the solid curve is the sum
V„(E)+aV,(E).
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'N, (r;E)= —4a, W, (E) f(X, ) .d
(2.10)

AV(r;E) =b,V, (r;E)+6V, (r;E),
with (q =U, s)

(2.15)

The mean field is real at the Fermi energy EF, this im-

plies that + „%'q(r;E')
bV (r;E)=(P/rr) J, dE' (2.16a)

%'(r;E~) =0 . (2.11)

EF= —6 MeV . (2.12)

In order to apply the DR, Eq. (1.5), one also needs
'K(r;E) for negative E We. shall make the assumption
that 'lV(r;E) is symmetric with respect to the Fermi en-

ergy E~:

We recall that the Fermi energy lies halfway between the
last occupied and the first unoccupied shell in Pb. We
henceforth take the numerical value

'N (r;E'+E~)dE'
(E~—E)—

0 (E E )~

b V, (r;E)=6 V, (E)f(X~ ), (2.17)

(2.16b)

In Secs. III—V we make the simple assumption that
the geometrical parameters a~, r~, a„and r, are in-
dependent of energy. Then, one has

"K(r;E +E~) ='lV(r;E~ E) . — (2.13) b V, (r;E)= —4a, b, V, (E) f(X, ),
d7

(2.18)

This symmetry assumption is plausible because 'lV(r;E)
is intimately related to the time evolution of a single-
particle configuration in Pb (for E ~E~) or in Pb
(for E &E~) with excitation energy

~

E E~ ~. E—qua-
tion (2.13) amounts to assuming that this time evolution
is approximately the same in Pb as it is in Pb, pro-
vided the excitation energy is the same. This assump-
tion is supported by empirical evidence" as well as by
theoretical calculations. '

In Secs. III—V we make the approximation that the
parameters r~, a~, r„and a, are independent of energy.
This "constant geometry" model then involves only two
functions of energy, namely the potential strengths
W, (E) and W, (E). In Sec. VI we shall consider a model
for which the surface geometry parameters are allowed
to be energy dependent for E &10 MeV. Finally, in Sec.
VII we shall consider a more refined model with r, con-
stant but with 'N(r;E) allowed to depend on the orbital
angular momentum of the projectile for E & 12 MeV.

and, with (q =u, s)

p „W (E')
aV, (E)= f " —', dE' .E' —E (2.19)

We shall parametrize each of the empirical functions
W, (E) and W, (E) by a sequence of contiguous linear
segments (LS's). Our reason for adopting this "LS pa-
rametrization" is that we can then evaluate the DR in-
tegral analytically. ' In Figs. 1(b) and 1(c) the solid
curves illustrate LS parametrizations and the dashed
curves represent the corresponding dispersive correc-
tions calculated with the assumption of symmetry, Eq.
(2.13).

Moreover, we shall assume that

r~ ——r&, a~ ——a~ . (2.20)

Our motivation for making this assumption is that the
radial shape of EV„(r;E) is then identical to that of the
Hartree-Fock contribution. These two quantities can
thus be combined into a single volume component

D. Dispersive contribution

One consequence of Eq. (2. 13) is that

AV(r;E~) =0, (2.14)

V, (r;E)=VH(r;E)+XV, (r;E)
= V„(E)f(XH),

with

(2.21)

(2.22)

which implies that at the Fermi energy the mean field
becomes identical to the Hartree-Fock contribution.
This is in keeping with the fact that, in practice, the
effective interaction used as input in a Hartree-Fock cal-
culation is chosen in such a way as to reproduce the ex-
perimental value of the Fermi energy.

The main characteristic of our approach is that, ex-
cept for the constant parameter a which specifies the ex-
ponential energy dependence of the Hartree-Fock com-
ponent, Eq. (2.7), the energy dependence of the real part
of the mean field is fully determined from the imaginary
part of the mean field. Indeed, the dispersive contribu-
tion b, V(r;E) to the real part of the mean field is given
by Eq. (1.5).

Equations (1.5) and (2.8) show that bV(r;E) is the
sum of a volume component AV, (r;E) and of a surface
component bV, (r;E):

V, (E)=VH(E)+b V„(E) . (2.23)

In Fig. 1(a) the solid curve represents the sum of the po-
tential strengths VH (E) and b, V„(E), which are
represented by the dashed curves in Figs. 1(a) and l(b).

In summary, our model involves the following adjust-
able quantities: (i) the four constants rH, aH, VH(0), and
a which specify the Hartree-Fock field, see Eqs. (2.3)
and (2.7); (ii) the radius r, and diA'useness a, which
characterize the surface component of the imaginary
part of the mean field; and (iii) the energy-dependent
functions W, (E) and W, (E), which are also defined by a
few constants. These quantities will be determined in
Sec. III from analyses of the many experimental scatter-
ing data in the energy domain 4&E &150 MeV. The
accuracy of the model will be tested by the following
two criteria: (a) the quality of the fits to these experi-
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mental scattering data, and (b) the agreement between
the experimental energies and wave functions of the
bound single-particle states and the model values ob-
tained from the extrapolation of V(r;E) into the nega-
tive energy domain. This extrapolation will be discussed
in Sec. IV; it will be done analytically and involves no
further adjustment of parameters.

We show in Secs. III and IV that our model nicely
satisfies these two criteria. We emphasize that this is by
no means trivial. Indeed, we shall see in Sec. V that the
energy dependence of V(r;E) is rather intricate at small
negative and positive energies. This intricate energy
dependence is a prediction of the DR, as illustrated in
Fig. 1; it will be shown to yield detailed agreement with
the experimental data. These data span a large energy
domain extending from negative ( —20 MeV) to positive
(+165 MeV) energies. It is quite remarkable that the
good agreement between our model and these numerous
experimental data is achieved by adjusting only a few
constants and by determining two smooth functions of
the energy, namely W„(E) and 8;(E).

III. ANALYSIS OF THE EXPERIMENTAL
SCATTERING DATA

tal cross sections as deduced from smooth curves drawn
through the data to be presented in Sec. III E; the exper-
imental uncertainties are discussed in the Appendix. At
10 and 14 MeV we also include the analyzing power
data. For calculating and plotting the total cross sec-
tions as a function of energy we use the code SCAT, '

with the appropriate modifications.
In addition, we shall require that the energies of the

3p, &2 and 2g 9/p single-particle bound states in the
Hartree-Fock potential VH lie on opposite sides of the
Fermi energy EF, in order to ensure that the mean field

approximately reproduces the Fermi energy; we recall in
this respect that V(r;EF) is identical to VH(r;EF), see
Eq. (2.14). We shall also compare predicted bound state
energies from the model with energies of the known par-
ticle and hole states. For computing bound state ener-
gies and wave functions we will use the code DENS, '

modified to include a real surface contribution.
Finally, we shall compare the predictions of the model

with the energy-averaged scattering functions for indivi-
dual neutron partial waves, particularly for s waves, as
derived from the analysis of high resolution elastic
scattering neutron cross sections below 1 MeV. ' '

A. The experimental data

We shall determine the parameters of our model by
fitting the following experimental scattering data, which
will be displayed below.

(a) Differential elastic scattering cross sections at 17
energies between 4 and 40 MeV.

(b) Analyzing power measurements at 10 and 14 MeV.
(c) Total n+ Pb cross section from 1 to 25 MeV

and n + ""Pb cross section from 2 to 120 MeV.
To perform least-squares fits on the 17 differential

elastic angular distributions we use the computer code
GENOA, with modifications to make the real and imagi-
nary volume geometries the same, Eq. (2.20), and to in-
clude a real surface contribution of Woods-Saxon deriva-
tive shape. At each energy the total cross section will be
included with an artificially small uncertainty, +0.1%,
to give it a non-negligible weight relative to the many
points in the scattering distributions. The same weight-
ing procedure was used in Ref. 2. Table I lists the 17 to-

E (MeV)

4.0
4.5
5.0
5.5
6.0
6.5
7.0
9.0

10.0

o.T (b)

7.90
7.80
7.55
7.18
6.62
6.22
5.94
5.28
5.20

Z (MeV)

11.0
14.0
20.0
22.0
24.0
25.7
30.3
40.0

oT (b)

5.16
5.46
5.90
5 ~ 83
5.72
5.62
5.18
4.45

'Estimated uncertainties of +0.5% for E & 25 MeV and +1.0%
for E ~25 MeV. Artificial uncertainties of +0.1% used for
weighting in the least-squares searches.

TABLE I. Total cross section' for n+ Pb at selected
energies.

B. Search of the geometrical parameters
of the fixed geometry model

In order to determine the geometrical parameters we
first made a series of multiparameter optical model fits
to the experimental differential elastic angular distribu-
tions. ' ' In these preliminary searches, for reasons
to be discussed in Secs. VI and VII, we emphasized the
data for E & 12 MeV. Good starting values were provid-
ed by the "common geometry" deduced by Finlay et al.
from phenomenological analyses of data from 7 to 40
MeV. They found a, =0.685 fm, r, = 1.283 fm, and
a, =0.569 fm. We adopt very similar values. For the
diffuseness of the real and imaginary volume potentials
we henceforth take

aH ——aw ——0.68 fm, (3.1)

and for the parameters r, and a„which characterize the
shape of the surface absorption, we take

r, =1.27 fm, a, =0.58 fm . (3.2)

a ="w=1 240 (3.3)

There would be no significant changes in the quality of

Later, in Secs. VI and VII, we allow the surface
geometry to be energy dependent for E &10 MeV to
achieve better fits to the data. A similar procedure was
followed in the original analysis of these data.

For the real volume radius rH we found a value some-
what different from the radius r, of Ref. 2. That is an
expected consequence of including a real surface term.
Using the geometries given in Eqs. (3.1) and (3.2), we
found that r~ must be chosen quite precisely, i.e., to
+0.003 fm, to allow the phenomenological surface depth
~ V, to be consistent with that predicted by the DR for
E ) 14 MeV. Henceforth we take
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fits or in our conclusions if we were to increase aH to
0.70 fm (i.e., the value used in Ref. 4), and reduce rH to
1.225 fm.

W, = —7 MeV. Hence, we parametrize W, (E) by the
linear expression (3.4a) up to E =50 MeV, beyond which
we take the constant value

C. Depth of the volume contribution W, (E)= —6.8 MeV for E ~ 50 MeV . (3.4b)

Henceforth (except in Secs. VI and VII), all the
geometrical parameters are kept fixed at the values given
in Eqs. (3.1)—(3.3). We first fit the experimental angular
distributions at 17 energies ranging from 4 to 40 MeV
considering four parameters as adjustables, namely the
potential strengths 8'„8'„AV„and V, . Here, V, is
the depth of the volume component of the real part of
the mean field, see Eq. (2.23). The values of W, and V,
determined by these least squares fits are represented by
the solid symbols in Fig. 2. The empirical values of 8'
are seen to lie close to the following linear approxima-
tion,

which is represented by the solid line in Fig. 2(a).
In order to apply the DR, Eq. (2.19), one needs the

value of W, (E) for E larger than 40 MeV. In this
higher energy domain, one can use empirical informa-
tion provided by the total cross section. Near 80 MeV
the cross section has a maximum which requires

a
F

Z -2 -
E

0
-48 ~ ~ 0 ~ s ~ ~

1
~ 0 ~ I

~ -40a
-38

32-to 0 I 0 20 30 40 50
E (MeV)

FICx. 2. The dots represent the empirical values of 8' and
of V, determined by least squares fits to the experimental data.
In the upper drawing, (a), the solid line gives the linear approx-
imation of 8', (E), while the dashed line shows the correspond-
ing AV, (E) as obtained from the DR. The open symbols in
the lower drawing, (b), represent the values of the difference
VH ——V, —AV„ the dashed line is the exponential approxima-
tion to the Hartree-Fock depth VH(E), while the solid curve is
the sum VH(E)+AV, (E). The cross at E = —6 MeV
represents VH at the Fermi energy EF.

W„(E)=—0. 17(E —10) MeV for 10&E &50 MeV,

(3.4a)

Equations (3.4a) and (3.4b) are represented by the solid
lines in Fig. 1(b).

From the LS approximation, Eqs. (3.4a) and (3.4b),
and the DR, Eq. (2.19), one obtains the values of b, V, (E)
represented by the dashed curves in Fig. 2(a) and in Fig.
1(b). Equation (2.23) shows that to obtain the Hartree-
Fock depth V~ one should subtract the quantity AV,
from the full depth V, . This subtraction yields the
values represented by the open symbols in Fig. 2(b). The
dashed curves in Figs. 2(b) and l(a) represent the follow-
ing exponential parametrization, see Eq. (2.7):

VH(E) = —46.4 exp[ —0.31(E EF )/4—6.4], (3.5a)

which, at energies near the Fermi surface, gives the ap-
proximation

VH(E) = —46.4+0.31(E EF ) . — (3.5b)

D. Strength of the surface-peaked contribution

We now turn to the strength of the surface-peaked
contributions to the real and imaginary parts of the
mean field for the fixed-geometry model. We fix 8', and
V, at the values represented by the solid curves in Fig.
2, and perform least square fits to the experimental cross
sections with only two adjustable parameters, namely
AV, and 8, . The resulting values are represented by

In this parametrization, the depth of the Hartree-Fock
potential at the Fermi energy is —46.4 MeV. This nu-
merical value has been determined, in part, by our re-
quirement that the binding energies of the 3p & &2 and

2g9/2 single-particle states should lie on opposite sides of
the Fermi energy. Equation (3.5a) is equivalent to set-
ting a=0.0067 MeV ' in Eq. (2.7). This corresponds to
a nonlocality range P=0.74 fm, in fair agreement with
the phenomenological value P =0.85 fm assumed by
Percy and Buck in their pioneering work. '

The solid curve in Fig. 2(b) [also Fig. 1(a)] represents
the potential V, (E) which is the sum, Eq. (2.23), of the
potentials VH(E) and hV, (E) represented by the dashed
curves in Figs. 2(b) and 2(a) [also Figs. 1(a) and 1(b)].
The fact that V„(E) is approximately independent of en-
ergy between 5 and 15 MeV is seen to be a consequence
of the DR prediction that the dispersive volume contri-
bution hV, (E) increases especially rapidly in that re-
gion. We emphasize that AV, (E) is fully determined by
the DR, Eq. (2.19), once W, (E) is known. The empirical
V, represented by the solid points in Fig. 2(a) deviate
upward from the prediction. In Sec. VII we show that
this deviation is probably a consequence of our overly
simple model for the surface imaginary potential
lV, ( r;E) for E & 12 MeV, and we construct a more
refined model which improves the fits to the data and re-
sults in empirical V, which lie very close to the predict-
ed curve of V, (E).
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the dots in Fig. 3. The values of 8, are in close agree-
ment with the following LS parametrization (W, in
MeV),

W, (E)= —0.4(E E—F) for —6&E &10 MeV, (3.6a)

W, (E)=0.103(E —72) for 10&E &72 MeV, (3.6b)

and

W, (E)=0 for E ~ 72 MeV; (3.6c)

—20
0

0 2

I ~ I ~
I

8 I'I ~ ~ ~

-(b) s ~ I T I'I ~
I ~ ~ I ~ ~ I I

this LS parametrization is represented by the solid lines
in Figs. 3(a) and 1(c).

In Fig. 3 the open symbols represent the W, required
to describe the average scattering functions which were
deduced ' ' for the neutron partial waves s, /z, p, /2,
p 3/2 83/2 and d, /2 from high resolution measurements
of the total cross section for 0.05- to 1-MeV neutrons.
These values have large uncertainties, about ~50%, be-
cause they are determined essentially by summing re-
duced neutron widths of only a few resonances. They
are included here only to demonstrate consistency with
the decreasing lower segment of the LS parametrization.

From this LS parametrization and the DR, Eq. (2.19),

we calculate the corresponding function b, V, (E), which
is represented by the solid curve in Fig. 3(b) or the
dashed curve in Fig. 1(c). This curve closely follows the
empirical values of 6 V, that were obtained from the in-
dividual fits and are represented by the solid points in
Fig. 3(b). This agreement demonstrates that the data are
well described by the DR model. This is further illus-
trated by the general agreement between the predicted
DR curve in Fig. 3 and the surface depths (crosses) re-
quired to reproduce experimental single-particle energies
(see Sec. IV). The calculated curve is also consistent
with the open symbol, which represents the potential re-
quired to fit the nonresonance s-wave cross section (or,
equivalently, the real part of the energy-averaged s-wave
scattering function) for neutrons in the energy range
0.05 —1 MeV. ' ' In Sec. IV we shall also show that the
asymptotic values of the single-particle wave functions
are in excellent agreement with experimental values de-
duced from sub-Coulomb pickup reactions.

For E) 14 MeV the empirical b, V, in Fig. 3(b) follow
the DR prediction particularly well; that would not be
the case if the Hartree-Fock parameters were not well
chosen. In Sec. V we discuss the relationship of 5 V, to
the Hartree-Fock radius r~. If we were to change r&
even slightly, say from 1.240 to 1.243 fm, without read-
justing other constants, the empirical 5V, would be
falsely adjusted to compensate for the inadequacy of
those parameters. Likewise, an assumption of an energy
dependence in rH for E & 14 MeV would require a com-
pensating energy dependence, say in the imaginary ra-
dius r ~, to allow 6 V, to follow the DR prediction. A
related phenomenon is present for the energies
4 & E & 1 1 MeV. Those empirical points for 5 V, do not
closely follow the DR prediction because they have been
somewhat falsely adjusted in the fitting procedures in an
attempt to compensate for the inadequacies in that
domain of our simple "fixed geometry" model for
'lV(r;E). We return to the latter problem in Secs. VI
and VII.

0 )0 20 30 40
E (MeV)

50

FIG. 3. Energy dependence of the strengths of the surface-
peaked components of the imaginary and real parts of the
optical-model potential. The solid points are obtained from fits
to the experimental cross sections, with the geometrical param-
eters in Eqs. {3.1)—{3.3) and taking the strengths of the volume
components from the solid curves shown in Fig. 2. The values
of W are presented in (a), in which the LS is a visual fit.
When inserted in the DR the LS yields the values of 6 V,
shown by the solid curve in (b). The solid dots in (b) represent
the empirical values of 6 V, obtained from individual fits. The
crosses are empirical values of 5V, required to reproduce the
experimental single-particle energies. The open symbols in (a)
show the values of W, required to describe the average scatter-
ing functions for 0.05- to 1-MeV neutrons; the five symbols in
order of increasing

~
W,

~

correspond to p, /2, p3/2 (g3/p sf/2,
and d5/2 partial waves. In (b) the open symbol represents the
corresponding 5V, for s, /z and the cross at the end of the ar-
row indicates the 4s, /, bound state.

E. Comparison with the experimental cross sections
in the energy domain 1 & E & 165 MeV

We now compare the experimental cross sections with
those calculated from our optical-model potential. The
geometrical parameters of the model are specified by
Eqs. (3.1)—(3.3). The strengths of the various com-
ponents are specified by Fqs. (3.4a), (3.4b), (3.6a) —(3.6d),
and the DR, (2.19). They are represented by the curves
shown in Figs. 1 —3. We again emphasize that the DR
fully determines the real part of the dispersive contribu-
tion once the imaginary part of the mean field is
specified.

The solid curves in Fig. 4 represent the differential
cross sections calculated from our model in the energy
domain 14 & E (40 MeV. The agreement with the
data, ' ' which are represented by the dots, is quite
similar to that shown in Fig. 5 of Ref. 2, where a purely
phenomenological optical-model potential was used.
The P /N deduced by comparison of the curves to the
data are listed in column 2 of Table II. The predicted
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FIG. 5. Comparison between the experimental (Refs. 23 and
24) analyzing powers at 10 and 14 MeV and the predictions of
the fixed geometry model.

30 60 90 320 ) 50 )80
ec m (deg)

FIG. 4. The dots give the experimental differential cross
sections at the energies indicated. The curves are calculated
from the model described in Sec. III.

total cross sections average 0.4% less than the values in
Table I.

Figure 5 shows the comparison between the experi-
mental .' analyzing power at 10 and 14 MeV and the
predictions of our model. The agreement is quite good

in view of the fact that these data were given relatively
little weight in our analysis; it could be improved by
slightly readjusting the spin-orbit parameters.

In Fig. 6 the dashed curves show the differential cross
sections calculated from our model for the energy
domain 4 &E & 11 MeV, and the points are the experi-

10

lo4

TABLE II. g /N from comparison of model predictions to
experimental angular distributions for N scattering angles at
the energy E.

10

&o4

E (MeV)

4.0
4.5
5.0
5.5
6.0
6.5
7.0
9.0

10.0
1 1.0
14.0
20.0
22.0
24.0
25.7
30.3
40.0

'See Sec. III.
See Sec. VI.

'See Sec. VII ~

Fixed
geometry'

4.7
9.1

11.9
13.3
43.8
54.7
47.0
36.4
20.2
11.6
12.0
9.4
7.0

13.8
4.8

10.4
17.6

r, (E)
and

a, (E)

1 1.5
6.6
6.2

11.8
17.6
25.2
26.6
33.6
20.2
11.7

a, (E)
and

I dependent'

3.2
6.4
6.4

14.6
11.6
5.5
6.9

15.6
9.0

1 1.4

= &o4

E

D
b ~04

~04

(03

(0

ol ~ ~ I ~ I . ~ I ~ ~ I . I

0 30 60 90 120 &50 &80

8, (deg)

FIG. 6. The dots give the experimental differential cross
sections for 7, 9, 10, and 11 MeV and the shape elastic part of
the experimental differential cross sections at 4, 4.5, 5, 5.5, 6,
and 6.5 MeV. The dashed curves have been calculated from
the model described in Sec. III. The solid curves correspond
to an angular-momentum dependence in the strength and an
energy dependence in the diffuseness of the imaginary potential
(Sec. VII).
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mental values. For E & 7 MeV the points represent
shape elastic cross sections that were deduced in Ref. 4
by subtracting calculated compound elastic cross sec-
tions from the total elastic values. Column 2 of Table II
lists the 7 /X deduced by comparison of the data to the
curves. It is seen that our model yields good agreement
with the data except at the larger angles (i.e. ,

0, & 100'). The poorer agreement for these larger an-
gles will be discussed in detail in Secs. VI and VII.

In Fig. 7 the predicted total cross sections for neutron
energies up to 25 MeV are compared with the data. The
points represent energy averages of cross sections that
were measured during a previously reported experi-
ment' ' and are presented here for the first time for
E & 1 MeV. Comparisons to previous experiments and a
discussion of experimental uncertainties are given in the
Appendix. The dashed curve corresponds to our present
model, while the solid curve is associated with a refined
model (Sec. VII) in which the surface potentials are
angular-momentum dependent for E & 12 MeV. For
E & 12 MeV the models, and the curves in the figure, are
practically identical.

In Fig. 8 our model predictions of total cross sections
for n + Pb are compared with measured cross sections
for n+ ""Pb for energies up to 120 MeV. The solid and
dashed notations are the same as for Fig. 7. The
energy-averaged cross sections for ""Pb and Pb are
expected to be nearly the same, to within l%%uo, because
the atomic weights are nearly identical (see Appendix).
In Fig. 8(a) the points represent values that we deduced
by energy averaging cross sections that had been mea-
sured ' with good energy resolution by time-of-flight
methods. In Fig. 8(b) the points for 15 & E & 120 MeV
are from Ref. 25, except that we have renormalized the
authors' energy scale by 1.06, as discussed in the Appen-
dix.

Our model is seen to give a good description of the to-
tal cross section over a broad energy range which ex-

Pb+ n

6

b

b

(0 100
E (MeV)

FIG. 8. Energy dependence of the total n+ ""Pb cross sec-
tion. In (a) the points represent energy averages of the experi-
mental cross sections from Refs. 27 and 28. In (b) the points
represent the experimental cross sections from Ref. 25, but are
plotted at energies of 1.06 times those quoted by the authors.
The justification for this renormalization is given in the Appen-
dix. The curves have the same meaning as in Fig. 7.

tends up to 120 MeV. Furthermore, it is consistent with
unpublished n+ Pb total cross sections for energies
up to 165 MeV. The agreement in magnitude with the
experimental valley and peak for E & 50 MeV in Fig. 8
shows that %'(r;E) is a good approximation [see Eq.
(3.4b)]. Furthermore, the agreement in energies for the
peak and valley shows the correctness of the exponential
energy dependence for VH(E); although a linear depen-
dence for VH(E) could have been assumed if the analysis
were restricted to E & 40 MeV, an extrapolation to
higher energies of such a linear parametrization would
not have yielded the correct energy for the peak near 80
MeV.

5 IV. EXTRAPOLATION TOWARDS
NEGATIVE ENERGIES

3

~ ~ . I . ~ ~ . I2
0 5 IO 15 20

E (MeV)

FIG. 7. Energy dependence of the total n+ 'Pb cross sec-
tion below 25 Me V. The dots are previously unpublished
values which use the experimental setup described in Refs. 19
and 20. The dashed curve (and the solid curve above 12 MeV)
corresponds to the model described in Sec, III. The solid
curve below 12 MeV is associated with the same imaginary po-
tential as for the solid curves in Fig. 6 (Sec. VI).

The average potential V(r;E) is a continuous function
of E which varies smoothly when E changes sign; for
E &0 it is the real part of the optical-model potential
and for E &0 it is the shell-model potential. The fact
that empirical data from all energies are utilized for
parametrizing V(r;E) is especially useful for the shell
model because the few data available from the domain of
E & 0 are strongly augmented by the abundant and
varied scattering data from E &0. Essentially, the infor-
mation from E &0 reduces to the energies of the single-
particle bound states and to the asymptotic value of
some single-particle wave functions at large dis-
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tances. For our model, in fact, the only datum uti-
lized from E (0 was the centroid energy for the valence
orbits or, equivalently, the Fermi energy. We now cal-
culate the single-particle energies and wave functions
from our model and compare with the experimental
values. Furthermore, we compare the predicted and ex-
perimental spreading widths for the deep 1h»/z hole
state; and we predict spectroscopic factors, occupation
numbers, and rms radii for the valence orbits.

A. Single-particle energies

The experimental values of the neutron single-particle
energies in Pb are tabulated in Table III. They are
taken from Refs. 34 and 35 in the case of the two
valence shells ( —12 MeV &E &0), and from Ref. 36 in
the case of the 1h»/z deeply bound state; the latter is

spread over an energy interval of about 3 MeV (see Fig.
4.41 of Ref. 14). ' Table III also contains the average
energy of the particle (p) and hole (h) valence shells, as
defined by

(E„&=y(2j+1)E„„
UAO

(E„&=y(2J +1)E„„
OCC

g(2j+1),
UI10

g(2j+1),
OCC

(4. la)

(4. lb)

where uno and occ refer to the subshells of the normally
unoccupied and occupied valence shells.

We consider the following two methods in order to
compare the experimental single-particle energies to
those predicted by our model: (i) In keeping with the
procedure used in Fig. 3, we take the value of V, (E„& )

nlj

3d 3/2

2g 7/2

4$1/2
3d 5/2

ll15/2
1l 11/2

2g 9/2

(E, )

—0.37
—0.32
—0.79
—1.04
—0.78
—1.46
—2.88
—1.22

—0.72
—0.82
—1.07
—1.41
—1.36
—2.00
—3.20
—1.68

V„+AV,
—1.40
—1.75
—1.62
—2.08
—2.39
—2.80
—3.81
—2.50

Expt.

—1.40
—1.44
—1.90
—2.37
—2.51
—3.16
—3.94
—2.63

TABLE III. Neutron single-particle energies E„I, in Pb.
The left-hand column specifies the principal, orbital, and total
angular momentum quantum numbers, the column labeled VH
contains the Hartree-Fock values, that labeled V, gives values
with only the dispersive volume correction added to the
Hartree-Fock field, that labeled V„+AV, gives the values cal-
culated from our full model potential, and that labeled Expt.
lists the experimental values. Also listed are averages for the
valence shells. All energies are in MeV.

OP

UJ
—10

29m/~ ~
)4&/2 ~

j&5gg /
&/2

345/z
li«/

29&/z

E F

3p)/~ ~
2f /

2fg/ ~
1h 9/

r
~mme

34~/

w 4s«
345,/2

L ja/,
L

2g9/

~ 3p)/
2 f5/
3P3/2

2f7/
&h 9/p

—)5

h
20 ll/g

E Xp.

from the solid curve in Fig. 2(b); we then adjust the
strength b. V, (E„i ) of the surface component so that the
full potential V, (r;E„i )+b,V, (r;E„& ) yields the experi-
mental single-particle energies. The corresponding
values of b, V, (E„I ) are represented by crosses in Fig.
3(b). These are seen to lie close to the solid curve, i.e.,
to the prediction of our DR model. (ii) We calculate the
energies of the bound single-particle states in the full po-
tential V(r;E) of our model. The results are listed in
Table III and plotted in Fig. 9. One sees that the disper-
sive corrections bring the calculated values into close
agreement with the experimental energies. In particular,
the particle-hole gap as measured by the difference

6~h ——(E„)—(E„& is reduced from 9.53 MeV in the
Hartree-Fock approximation to 6.91 MeV in the full po-
tential; the latter compares quite well with the experi-
mental value 6„h——6.62 MeV. The agreement between
our calculated single-particle energies and the experi-
mental values is better than achieved in any of the mi-

croscopic calculations which are surveyed in Ref. 14.
Also listed in Table III and plotted in Fig. 9 are the

bound state energies in the field V, (r;E), which includes
only the sum of the dispersive volume correction plus
the Hartree-Fock field. The corresponding particle-hole
gap is 8.47 MeV. By comparison to the gaps derived
from the Hartree-Fock field and from the full field, we
see that, on average, about 40% of the total correction

3p 1/2

2fsn
3p3/2

1l 13/2

2f7rz
lh 9/2«. )

1h11/2

—8.40
—9.37
—9.27

—10.14
—12.18
—12.33
—10.75

—19.51

—8.14
—8.98
—8.90
—9.63

—11.42
—11.48
—10.15

—17.58

—7.64
—8.33
—8.30
—8.85

—10.56
—10.74
—9.41

—16.66

—7.37
—7.94
—8.26
—9.00
—9.71

—10.78
—9.25

—16.5+0.5

FICx. 9. Neutron single-particle energies in 'Pb. The first
column at the left gives the Hartree-Fock values, the second
column those calculated with the volume correction added to
the Hartree-Fock potential, the third column those calculated
from the full potential, and the right-hand column the experi-
mental values. The dashed lines represent the particle and hole
averages defined by Eq. (4.1): (E ) for F. )EF and (E„) for
E(E .
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results from volume dispersive effects and about 60%%uo

from the surface correction AV, . We recall that the
volume correction results entirely from the imaginary
potential at relatively distant energies,

~

E E—F ~
& 16

MeV; accordingly, V„(E) is almost a linear function of E
in the vicinity of the Fermi energy:

V, (E)= —46.4 MeV+0. 17(E EF—) . (4.2)

In contrast, the surface term b, V, (E) is strongly
influenced by IV, (E) at energies

~

E EF
~

&—16 MeV,
and therefore varies rapidly with E in the vicinity of EF.

We note that the good agreement between our model
and experiment extends to the energy ( —16.5 MeV) of
the deeply bound 1h»&2 single-particle neutron orbit,
which the microscopic calculations overbind by about 2
MeV. ' The spreading width I for the 1h

& & &2 neutron
orbit can be estimated from the expression

1.4

1.2
(0
N

1.0
LIJ

0.8

0.6

m/m

m"/m

m"„ /m

r (fm)

10

I I I I

I '=2 J u ~~ (r)'1V(r;E» )dr,
11/2 11/2

(4.3)

where u, z (r ) /r is the 1h» zz radial wave function in
11/2

the full potential t'(r;E). The wave function is normal-
ized;

FIG. 10. Radial dependence of the effective masses at the
calculated centroid energy (E„)= —9.41 MeV of the valence
hole states. The short-dashed curve represents m*/m, the
long-dashed curve mH /m, and the solid curve m /m.

J [u„& (r)/r] r dr —= J u Iz(r)dr =1 . (4.4)
mass at the nuclear center only weakly depends upon en-
ergy, since approximation (4.2) yields

This yields I ~=2.7 MeV, which is in reasonable agree-
ment with the reported experimental value I ~

=3.7+0.5 MeV. A better evaluation of I ~ should take
into account the fact that the microscopic HF field is
nonlocal. ' By noting that I ~ is connected to the life-
time w of a hole state by I =A'/r, Eqs. (1), (16), and (21)
of Ref. 39 lead to the following improved approximation
for r'.
I '=2 j u &h (r)%'(r;E&h )[m/m*(r;E» )]dr,

m*(r =0;E)
m

(4.7)

mH(r;E) =1— VH(r;E) .
d

dE
(4.8)

for E close to EF. In contrast, the effective mass at the
nuclear surface is a rather strong function of energy.

In the Hartree-Fock approximation, the effective mass
reduces to mH(r;E), where

where m *(r;E) is the effective mass:

(4.5) Equations (2.3) and (3.5b) show that in our model and in
the vicinity of the Fermi energy this quantity is approxi-
mately independent of energy and is given by

cy(r. E)
m dE

(4.6)
mH(r;E) = 1 —0.3 1f (XH ); (4.9)

The improved approximation (4.5) yields I'=3.3 MeV,
in excellent agreement with the experimental value.

B. Effective masses

The energy dependence of the full potential can be
characterized by the effective mass m*(r;E) which is
defined by Eq. (4.6). Figure 6 of Ref. 15 shows that in
our LS parametrization the effective mass becomes
infinite at the energies at which linear segments meet, in
particular at the Fermi energy. This is why in Fig. 10
we show it at the energy (E„)= —9.41 MeV, i.e.,
EF —3.41 MeV, which corresponds to the calculated
centroid energy of the hole valence shell (Table III). It
is seen that m '(r; (E„)) has a peak at the nuclear sur-
face. The surface peaking of m*(r;E) is due to the cou-
pling of the Hartree-Fock single-particle states to low-
lying surface excitations of the Pb core. The effective

it is represented by the long-dashed line in Fig. 10.
In the absence of dispersive correction one would have

m*(r;E)=mH(r;E). The "Emass" m defined '
by

m(rE)
1 dg~(E)

m dE
(4.10)

C. Single-particle wave functions
and spectroscopic factors

We pointed out in Sec. IIB that the energy depen-
dence of VH(r;E) derives from the fact that VH is the

characterizes the importance of the dispersive contribu-
tion. It is symmetric about EI;. For E close to EF, the
quantity m /m is intimately related to the spectroscopic
factor, ' as will be recalled below. Figure 10 shows that
m(r; (Eh ) ) is strongly peaked at the nuclear surface.
This is in keeping with microscopic calculations. '
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local equivalent of a nonlocal microscopic Hartree-Fock
mean field VH(r, r'). These two fields are equivalent in
the sense that they have the same single-particle energies
and scattering phase shifts. However, their eigenstates
are not identical: their radial parts are related by

uH(r;E) = C (E)[mH(r; E)lm]' uH(r;E), (4. 1 1)

where C(E) is a normalization factor. The square root
on the right-hand side is often called the "Percy damp-
ing factor. "' ' Equation (4.11) holds exactly in the case
of the Skyrme-Hartree-Fock approximation.

In the DR approach it is assumed that the main
source of nonlocality of the full mean field V(r;E) lies in
its Hartree-Fock component, and that the dispersion
correction is local. Accordingly, it appears plausible to
assume that the following relation connects the eigen-
state, u(r;E), of the full microscopic mean field to that,
u (r;E), of its local equivalent V(r;E):

u(r;E)=C(E)[mH(r;E)lm]'~ u(r;E) . (4.12)

The normalization factor C(E) is equal to unity in the
case of scattering states. For a bound single particle
state, C (E„& ) is determined by the requirement that
u(r;E„& ) and u (r;E„I ) are each normalized, Eq. (4.4).
The value of mH(r; (Eh ) ) as plotted in Fig. 10 implies
that

u „i (r) & u„& (r) for small r, (4.13a)

u „& (r) & u„& (r) for large r . (4.13c)

This effect was pointed out by Negele. It will be exhib-
ited in Table IV below.

The contribution of a single-particle orbit to the neu-
tron density distribution is given by

2

u„»(r)
p„»(r) = (4.14a)

77 T

where

u„» (r ) = u„» (r;E„» ) and u „»(r) = u„,, (r; E„,, ) . (4.13b)

Since u„I (r) and u„& (r) are both normalized, the in-
equality (4.13a) implies that

The spectroscopic factor is given by the following ex-
pression, '

S„& ——f u „& (r)[m/m(r;E„I )]dr . (4.15)

These calculated spectroscopic factors are listed in Table
V. They can be identified with the so-called "absolute"
spectroscopic factors. They cannot be compared readi-
ly with measured values because the latter do not in-
clude the admixture of the single-particle wave function
in highly excited states of Pb, since these admixtures
are hardly accessible to experiment. For completeness,
Table V also gives the spectroscopic factors of particle
states.

Table IV shows that the calculated asymptotic densi-
ties S„»p„&, (r) are in excellent agreement with the experi-
mental values. We note that this agreement would not
have been as satisfactory if we had not introduced the
effects associated with the Percy damping factor and
with the spectroscopic factor. The sum

(Sp)„,(r) =g S„»p„,, (r) (4.16)

D. Occupation probabilities

The dispersion integral on the right-hand side of Eq.
(1.5) can be divided into two parts, one of which arises
from the integration over E' from EF to + ao and the
other from an integration from —oo to EF. We adopt a
notation similar to that in Ref. 41 and write

is represented by the solid curve in Fig. 11. The points
represent the experimental total neutron density, '
which is found by summing the experimental values
from Table IV. It is seen that c:xcellent agreement exists
between the calculated and measured values. This agree-
ment is better than that obtained from the best mean
field approaches. We note that in the latter the spec-
troscopic factors are set equal to unity; Table IV shows
that this would somewhat spoil the agreement between
our model and experiment. In Fig. 11 the dashed curve
represents the quantity (Sp)„,(r) in the Hartree-Fock
approximation. It is seen to decrease too rapidly with
increasing r; this reAects the fact that the hole states are
overbound in the Hartree-Fock approximation.

with the following normalization:

p„( r 4~r dr =2j +1 . (4.14b)
EV(r; E)=b Vpo(r; E)+b Vco(r; E), (4.17)

The calculated values of p„I (r) and of
2

2j + 1 u~tz (r)
S.l (r)=

4~ r
(4. 14c)

are listed in Table IV for r =10.0, 11.5, 13.5, and 15.0
fm. It is seen that for these large values of r the inequal-
ity (4.13c) is indeed fulfilled.

The calculated values ofp„& (r) can be compared with
those measured from sub-Coulomb pickup reac-
tions. However, it should be noted that these exper-
iments actually measure the quantity S„»p„»(r), where

S„&~ is the spectroscopic factor for the corresponding
single-particle state in Pb.

b, Vpo(r;E)= — ' dE',
EF E —E (4.18a)

(4.18b)

m(r;E) mpo(r; E) mco(r;E) —1.
m

(4.19)

Note that in the frame of our assumption of symmetry
(2.13), mco is the refiection of mpo about EF:

Actually, the quantities AVP& and AVco diverge in our
present model, but this is of no importance in the
present context because one can use the subtracted
dispersion relations. ' Correspondingly, the E mass m
can be written in the following form, '
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TABLE IV. Single particle densities at distance r.

nlj

3p &/z

3P 3/2

p
p
Sp
Expt. '
Expt. b

p
p
Sp
Expt. '
Expt. b

p
p
Sp
Expt. '
Expt b

p
p
Sp
Expt. '
Expt. '

p
p
Sp
Expt. '
Expt b

p
p
Sp
Expt. '
Expt. '

r =10.0 fm
(10 ' n/fm')

3.12
3.98
3.17
3.53
3 ~ 84

5.31
6.83
5 ~ 56
5.48
6.14

4.35
5.66
4.56
4.33
4.53

3.72
4.90
4. 17
3.63
3.46

2.34
3.08
2.49
2.28
2.01

1.07
1.46
1.24
1.13
0.86

r =11.5 fm
(10 n/fm')

3.76
4.83
3.84
4.45

5.94
7.67
6.25
6.20

4.07
5.33
4.30
4.28

2.79
3.70
3.15
2.98

1.33
1.76
1.42
1.29

0.61
0.83
0.71
0.63

r =13.5 fm
(10 n/fm )

2.34
3.00
2.39
2.89

3.33
4.31
3.51
3.50

1.91
2.50
2.02
2.13

0.97
1.29
1.10
1.16

0.36
0.48
0.39
0.35

0.16
0.22
0.19
0.16

r = 15.0 fm
(10 n/fm')

3.01
3.86
3.07
3.84
4. 1 1

3.97
5.14
4.18
4.19
4.67

2.05
2.68
2.16
2.37
2.44

0.83
1.10
0.94
1.08
1.01

0.28
0.37
0.30
0.26
0.23

0. 1 1

0.16
0.13
0.11

Total p
p
Sp
Expt."
Expt. b "

19.9
25.9
21.2
20.4
20.8

18.5
24. 1

19.7
19.8

9.1

11.8
9.6

10.2

10.3
13.3
10.8
11.9

'Experimental densities from Ref. 31.
Experimental densities from Ref. 32 (quoted in Ref. 33 for r = 10 fm).

'Estimated, not measured, from Ref. 31.
Experimental density from Ref. 33.

m po(r;E +EF ) =mco(r;EF E) . —(4.20)

N„(& ——f u„&j(r)[2 mpo(r;E„IJ—)/m]dr,
0

and in the case of a particle state (E„& & EF ) by

(4.2 la)

N„0 ——f u „I (r)[mco(r;E„& )/m —1 ]dr . (4.2lb)
0

The calculated occupation probabilities are listed in

Algebraic expressions of rnpo and mpo can be obtained
from Eq. (3.21) of Ref. 15.

The occupation probability of the single-particle state
(n, l,j) is approximately given ' in the case of a hole
state (E„&~ &EF ) by

Table V. We note that the calculated total number of
neutrons in the valence orbits is equal to 45.2. It differs
from 44 because the repletion of the valence shell above
the Fermi energy in part derives from the depletion of
deeply bound orbits; conversely, the depletion of the
valence shell below the Fermi energy in part feeds orbits
which lie in the continuum, i.e., at positive energy.

Interest in occupation probabilities has been renewed
by the recent measurements for the 3s&&z proton shell
in Pb. Only small differences should be expected be-
tween the occupation probabilities of proton and neutron
single-particle states. ' Hence, it is of interest to note
that the value N3"' ——0.86 calculated here is close to~ 1/2

the experimental result N 3,
' ——0.82+0.09 quoted in
1/2
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nlj

3d 3/2

2g 7/2

4s]/2
3d 5/2

1j is/z
1111/2

2g 9/2

3p &/z

2fsn
313/z
1L 13/2

2f7r2
1A 9/p

Snlj

0.90
0.86
0.91
0.88
0.82
0.82
0.81

0.80
0.81
0.81
0.81
0.85
0.85

N„l

0.07
0.10
0.06
0.08
0.13
0.12
0.12

0.86
0.87
0.87
0.87
0.90
0.90

R" ' (fm)

8.02
7.15
8.47
7.62
6.73
6.53
6.70

6.36
6.18
6.23
6.36
5.97
5.93

TABLE V. Spectroscopic factors, occupation numbers, and
rms radii of valence neutron particle and hole states in ' 'Pb.

Our values for each nlj cannot be compared exactly with
those from Refs. 30—33 because the latter were deduced
from the observed S„IJP„&~(r) using wave functions calcu-
lated with a local potential with an assumed spectro-
scopic factor, usually S = 1. As a consequence, the
values deduced here are larger than those quoted in
Refs. 30—33. The differences are related in part to the
asymptotic wave functions and to the related inequali-
ties, i.e., (4.13a) and (4.13c), which are generated by the
Percy damping factor. For the hole states and for the
particle states with high spin values the differences are
about 0.2 fm. However, for most particle states the
differences are relatively large; in particular, the
difference from Ref. 32 for the 4s, &z orbit is 0.8 fm.

V. ENERGY DEPENDENCE OF THE RADIAL
SHAPE OF V(r; E)

E. rms radii of valence orbits

The rms radius for each nlj is calculated using the
wave function u„i~(r),

1/2
R„I. = El„I r r dr

0
(4.22)

These are listed in Table V. From an average over the
hole states, weighted by 2j + 1, we find an excess-
neutron radius of 6.17 fm, in close agreement with the
6.21-fm radius deduced in the mean field approach.

Ref. 45. In addition, it has been found that the ground
state magnetization densities in Pb are quenched rela-
tive to predictions of the independent-particle model.
This quenching has been attributed to the partial occu-
pancy of the neutron orbits.

A. Introduction

According to Eq. (1.4), the full potential V(r;E) is the
sum of the Hartree-Fock potential V H(r;E) and of the
dispersive contribution AV(r; E). The potential
VH(r;E) has a Woods-Saxon shape whose geometrical
parameters have been assumed to be independent of en-
ergy, see Eqs. (3.1) and (3.3). In contrast, the radial
shape of bV(r;E) depends on energy because the ratio
[b.V„(E)IAV,(E)) of the strengths of its volume and
surface-peaked components depends upon energy. In
subsections B, C, and D we discuss, respectively, the ra-
dial dependence of AV(r;E), the radial dependence of
the full potential V(r;E), and the energy dependence of
the volume integral of V(r;E).

B. Radial shape of EV(r;E)

Because of the symmetry assumption, Eq. (2.13), the
dispersive contribution AV(r;E) is skew-symmetric with
respect to EF..

b V(r;E +EF ) = —KV(r; Ez E) . — (5.1)

fQ
10

The quantity b, V(r;E) is the sum of a volume com-
ponent b, V„(r;E) with the Woods-Saxon geometry

f (XH ) and of a surface component AV, (r;E) whose ra-
dial shape is given by the derivative of the Woods-Saxon
geometry f (X, ), see Eq. (2.18). From the geometry pa-
rameters and the dispersive strengths, we calculate the
various potentials; they are plotted in Figs. 12(a), 12(b),
and 12(c) for E =0, 5, and 24 MeV, respectively. These
results are in semiquantitative agreement with those ob-
tained in Ref. 5 from a cruder model.

10

10
r tfm}

15

C. Radial shape of V(r;E)

Equations (1.4) and (2.21)—(2.23) yield

V(r;E) = V, (E)f (XH )+b V, (r;E) . (5.2)

FIG. 11. Radial dependence of the quantity (Sp)„,. The
points represent the experimental values and the solid line is
calculated using the full mean field. The dashed line is calcu-
lated using the Hartree-Fock approximation with all spectro-
scopic factors set equal to unity.

Since the surface-peaked contribution is not very narrow
and since its strength is not large, the full potential has a
radial shape which closely resembles a Woods-Saxon po-
tentia1. This is exhibited in Fig. 13 for neutron energies
of 5 and 24 MeV. For each energy the solid curve
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-1

«2
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FIG. 12. The solid curves represent the dispersive contribu-
tion AV(r;E) for (a) E =0 MeV, (b) 5 MeV, and (c) 24 MeV.
The long-dashed and short-dashed lines give the volume and
surface components, AV, and EV„respectively.

with depth V, diffuseness a, and radius R =rA ' is
given approximately by

J/3 = — Vr [I +(m.a/R) ] .
3

(5.3)

D. Volume integral

The vertical dashed lines in Fig. 13 indicate the radii R,
for the plotted "effective" Woods-Saxon potentials and
the arrow indicates the Hartree-Fock radius.

The radius parameter r, of this "effective" Woods-
Saxon potential depends on energy. This dependence is
represented by the solid curve in Fig. 14. The behavior
of r, (E) can be understood by comparison with the simi-
lar curve for b, V, (E) in Fig. 3(b). By adding a surface
peaked contribution b, V, (r;E) to the model Woods-
Saxon volume potential V, (E)f (XH ), one indeed obtains
an effective" Woods-Saxon potential ~hose radius is
larger than RH if AV, is attractive and smaller than RH
if 6 V, is repulsive. We see from Fig. 3 that 6 V,
changes sign at the Fermi energy and again at E = 11.6
MeV. At those energies the effective radius r, is identi-
cal to the radius of the Hartree-Fock potential.

The property that the calculated radius decreases for
energies larger than 4 MeV is consistent with empirical
evidence; in Fig. 14 the dashed curves show the empiri-
cal variation as deduced in Ref. 4 from a purely phe-
nomenological optical model analysis. We note that the
radius of the effective Woods-Saxon potential decreases
with decreasing E in the energy domain [—10 MeV, 0)
which corresponds to the two valence shells. This is in
keeping with the results recently obtained from a related
but different approach.

represents V(r;E) and the dashed curve the correspond-
ing effective" Woods-Saxon potential V, (r;E), with a
depth equal to V, (E) [solid curve in Fig. 2(b)], a
diffuseness equal to aH, and a radius R, which is deter-
mined by the requirement that the volume integrals of
V, (r;E) and V(r;E) are equal. We recall that the
volume integral per nucleon of a Woods-Saxon potential

It is customary to characterize the strength of an
average potential by its volume integral per nucleon.
This quantity is shown in Fig. 15. It is seen that the
solid circles are compatible with a linear energy approxi-
mation (E in MeV),

Jv/A =( —412+2.6E) MeV fm for 4 &E &40 MeV .

(5.4)

).28 QI t ~ l ~ l ~

—$0

o —20

W —30

—40

1.24E

l.22

~ 1.20—

—50
10

1.1 8

FIG. 13. The solid curves give the full potential V(r;E) for
E =5 and 24 MeV. The dashed lines represent an "effective"
Woods-Saxon potential V, (r;E) with the same depth,
diffuseness, and volume integral as for V(r;E). The vertical
dashed lines represent the radii for the two Woods-Saxon po-
tentials, and the arrow shows the Hartree-Fock radius.

t. t6
-20 -(0 0 io

E (MeV)

20 30 40

FIG. 14. Energy dependence of the radius parameter
r, =R, /A ' Eq. (1.3c), of the effective" Woods-Saxon poten-
tial (dashed lines in Fig. 13). The dashed curve is the empirical
radius from Ref. 4.
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E-EF (MeVj

100

FICx. 15. Volume integrals for the Hartree-Fock potential
and for the full potential. The Hartree-Fock curve (dashed) is
calculated using the dashed curve in Fig. 1(a). The fu11 poten-
tial curve (solid) is calculated using the sum of the surface and
the volume terms [dashed curve in Fig. 1(c) and solid curve in
Fig. 1(a)]. Each symbol represents the sum of the surface term
for the corresponding symbol in Fig. 3(b) plus the volume term
deduced from the solid curve in Fig. 2(b).

VI. ENERGY-DEPENDENT SURFACE
GEOMETRY FOR E & 10 MeV

A. Introduction

Although the model investigated in Secs. III—V in-
volves very few adjustable constants, it is remarkably
successful in describing a large body of experimental
data in a broad energy domain —20 & E & 165 MeV.
This success results from the use of the DR. One should
not expect this simple model to describe the data in
complete detail in the whole energy domain. Indeed, the
DR approach describes only the average effect of the
couplings between the single-particle states and the core
excitations. Some couplings to specific core excitations

This approximation is representative of parametric
forms previously proposed within the framework of
purely phenomenological analyses; see, e.g. , Ref. 49.
Hence the typical low-energy dependence implied by the
DR usually cannot be empirically exhibited if one limits
oneself to positive energies and to the volume in-
tegrals. ' ' Figure 15 shows, however, that the volume
integral at negative energy strongly deviates from the ex-
trapolation of the linear approximation (5.4). This extra-
polation would greatly overbind the valence single-
particle states and would yield valence single-particle
wave functions whose asymptotic values at large dis-
tance would be very different from those found from the
analysis of sub-Coulomb pickup experiments (Sec. IV C).
We note that the typical energy dependence of J& at
negative energy mainly reAects the energy dependence of
the surface-peaked contribution (Fig. 3) or, equivalently,
of the radius of the "effective" Woods-Saxon potential
(Fig. 14).

B. Fitting with an energy-dependent
surface geometry

Purely phenomenological optical-model fits of the
differential cross sections suggest that a, tends to de-
crease and r, to increase with decreasing E for
4&E &10 MeV. In the present section we shall retain
the radial shape of %', (r;E) given by Eq. (2.10), but let
a, and r, depend on E. The geometrical parameters of
the volume contribution are kept the same as in Secs.
II —V; see Eqs. (3.1)—(3.3). We introduce a surface-
peaked real contribution

b, V, (r;E) = 4adhV, (E) f (—Xd ) .
d
dr

(6.1)

In principle, this equation introduces two more parame-
ters, ad and rd. However, since preliminary searches
showed that meaningful fits could not be made for so
many parameters, we allow ad(E) to differ from a, (E)
but require

rd(E)=r, (E) . (6.2)

The preliminary searches showed this to be a good ap-
proximation.

We thus perform least squares fits to the ten angular
distributions for 4&E &11 MeV with the following six
adjustable parameters: V„R'„6V„a„r„and ad. In
Fig. 16 the solid points represent the resulting V„' the
open circles show the VH deduced, as in Fig. 2, by sub-
traction of the dispersion correction AV, (E). The
curves are reproduced from Fig. 2. The points fall
somewhat below the solid curve but support the DR pre-
diction that V, (E) is nearly independent of energy for
4&E &11 MeV. Following a procedure analogous to
that used in Sec. III D, we search again with V, fixed on
the solid curve. The resulting geometrical parameters r„
a„and ad are shown in Fig. 17. The values of a, tend

may introduce corrections to the Hartree-Fock field
which (i) vary rapidly with energy, and (ii) depend on the
angular momentum and parity of the single-particle
state. Examples are shown in Figs. 4.45a and 4.49 of
Ref. 14.

Such specific effects should probably best be taken into
account explicitly rather than in the framework of the
standard optical model. Nevertheless, one may wonder
whether weaknesses of the simple model of Secs. III—V
in the low energy domain (4 &E & 11 MeV) could not be
cured by appropriate refinements. We focus on low en-
ergies because the simple model predicts too large total
cross sections for 7 & E & 11 MeV (Fig. 7), while for
5.5 &E & 9 MeV it yields poor agreement with the mea-
sured differential cross sections at scattering angles
larger than 100' (Fig. 6). This suggests that our simple
parametrization of %', (r;E ) may not be fully adequate
at these low energies. In the present section we discuss a
model in which the geometrical parameters of 'lg, (r;E)
depend upon energy for E & 10 MeV, in contrast to the
model used in Secs. III—V. In Sec. VII we shall investi-
gate a model in which %,(r;E) depends on the nucleon
orbital angular momentum.
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to decrease and those of r, to increase with decreasing E
for 4 &E & 10 MeV, as expected from purely phenome-
nological analyses, as mentioned above.

The radial shape of EV, (r;E) cannot easily be calcu-
lated from the DR, Eq. (2.16a), since the geometrical pa-
rameters r, and a, depend on energy. Moreover, the
fluctuations of the diffuseness ad reflect the property that

E (Mev)

FIG. 16. Potential depths for the model with energy depen-
dent radius and diffuseness of the surface imaginary potential
(Sec. VI). The solid symbols represent the empirical values of
V, determined by least-squares fits to the data, and the open
symbols represent VH deduced by subtraction of the DR
volume correction represented by the dashed curve in Fig. 2(a).
The curves and the cross are from Fig. 2(b).

the fits mainly determine the volume integral of AV„
which is proportional to ad A V, . Accordingly, we apply
the DR in terms of volume integrals, for which it reads

J~ (E')dE'
JET E' —E (6.3)

In Fig. 18 the volume integrals for the empirical AV,
and %', are represented by solid symbols, while the
curves are reproduced from Fig. 3, each multiplied by
8.1 fm to approximately convert from well depth to
volume integral per nucleon. A comparison between
Figs. 3 and 18 shows that the volume integrals for the
imaginary part are about the same for the two models,
but that the present energy-dependent geometry yields
better agreement with the DR predictions of the real
surface term for 4&E & 11 MeV.

C. Extrapolation to negative energies

-60 ~ ~ 1
I ~ ~ ~ I ~ ~ ~ I f I T t ~ ~ ~ I ~ I ~ I I ~

I
~

E
-40

As in Sec. IV, we wish to extrapolate the real surface
term to negative energies. In the present case the extra-
polation is uncertain because the energy dependence of
the geometrical parameters is unknown for E &4 MeV.
We therefore make the following simplifications. We ap-
proximate the energy dependences of r, and a, in the ex-
perimental energy region by the straight line segments

1.45
(a) -20

0
~

/
~ l ~ I $1 ~ ~ ~ t I I ~ I

S) = i5

1.25 -20

1.20
1.2

E
0.8
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(b)
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I

Enn'
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FICs. 17. Energy dependent geometries for the model in Sec.
VI. The solid symbols represent the empirical radius r, and
diffuseness a, of the surface imaginary potential, and the open
symbols represent the empirical diffuseness a„of the real sur-
face potential. The solid lines are visual fits to the solid sym-
bols. Below the lowest inelastic threshold, which is indicated
by the arrow at E„„=2.6 MeV, r, and a, are assumed to be
constant. The dashed lines represent the assumed values of rd

and ad for the model, as discussed in the text.

FIG. 18. Energy dependence of the volume integrals per nu-
cleon of the surface-peaked components of the imaginary and
real parts of the optical model potential for the same searches
as in Fig. 17. The curves are from Fig. 3 with a renormaliza-
tion factor of 8.1 fm'. The dots represent empirical values ob-
tained with V, defined by the solid curve in Fig. 16. The
crosses represent the real surface volume integrals required to
reproduce experimental bound state energies. The open sym-
bol shows the volume integral required to reproduce the s-wave
potential scattering in the 0.05- to 1-MeV region. The arrows
show the relation to the 4s, z~ particle state. For both the
crosses and the open symbol, the surface geometries shown by
curves in Fig. 17 have been used.
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shown by solid curves in Fig. 17, and we extrapolate to
negative energies assuming that both r, and a, remain
constant below the inelastic threshold at 2.6 MeV. The
solid curves for r, (E) and a, (E) represent the following
expressions (in fm):

the predicted width of the 1h»&z hole state is too small
because the radius of the imaginary surface potential is
too large to allow good overlap with the 1h»&z wave
function.

r, =1.41 and a, =0.2 for E &2.6 MeV,

r, ( E) = 1.41 —0.0189(E —2.6)

(6.4a)
VII. ANGULAR-MOMENTUM-DEPENDENT MODEL

A. Introduction

for 2.6 &E & 10 MeV, (6.4b)

a, (E)=0.2+0.0513(E —2. 6)

for 2.6&E & 10 MeV, (6.4c)

and

a, =0.58 and r, =1.27 for E & 10 MeV .

To predict the corresponding real geometry from the
DR would require a numerical evaluation of the disper-
sion integral in Eq. (2. 16a). Here we use a simplified ap-
proach. We assume rd ——1.35 fm for E & 5.8 MeV, as in-
dicated by the dashed curve in Fig. 17(a), and a constant
diffuseness ad ——0.58 fm, as shown by the dashed curve
in Fig. 17(b).

For this model the crosses in Fig. 18(b) represent the
volume integrals required to bind each particle and hole
state at its experimental energy. A comparison of Figs.
3(b) and 18(b) indicates that the required

~

b, V,
~

for the
present model show poor agreement with the DR curve;
they are generally larger than the DR predictions. This
poor agreement results from the increase of the radius
parameter for bV, (r;E) from 1.27 to 1.35 fm. Further-
more, the predicted spreading width of the 1h»&z state
is only 2 MeV, in poor agreement with the experimental
width.

D. Discussion

Column 3 of Table II lists the 7 /N deduced by com-
paring the experimental angular distributions with pre-
dictions from this model, as defined by the curves shown
in Figs. 16—18. Relative to the fixed geometry model
(column 2) these show about a factor of 2 improvement
for energies of 5, 6, 6.5, and 7 MeV, but little change for
E =4.5, 5.5, 10, and 11 MeV. The fact that 7 /N is
worse at 4 MeV is a consequence of the poor description
given by the model for the empirical r, at 4 MeV [see
Fig. 17(a)].

We find several objections to the model discussed in
the present section. (i) The complications introduced by
considering energy-dependent empirical functions r, (E)
and a, (E) did not lead to a significant improvement be-
tween the fitted values and the DR predictions. (ii) The
empirical V, scatter from one energy to the next. (iii)
The large imaginary radius parameter r, implies that at
negative energies the peak for the real surface term lies
well outside the Hartree-Fock radius. This means that
the surface strength

~

hV, must be increased beyond
the DR predictions in order to fit the experimental bind-
ing energies, particularly those for the hole states and
for the particle states with large I values. Furthermore,

W'&, and b, Vb, for group b (1 =1, 3, or 6), (7. la)

2
b

0 5
E (Mev)

10

FICx. 19. Partial wave total cross sections for the Axed

geometry model from Sec. III. The dashed and solid lines
denote, respectively, the partial wave groups b and e intro-
duced in Sec. VII.

In the models studied above it was assumed that the
mean field is independent of the orbital angular momen-
tum l of the incident neutron. The eA'ect of a possible I
dependence would be especially important at low ener-
gies because the number of partial waves is limited by
the centrifugal barrier. Figure 19 shows the contribu-
tion of each partial wave to the angle-integrated cross
sections predicted by the fixed geometry model of Secs.
III—V, for E & 12 MeV. At 7 MeV, for example, the to-
tal cross section arises mainly from partial waves with
l =0 to 6. One cannot deduce %'(r;E) separately for
each partial wave; therefore, we introduce a limited l
dependence by splitting W, (E) into two empirical func-
tions of energy, Wb, (E) and 8'„(E). Here, the sub-
scripts b and c denote the groups of partial waves which
are represented in Fig. 19 by the dashed and solid
curves, respectively. Group b contains I =1, 3, and 6,
and group c the remainder. As we show below, this par-
ticular grouping of partial waves leads to consistency
with the DR and good fits to the scattering data. From
comparisons with the fits achieved with several other
groupings, including a parity dependence, we concluded
that the present grouping is probably the best choice
that can be made, under the restriction that there be
only two groups.

The DR introduces a corresponding I dependence for
the real surface potential. For the initial phenomenolog-
ical analyses without the DR constraint, our model for
this section will have seven free parameters, namely
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W„and b, V„ for group c (other I values), (7.1b) I
I

I I I I I I I I
t I I I

along with V„a„and ad. The remaining parameters
rH, aH, and r, will be held fixed as in Eqs. (3.1)—(3.3).
We emphasize that, in contrast to the model of Sec. VI,
the radius parameter r, is assumed to be constant.

B. Analysis of the cross sections for 4 & E & 11 MeV

3
2

o Q6
C)

~ Q.4
O

Least-squares fits to the experimental cross sections
with these seven adjustable parameters yield excellent
fits, as well as 7 minima that are surprisingly well
defined for so many parameters. In Fig. 20 the solid
symbols show V, and the open symbols represent the
quantity VH deduced by subtraction of b, V, (E), as was
done in Fig. 2. These symbols are in excellent agree-
ment with the smooth curves for V, (E) and VH (E),
which have been reproduced from Fig. 2.

As in the preceding models, Secs. III—VI, we now fix

V, on the solid curve and repeat the fits. The resulting
values of a, and ad are shown in Fig. 21. The symbols
for the real diffuseness parameter ad show considerable
scatter; this is indicative, as in Sec. VI, of the fact that
the cross section mainly depends upon the product
adAV, . The volume integrals of the empirical AV, and
'K, are shown in Figs. 22(a) and 22(b), respectively, with
solid points for group b and open circles for c. We note
that the imaginary integral for group b lies systematical-
ly above that for group c. In both cases the volume in-
tegrals are well approximated by the following LS pa-
rametrizations:

J~ (E)/A =0 for —6&E & —2 MeV, (7.2a)
S

J~ (E)/A = —6.44(E+2) for —2 &E &6.5 MeV,

(7.2b)

J~ (E)/A = —0.835(72 E) for 6. 5 —&E &72 MeV .

(7.2c)

0.2
EF

I I .
'I

I I I I I I I I I

IQ

E (MeV)

—60 ~ I ~ I I I ~ I
I

I ~ I I
I

~ I I ~ I ~ I
I

I I I I
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E -40
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—40 I ~ ~ ~ I ~ ~ \ ~
I
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I ~ ~ I ~

(b)
—20

FIG. 21. Surface diAuseness parameters for the angular-
momentum-dependent model. The solid and open symbols
denote the empirical a, and ad, respectively, from the same
searches as in Fig. 20. The solid curve for a, is the same curve
as in Fig. 17. The dashed line is an approximation to ad. The
vertical arrow at 2.6 MeV points to the lowest inelastic thresh-
old.
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FIG. 20. The volume depths determined with the model for
which 8, depends on orbital angular momentum. The solid
symbols represent empirical values of V, determined by least-
squares fits to the data and the open symbols represent V~ de-
duced by subtraction of the volume correction as represented
by the dashed curve in Fig. 2(a). The curves and the cross are
from Fig. 2(b).

FIG. 22. Energy dependence of the volume integrals per nu-
cleon of the surface-peaked components of the imaginary and
real parts of the angular-momentum-dependent optical model
potential. The solid dots and open circles represent empirical
values for groups b (I =1,3,6) and c (l&1,3, 6), respectively,
obtained by searches with V, fixed by the solid curve in Fig.
20. The square symbols represent the volume integrals re-
quired to reproduce the experimental bound state energies us-

ing the surface geometries given by the curves in Fig. 21.
These are also shown solid and open for the orbital angular
momentum of groups b and c, respectively. The open circle at
0.5 MeV is for s-wave scattering, as in Fig. 18, and the con-
necting arrow indicates the 4s&/z particle state. The lines in (a)
represent visual LS parametrizations and the curves in (b) are
the corresponding DR predictions; these are solid for group b
and dashed for group c.
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for group b [solid lines in Fig. 22(a)], and

J~ (E)/A =0 for —6&E & —5 MeV,
S

(7.3a)

J~ (E)/A = —2.95(E+5) for —5&E &12 MeV,

for group c [dashed lines in Fig. 22(a)]. In both cases the
volume integral is set equal to zero for E &72 MeV.
Note that the decreasing line segments above the maxi-
ma [Eqs. (7.2c) and (7.3c)] are assumed to be the same as
for the fixed geometry model of Fig. 3.

From these LS parametrizations and from the DR,
Eq. (6.3), we calculate the real surface volume integrals
that are represented in Fig. 22(b) by solid and dashed
curves for b and c, respectively. These predictions agree
well with the points. In particular, it is noticeable that
the DR correctly predicts the crossover near 7 MeV,
with the solid points being above the open symbols for
E & 7 MeV but below for E & 7 MeV.

C. Cross sections for the angular momentum

dependent model

A calculation of the cross section requires a complete
parametrization of 'N, (r;E) and AV, (r;E). That is, it
requires not only the radius r, and the volume integrals,
but also the surface diffuseness parameters. In Fig. 21
the solid curve, which is redrawn from Fig. 17(b), gives a
good representation of a, . To construct an approximate
curve for ad(E), we integrate the DR in the form of Eq.
(2.16) using the parametrization of the imaginary surface
potential represented by the curves in Figs. 21 and 22(a).
The results for E &9 MeV are adequately described by
the dashed curve in Fig. 21. This curve is consistent
with the fitted values (open symbols) in that region. The
fitted ad for E =9, 10, and 11 MeV lie well above the
curve, but this is not very meaningful because in this en-
ergy domain the volume integral Jz&, is quite small, so
that the empirical value of ad is quite uncertain. For the
sake of simplicity, we will use the curve for ad(E) and
justify this approximation by noting that the effect of the
real surface term is small for energies near its zero cross-
ing. Thus, we take (in fm)

ad(E)=0. 2+0.024(E EF) for E &10—MeV, (7.4a)

ad (E)=0.58 for E ~ 10 MeV . (7.4b)

In Fig. 6 the solid curves show the differential cross
sections predicted for 4&E & 11 MeV from this model
with parameters represented by the curves in Figs.
20—22 and with the constant values for rH, aH, and r, .
The corresponding 7 /% are listed in column 4 of Table
II. The model is seen to describe the observed angular
distributions significantly better than the preceding two
models.

The predicted total cross sections are represented by
solid lines in Figs. 7 and 8(a); comparisons to the dashed

(7.3b)

J~ (E)/A = —0. 835(72 E)—for 12&E &72 MeV .
S

(7.3c)

curve for fixed geometry shows that the present model is
an improvement for 7 & E & 12 MeV. The predicted to-
tal cross sections average only 0.9% less than the values
tabulated in Table I. For E & 12 MeV the two models
are essentially identical.

D. Extrapolation to E & 1 MeV and negative energies

For this model we determine the surface strength AV,
required to reproduce the experimental single-particle
energies. In these calculations the depth V, (E) is taken
from the solid curve in Fig. 20 and the diffuseness ad
from the dashed line in Fig. 21 with the assumption of
symmetry about EF. The square symbols in Fig. 22
show the resulting real surface volume integrals for the
particle and hole states. These symbols are shown solid
for I =1, 3, and 6 and open for other orbits, in like
manner to the symbols for E &0. We see that the values
of AV, represented by the squares agree quite well with
the DR prediction. This agreement is similar to that ob-
tained with the fixed geometry model of Secs. III—V and
is better than for the model of Sec. VI, in which r, and
rd depend on energy. The arrows in Fig. 22(b) point to
the values required for the 4s, &z particle state and for
the average s-wave scattering function' ' for 0.5-MeV
neutrons. The agreement of these two points is further
evidence that the shell model and optical model join
smoothly at zero energy.

E. Discussion

In the present section we allowed "K,(r;E) to be quite
complicated for E & 12 MeV and to involve three
smooth functions of energy. With this representation,
we not only obtain good fits to the scattering distribu-
tions at low energies, but also determine empirical
V(r;E) which are in close agreement with the DR pre-
dictions. We deliberately adopted an empirical point of
view for this momentum-dependent model, and do not
attempt a detailed theoretical justification. In fact, such
an attempt would not be warranted because our analysis
in terms of only two groups of partial waves is still an
oversimplification. Nevertheless, we note that two quite
different types of theoretical calculations ' suggest that
particle-vibration couplings would give rise to an
angular-momentum dependence of "lV, (r;E). Addition-
ally, experimental studies of neutron scattering on lead
isotopes in the resonance region have exhibited doorway
states in the s-, p-, and d-wave channels; these were in-
terpreted as arising from particle-vibration cou-
pling s.

VIII. CONCLUSIONS

We have utilized the dispersion relationship (DR) be-
tween the imaginary and real potentials in an optical
model analysis of a large body of data on n+ Pb for a
broad energy domain. In our simplest model, Secs.
III—V, the imaginary potential is characterized by
geometrical parameters which are independent of ener-
gy; its energy dependence is entirely contained in the
strengths of its volume and surface components, each of
which is described by a smooth empirical function of en-
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ergy. The corresponding real surface and volume com-
ponents predicted by the DR are added to an empirical
Hartree-Fock potential to yield the full real potential.

Our Ha.rtree-Fock potential has a Woods-Saxon shape
with fixed geometry and an exponential energy depen-
dent depth. Thus, the intricate energy dependencies for
the full real field are entirely defined by the DR. The ra-
dius of the real field has a characteristic energy depen-
dence as the energy increases from —20 to + 20 MeV
(Fig. 14): it increases by about 3% when E increases
from —12 MeV to 0, and decreases by about 2% from 5

to 15 MeV. These properties are consequences of the
surface-peaked nature of the absorptive potential at low
energies, and are therefore also expected to hold for oth-
er nuclei. The predicted depth of the real volume poten-
tial mainly decreases with increasing energy. However,
in the domain from about 5 to 15 MeV it remains rela-
tively constant (Fig. 2). This feature is a consequence of
the property that the volume part of the absorptive po-
tential becomes significant at energies larger than about
10 MeV; it is also expected to hold qualitatively for nu-
clei other than Pb.

This simple model provides a good description of the
data over a very broad energy domain which extends
from —20 to 165 MeV. In particular, it predicts
bound-state single-particle energies (Fig. 9) and wave
functions (Fig. 11) which are in better agreement with
experimental observations than can be found in any of
the available microscopic calculations. It predicts the
spreading width of the deep 1h &&&2 hole state in excellent
agreement with the observed width. Finally, it gives a
very good description of the scattering distributions for
14&E &40 MeV and provides an excellent description
of the total cross section from 12 to 150 MeV.

The simple "fixed geometry" model investigated in
Secs. III—V is quite successful. It is only in the limited
energy domain from 5 to 12 MeV that it is not complete-
ly satisfactory. In this region the predicted total cross
sections are too large and the differential cross sections
do not fit the data well at large scattering angles. These
failures probably reflect the inadequacies of our very
simple imaginary potential in that region; the potential
involves only one empirical function of energy for
E & 10 MeV. We showed in Sec. VII that the discrepan-
cies can be ameliorated by allowing the surface imagi-
nary diffuseness to have an energy dependence and the
surface imaginary strength to have two components, one
for l =1, 3, and 6 and the other for the remaining partial
waves. This more complicated model not only gives
very good fits to the data, but also yields empirical
values for the real parameters which are in better agree-
ment with the DR predictions.

In conclusion, this work demonstrates that the DR
can be used to deduce a mean nuclear field which is cap-
able of describing a large body of experimental data over
a large energy domain. In particular, it predicts remark-
ably well the shell model potential (at negative energy)
from the extrapolation of the optical-model potential (at
positive energy). This extrapolation is in good agree-
ment with recent work ' which used a related but
somewhat different approach.
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APPENDIX

Here, we evaluate experimental uncertainties in the to-
tal cross sections. The two sets of data' '

represented by the points in Figs. 7 and 8(a) were both
obtained by transmission measurements at the Oak
Ridge Electron Linear Accelerator (ORELA); however,
they were measured independently using different
sources, flight paths, scatterers, and detectors. The plot-
ted data represent energy averages of the measured cross
sections. The data for Fig. 7 were obtained with partic-
ularly good energy resolution with a 200-m flight path.
Averaging of such data in regions of strong resonance
structure avoids errors of self-attenuation that can give
cross sections that are too low when measured by
transmission with poor energy resolution.

The total cross sections for n+ Pb and n+ ""Pb
are expected to be nearly the same. To estimate the
difference we refer to the relative values measured for
the isotopes Pb and Pb for E & 15 MeV. The
difference, o.

zaz
—o.

&06, is about 0.2 b for 4&E & 11 MeV
and about 0. 1 b for 11&E &15 MeV. Assuming inter-
mediate values for Pb and using the isotopic composi-
tion of ""Pb, we estimate o.

208
—o„„to be 0.076 b for

4&E & 11 MeV and 0.036 b for 11 &E & 15 MeV.
Indeed, if smooth curves were to be drawn through the
points of Figs. 7 and 8(a), they would show excellent
agreement with these estimated differences.

A smooth visual curve through the Pb points in Fig.
8(a) is a convenient base for comparison of the present

Pb data with earlier works. ' For 4&E &8 MeV,
the values for o.

208 from Ref. 55 are about 0.1 b or about
1.5%%uo below such a curve. For 6&E & 14 MeV, the o.

208
values from Ref. 56 are very close to the curve. On the
basis of these comparisons and the corresponding com-
parison above for the present data, we assume the
correct curve for n + Pb to be an average of smooth
curves through the data from Figs. 7 and 8(a) for F. &25
MeV. For E ) 25 MeV we make the approximation
o.

208 ——o.„„.These assumptions are the basis for the cross
sections and uncertainties listed in Table I.

Finally, we justify our renormalization of the authors'
energies for Fig. 8(b). Those data were obtained by
time-of-flight techniques using the primitive time-to-
height converters available before 1960, whereas the data
in Fig. 8(a) were obtained with modern timing methods.
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Without the renormalization the two sets of data
disagree in energy in the region of overlap, 25 &E & 50
MeV. Our renormalization by a factor of 1.06 for the
energies of the earlier data removes this discrepancy.

There is further evidence of a need for energy renormal-
ization; a factor of 1.04 brings the n-p cross sections for
50&E & 120 MeV, also reported in Ref. 25, into agree-
ment with a recent global evaluation of n-p scattering.

R. Alarcon, J. Rapaport, and R. W. Finlay, Nucl. Phys. A462,
413 (1987)~

~R. W. Finlay, J. R. M. Armand, T. S. Cheema, J. Rapaport,
and F. S. Dietrich, Phys. Rev. C 30, 796 (1984).

R. W. Finlay, J. R. M. Armand, J. S. Petler, and F. S.
Dietrich, Phys. Lett. 155B, 313 (1985); 157B, 475 (1985).

4J. R. M. Armand, R. W. Finlay, and F. S. Dietrich, Nucl.
Phys. A443, 249 (1985).

5C. Mahaux and H. Ngo, Nucl. Phys. A378, 205 (1982).
CJ. R. Satchler, in Isospin in Nuclear Physics, edited by D. H.

Wilkinson {North-Holland, Amsterdam, 1969), p. 389.
7C. B. Dover and Nguyen Van Giai, Nucl. Phys. A190, 373

(1972).
8M. Jaminon and C. Mahaux, Phys. Rev. C 34, 2097 (1986).
C. Mahaux and R. Sartor, Phys. Rev. C 34, 2119 {1986).

~~F. G. Percy and B. Buck, Nucl. Phys. 32, 353 (1962).
C. Mahaux and H. Ngo, Phys. Lett. 100B, 285 {1981).

' Nguyen Van Giai and Pharn Van Thieu, Phys. Lett. 126B,
421 (1983).

' P. F. Bortignon, R. A. Broglia, C. H. Dasso, and C. Mahaux,
Phys. Lett. 140B, 163 (1984).

' C. Mahaux, P. F. Bortignon, R. A. Broglia, and C. H. Dasso
Phys. Rep. 120, 1 (1985).

~~C. Mahaux, H. Ngo, and G. R. Satchler, Nucl. Phys. A449,
354 (1986).
F. G. Percy, private communication.
W. R. Smith, Comput. Phys. Commun. 1, 106 (1969).
B. Buck, Oxford University report, 1960 (unpublished); G. R.
Satchler, private communication.
D. J. Horen, C. H. Johnson, and A. D. MacKellar, Phys.
Lett. 161B,217 (1985).
D. J. Horen, C. H. Johnson, J. L. Fowler, A. D. MacKellar,
and B. Castel, Phys. Rev. C 34, 429 (1986).
J. Rapaport, T. S. Cheema, D. E. Bainum, R. W. Finlay, and
J. D. Carlson, Nucl. Phys. A296, 95 (1978).
R. P. DeVito, Ph. D. dissertation, Michigan State University,
1979 (unpublished); S. M. Austin, private communication.

C. E. Floyd, Ph. D. dissertation, Duke University, 1981 (un-

published); R. L. Varner, private communication.
24J. P. Delaroche, C. E. Floyd, P. P. Guss, R. E. Byrd, K.

Murphy, G. Tungate, and R. L. Walter, Phys. Rev. C 28,
1410 (1983).

P. H. Bowen, J. P. Scanlon, G. H. Stafford, J. J. Thresher,
and P. E. Hodgson, Nucl. Phys. 22, 640 {1961).
R. W. Finlay, private communication.

~7D. C. Larson, in Symposium on Neutron Cross Sections from
10 to 50 MeV, edited by M. R. Bhat and S. Pearlstein,
Brookhaven National Laboratory Report BNL-NCS-51245,
1980, p. 277. Data available from the National Nuclear
Data Center, Brookhaven National Laboratory.

8D. C. Larson, J. A. Harvey, and N. W. Hill (unpublished).
See P. W. Lisowski, G. F. Auchampaugh, M. S. Moore, G. L.
Morgan, and R. E. Shamu, in Ref. 27, p. 301.

H. J. Korner and J. P. Schiffer, Phys. Rev. Lett. 27, 1457
(1971).

'J. P. Schiffer and H. J. Korner, Phys. Rev. C 8, 841 (1973).
M. A. Franey, J. S. Lilley, and W. R. Phillips, Nucl. Phys.
A324, 193 (1979).
J. Leigh, T. R. Ophel, D. C. Weisser, and W. R. Phillips,
Nucl. Phys. A382, 115 (1982).
M. R. Schmorak, Nucl. Data Sheets 22, 487 (1977).

35M. J. Martin, Nucl. Data Sheets 22, 545 (1977).
S. Gales, Nucleonika 27, 82 (1982).
S. Gales, G. M. Crawley, D. Weber, and B. Zwieglinski,
Phys. Rev. C 18, 2475 (1978).
J. Guillot, J. Van de Wiele, H. Langevin-Joliot, E. Gerlic, J.
P. Didelez, G. Duhamel, CJ. Perrin, M. Buenerd, and J.
Chauvin, Phys. Rev. C 21, 879 (1980).
J. W. Negele and K. Yazaki, Phys. Rev. Lett. 47, 71 (1981).
C. Mahaux, Phys. Rev. C 28, 1848 (1983).

"'C. Mahaux and H. Ngo™,Nucl. Phys. A431, 486 (1984).
42F. G. Percy, in Direct Interactions and Nuclear Reaction

Mechanisms, edited by E. Clementel and C. Villi (Gordon
and Breach, New York, 1963), p. 125.

43J. W. Negele, Phys. Rev. C 9, 1054 (1974).
44A. E. L. Dieperink and I. Sick, Phys. Lett. 109B, 1 (1982).
4sE. N. M. Quint, B. M. Barnett, A. M. van den Berg, J. F. J.

van den Brand, H. Clement, R. Ent, B. Frois, D. Goutte, P.
Grabmayr, J. W. A. den Herder, E. Jans, G. J. Kramer, J. B.
J. M. Lanen, L. Lapikas, H. Nann. G. Van der Steenhoven,
G. J. Wagner, and P. K. A. de Witt Huberts, Phys. Rev.
Lett. 58, 1088 (1987).
C. N. Papanicolas, L. S. Cardman, J. H. Heisenberg, O.
Schwentker, T. E. Milliman, F. W. Hersman, R. S. Hicks, G.
A. Peterson, J. S. McCarthy, J. Wise, and B. Frois, Phys.
Rev. Lett. 58, 2296 (1987).

47C. Mahaux and R. Sartor, Phys. Rev. Lett. 57, 3015 (1986).
C. Mahaux and R. Sartor, Nucl. Phys. A468, 193 (1987).

4 J. Rapaport, Phys. Rep. 87, 25 (1982).
50A. B. Smith, P. T. Guenther, and R. D. Lawson, Nucl. Phys.

A455, 344 (1986).
5~R. D. Lawson, P. T. Guenther, and A. B. Smith, Phys. Rev.

C 34, 1599 (1986).
52A. Lev, W. P. Beres, and M. Divadeenam, Phys. Rev. C 9,

2416 (1974).
53J. Wambach, V. K. Mishra, and Li Chu-Hsia, Nucl. Phys.

A380, 285 (1982).
~4D. J. Horen, J. A. Harvey, and N. W. Hill, Phys. Rev. C 18,

722 (1978); 20, 478 (1979); 24, 196 (1981).
~5D. G. Foster, Jr. and D. W. Glasgow, Phys. Rev. C 3, 576

(1971).
~6L. J. Satkowiak, S. M. Ferguson, R. E. Shamu, and M. Soga,

Phys. Lett. B 175, 266 (1986).
57R. A. Amdt, J. S. Hyslop III, and L. D. Roper, Phys. Rev. D

35, 128 (1987).


