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The method of correlated basis functions is generalized to describe three-nucleon and deuteron-
plus-nucleon continuum states. The correlated basis functions are obtained by incorporating short
range correlations between the spectator nucleon and the two nucleons of the interacting pair.
Correlated orthonormal wave functions for the continuum states are generated by orthogonalizing
the correlated basis functions via a combination of Schmidt and Lowdin transformations, designed
so that the correlated orthonormal states have correct energies. The correlated orthonormal con-
tinuum states include the minimum interaction effects required to ensure orthogonality and
reasonable short range behavior. The longitudinal response of 'He and H at k =300 to 600
MeV/c is calculated with the variational ground state wave function and the correlated orthonor-
mal final states. Both the short range correlations and the orthogonality corrections in the final

states decrease the response in the quasi-free peak. The calculated response has the correct sum
and energy-weighted sum within —5%, and that of 'He is in reasonable agreement with the Saclay
experimental data. We find that the response of 'H is broader than that of 'He, and that it is rela-
tively larger at energies greater than that of the quasi-free peak.

I. INTRODUCTION

In recent years there have been many measure-
ments' of the longitudinal and transverse response of
light, medium, and heavy nuclei by inclusive electron
scattering. It is hoped that the longitudinal response
function is not significantly affected by meson exchange
currents involving pion and delta electroproduction,
and therefore it provides a test for our understanding of
the nuclear wave function, and of the coupling of nu-
cleons in nuclei to the electromagnetic field. '

The three-body nuclei He and H are of particular in-
terest because their ground state wave functions can be
calculated rather accurately, from realistic nuclear Ham-
iltonians, with Faddeev or variational' methods. From
these ground state wave functions we have earlier calcu-
lated the sum" SL(k) and the energy weighted sum'
WL(k) of the longitudinal response function SL(k, to).
These sums are within —5% of those obtained from the
experimental data' on He.

It is much harder to calculate SL (k, co) because that
requires the wave functions of the three-nucleon continu-
um states. The recent calculations' '' of SL (k, co) do
not fit the experimental data very well. The calculated
SL(k, co) is —20 —30% larger than the experimental in
the region of the quasi-elastic peak. This discrepancy
was attributed in Ref. 13 to the weakness of a theoretical
picture of the quasi-elastic process based on the plane-
wave-impulse approximation (PWIA). The PWIA
description was improved by Laget, ' whose included, in
an approximate way, the final state interactions due to
rescattering of the knocked-out nucleon. However, the
discrepancy of -20% still remained.

In this paper we calculate the longitudinal response

functions of He and H at momentum transfers k =300,
400, 500, and 600 MeV/c using correlated orthogonal
final states.

We first generalize the correlated basis functions
(CBF) approach to describe the three-nucleon continuum
states. The CBF method was initially developed in the
theory of quantum liquids, ' and the correlated orthogo-
nal states were recently used to study the response of nu-
clear matter. '

In the purely pedagogical Sec. II we use the correlated
orthogonal states theory to show that it can give a quali-
tative description of the nucleon-nucleon scattering even
in the lowest order Born approximation. The correlated
two-nucleon states are obtained by operating, on the
plane wave states, by a two-body correlation operator.

In Sec. III correlated three-nucleon continuum states
of the type d + N and 3N are constructed by acting with
correlation operators on a wave function having an in-
teracting pair of nucleons or a deuteron and a spectator
nucleon in a plane wave. Correlated orthogonal (CO)
states are constructed from these by antisymmetrization
and by the Schmidt-Lowdin orthogonalization procedure
developed in Ref. 16. The problems of nonorthogonality
of the continuum and bound states, in intermediate ener-
gy nuclear reactions, have been discussed earlier in the
literature. ' '

The CO states are used to calculate the longitudinal
response in first order perturbation theory in Sec. IV. It
is shown that both the short range correlations and the
orthogonality corrections reduce the height of the peak
of St (k, co) of He, and bring it into reasonable agree-
ment with experiment. The results for both He and H
are presented in Sec. V, and the conclusions are summa-
rized in Sec. VI. Most of the calculational details are
given in Appendices so that the text is easy to read.
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II. CORRELATED BASIS THEORY
OF NN SCATTERING

The CBF for two-nucleon states has the form

operator, 3 is the antisymmetrization operator, and A is
the normalization volume. F,2 takes into account
short-range correlations in the wave function, and we re-
quire that

]/'k p(r]2) =+]2~ —e "X (1)Xp(2), (2.1)
F]2(r]p & d)

In the present work we take it as a sum of six terms:

(2.2)

where k is the relative momentum, a and p specify the
spin-isospin states, r, 2

——r1 —r2, F,2 is the correlation
F]q ——g f"(r]2)0]~,

p =1,6 (2.3)

=1,60 12
' = 1, 'T1 7 2, 0'1'0'2, 'T1 72cT1'0 2, S12, and 7 1 7 2S12 (2.4)

where S,2 is the tensor operator. The F,2 used in nuclear-matter theory' also contains spin-orbit correlations which
are neglected here for simplicity. The condition (2.2) implies that the f~='(r]2 &d)=1, while all f~ ~ (r» &d)=0.
We use the F12 developed for nuclear-matter theory as discussed in Appendix A.

The correlated basis states (2.1) are denoted by
~

kap). They are not orthonormal:

(k'a'/3'
~

ka/3) = 5kk 5 ~ 5&&
—5], k 5~& 5& + terms of order 1/0 . (2.5)

We orthogonalize them with the Lowdin transformation to obtain CO states:

~

kap) =
~

ka/3) —
—,
'

~

k'a'/3')(k'a'p'
~

ka/3)+ —', ~

k"a"p")(k"a"p"
~

k'a'p')(k'a'/3'
~

kap)— (2.6)

The coe%cients 1, ——,', +—', , . . . of the terms in this
transformation are those that occur in the Taylor expan-
sion of (1+x) '; there is a sum over all repeated quan-
tum numbers k'a'/3'. . . , and a bar over a matrix ele-
ments implies that the diagonal terms are to be omitted.
The CO states are denoted

~

kap), whereas the correlat-
ed but not orthogonal CBF states are denoted ka/3).

The correlated basis theory is a perturbation theory in
which the CO states are used instead of plane-wave
states having F,2

——1. When the interaction is strong,
perturbation theory with plane-wave states has a poor
convergence, and, in particular, the Born approximation

is meaningless. However, we hope that, with an ap-
propriate choice of F12, the correlated basis theory has a
reasonable convergence. Most of the present work uses
only the first order, i.e., the Born approximation, in
correlated basis theory.

The Hamiltonian is given by

712+V 12m
(2.7)

where v12 is the two-nucleon interaction. The Argonne '

v14 interaction is used in this work. The matrix ele-
ments of the Hamiltonian with CO states are given by

(k'a'p'
~

H ka/3) =(k'a'/3'
~

H
~

kap) ——,'(k'a'/3' H k"a"p")(k"a"p

——,'(k'a'/3'
~

k"a "/3" )(k"a"P"
~

H
~

ka/3)+ (2.8)

The diagonal CBF matrix elements (kaP
~

H
~
kaP)

and (kaP
~

kaP) are of order 1, while the nondiagonal
elements (k'a'/3' H

~

ka/3) and (k'a'P' kaP) are of or-
der 1/A.

Let us consider the diagonal element of H in CO
states. It is easy to see that

( kap
~

H
~ kap) = k + terms of order 1/0 . (2.9)

m

In the limit O, ~ op this matrix element is exact, only the
first term in Eq. (2.8) gives the finite contribution, and

the rest can be neglected. On the other hand, the nondi-
agonal matrix elements of H are of order 1/6, and every
term in Eq. (2.8) has a contribution of order 1/Q. Thus,
in principle, the series (2.8) has to be summed to obtain
the nondiagonal matrix elements of H. In most cases
this series converges quite rapidly, and it is possible to
sum it, as discussed in Sec. IV.

In the Born approximation calculation of NN scatter-
ing in correlated basis theory, we need only the nondiag-
onal matrix elements of H for

~

k'
~

=
~

k
~

. These can
be more conveniently calculated as follows:
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2
(k'a'P'

~

H
~
kag) =(k'a'g' H — k kaP)m

g2 2k'a'P' H — k kaP ——k'a'P' H — k k"a"P" (k"a"P"
I
kaP)m 2 m

2—
—,'(k'a'P'

I

k"a"P") k"a"P" H — k kaP + (2.10)

This series has a better convergence than (2.8). In the
present calculation, meant primarily to illustrate the
method, we simply keep the first term in Eq. (2.10) and
neglect the rest. In a more serious calculation one might
have to sum the first few terms of Eq. (2.10), and also
Schmidt-orthogonalize the states

I
kap) to the deuteron,

as discussed in the next section.
In the correlated basis Born approximation (CBBA)

the T matrix is given by

T' ' '(k'a'P', kaP) = ( k'a'P'
I
H

I
kaP ) . (2.1 1)

Further details of the calculation are given in Appendix
B. Both the exact and CBBA cross sections shown in
Figs. 1 —6 are obtained by retaining only the partial
waves having j & 5 in the expansion of the T matrix. We
note that, unlike the plane-wave Born approximation
(PWBA), which gives meaningless results for NN
scattering with realistic interactions, the cross sections
obtained with the CBBA are quite reasonable. This is
because a bulk of the eft'ects of higher order terms, such
as the reduction of the wave function in the region of
the repulsive core, the coupling to other channels due to
tensor forces, etc. , are already included in the first order
CBBA via the correlation operators.

Figures 1 —6 do not show the "best possible" CBBA
results. We have used an F,2 from the theory of nuclear
matter, and it may be possible to develop a better F,2 for
NN scattering. Furthermore, inclusion of spin-orbit
correlations will improve the results at higher energies.

qaMd
I

H 12,qaMd)

3A'

q +Ed+terms of order 1/0,
4m

(3,qaE2y IH
I
3, qaE2y)

3A
q +E2+ terms of order 1/6 .

4m

(3.2)

(3.3)

over particle indices i, j, and k. Since p(ij) is antisym-
metric under the exchange of i with j, the cyclic sum en-
sures that the CBF (3.1) is antisymmetric. The factor
1/&3 is for normalization, and Rjk ———,'(r~+rk ).

The three-body states include the bound states denot-
ed

I
1,MsMr ), where Mr ——+—,

' for He and H, respec-
tively. In our notation

I
n, Q) denotes a CBF with n

clusters and quantum numbers Q. The
I

I,MMMM&. ) are
either Faddeev or variational' ground state wave func-
tions. The deuteron and nucleon (d+ N) states P
(Md is the deuteron spin projection) are denoted

I
2, qaMd). They are obtained by replacing PE ~(jk) in

Eq. (3.1) with the deuteron wave function pM (jk). The
d

states with three nucleons in the continuum (3N states),
given by Eq. (3.1), are denoted

I
3,qaE2y ) with E2 & 0.

The correlated states
I

n, Q ) have correct diagonal ele-
ments of H (the energies) in the limit
(l, g I

H
I

l, g) is simply the energy of the He or H nu-

cleus, and it can be verified that

III. THREE-BODY CORRELATED
ORTHOGONAL STATES

Correlated basis functions for the three-body continu-
um states are written as

However,
I
n, g) are not orthogonal to each other even

when Fi2 ——1. It is not desirable to orthogonalize all the
states

I
n, Q) by a single Lowdin transformation,

Wq, F.,y= ~- X —,
' (F;, F,k ) ~—

cyc

I
n, g ) =

I
n, g ) ——,

'
I
n', g')(n', Q'

I
n, g )+ (3.4)

)&e ' '" X (i)p~ ~(jk), (3.1)
because the states obtained this way do not have the
correct energies. As an example, consider the energy of
the state

I
1,Q ) obtained from (3.4),

where a specifies the spin-isospin of the "spectator" nu-
cleon and y denotes the spin-isospin lsjmztm, of "the
pair. The pE ~(jk) is an antisymmetric eigenfunction2r
of the two-body Hamiltonian (2.7) with energy E2. Thus
P(jk) contains correlations between j and k. The corre-
lations of i with j and k are described with the sym-
metrized product of F, and F,-&. Note that the E, and
F;k do not generally commute. The cyclic sum in (3.1) is

(i,g I
H

I
1,Q) =(l,g I

H
I

l, g)

——,'[(1,Q I
H

I

n', Q')

x(n', Q'
I
l, g)+c.c. ]

+ ~ ~ ~ (3.5)
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The first term (1,Q I

H 1,Q) gives the correct energy;
however, the subsequent terms of (3.5) are not negligible,
and they destroy the correct energy of the correlated
state

I
1,Q ). To see this, consider the terms with n

' =2.
The matrix elements (2, Q'

I
1,Q) and (1,Q I

H 2, Q')
are each order 1/&0; however, the number of 2, Q')
states is of order fl, and hence the second term of (3.5)
gives an unwanted finite contribution even in the limit

A similar problem also occurs in the correlated basis
theories of quantum liquids. If all the correlated states
are orthogonalized by a single Lowdin transformation,
their energies are spoiled. Techniques to orthogonalize
states while preserving diagonal elements of the Hamil-
tonian were developed to calculate the response of nu-
clear matter. ' These same techniques can be used here
to orthogonalize the states

I
n, Q) while preserving their

energies.
The states

I
1,Q) are orthogonal to each other, and we

identify

CU

E

c, 050

b

O. 25—

CBBAq
/

/l

Exacts

I
1,Q&= Il, Q) . (3.6)

The correlated orthogonal states
I

1,Q ) obviously have
correct energies provided the Faddeev or a good varia-
tional ground state wave function is used. Next, we
define a set of intermediate states

I
2 QI =

I

2 Q) —
I

1 Q'&&1 Q'
I

2 Q) (3.7)
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These states are orthogonalized to
I

1,Q' & by the
Schmidt procedure, and they have correct energies in
the limit Q~ oo, since both & l, g'

I

H
I
2, Q) and

& l, g'
I
2, Q) are of order 1/v'ft, and there is a finite

number of states
I

1,Q &. The CO states
I
2, Q & are ob-

tained by orthogonalizing the states
I
2, Q I among thein-

selves by a I.owdin transformation;

I »g & = 1»Q }——,
'

I

2 Q'} I2 Q'
I »g }+ (3.8)

13,Q}=13,Q) —
I
l, g'&&1 Q'l»Q)

—l2, g &&2, Q l3, Q), (3.9)

I3,Q&= I3 Q} —
—,
' I3 Q'}I»g'I3 Q}+ (3.10)

It can be verified that these states are orthogonal, and
that they have correct normalization and energies in the
limit A~~. They, however, are not eigenstates of H,
but we can hope that perturbation theory has a good
convergence in the basis of these states.

This transformation does not change the energies of
these states in the limit 0~ oo because both
I2, Q I

H
I
2, Q'} and t2, Q I

2, Q'} are of order 1/Q.
The CO states

I
3, Q & are obtained in a similar way:

AL (k, ca)=
I
Gs(k, ca)

I
SL(k, co), (4.1)

SL (k, ca)=g
I

&I
I p~ i, I

0& I 5(ca+ED EI—), (4.2)
I

e '
—,'[1+v,(i)] . (4.3)

Here,
I

0& denotes the ground state of the target with
energy Eo,

I
I & are the eigenstates of the nuclear Hamil-

tonian with energies EI, and —by convention —the
recoiling ground state from elastic scattering is omitted
in the sum over I. In the present work we have used the
covariant proton form factor:

G~(k, ca) = 1+ k —Q7

( 833.88 Me V )
(4.4)

which gives a fairly accurate description of free
electron-proton scattering.

In the lowest order of correlated basis theory the
correlated orthogonal states discussed in the preceding
section are used in place of the states

I

I & to calculate
the response. Higher order corrections take into ac-
count the difference between the states

I

I & and CO
states

I
n, g &. They are discussed in Ref. 16, but not

considered here. The CO states with total momentum k
are obtained by multiplying the zero total momentum
states of Sec. III by e'", where

IV. CALCULATION OF LONGITUDINAL RESPONSE R= —,'(r, +r, +r3) (4.5)

In a theory in which only the nucleon degrees of free-
dom are retained, the longitudinal response is given by

and we have set 0=1. Thus the lowest order response
is obtained as

SL(k, ca, MT)= —,
' g g g I &n, g I

e ' '

p q I
1,MsMT & I 6(ca+ED(Mz) E(n-,g))—

Ms"=23 &

Sl. (k, ca, MT, n) .
n =2, 3

(4.6)

(4.7)

The contribution of d + N states is given by

SL (k, ca, MT, 2)= —,
' g g f I

3 (q, c,rMaMs)
I

5(ca+ED(MT) E(2, q )), —
Ms Maw,

A (q, a,MaMs ) = & 2, qcr, (r, =MT )M
I

e '"
p k I

1,MsMT & .

(4.8)

(4.9)

Note that since the deuteron has zero isospin, the w, of the spectator nucleon must be equal to that of the target
(MT ). Using Eq. (3.8) for

I
2, Q &, we obtain

; (2i —1)!!
(q ~.MaMs)= y. ( —1)' .

"W (q ~,MaMs)
i =O, oo 2 l .

Ao(q, cr,MaMs)=—I2, qcr, Ma I
e '"

p „ I
1,MsMz-&,

I

~ (q u, MaMs)= y f, t»qa. Ma
I
»q'n'Ma} ~ i(q' ~'M—'aMs) .

(2ir )
z d

(4.10)

(4.1 1)

(4.12)

In Eq. (4.10), ( —1)!!is to be taken as 1. The Ao can be trivially expressed in terms of matrix elements with correlated
states. Using Eqs. (3.6) and (3.7), we obtain

~0(q ~.MaMs)=(2 q~.Ma I
e '" "p,, ~ I

1 MsMT) —(2 q~.Ma
I

1 MsMr)(1 MsMr
I

e '""p,
, ~ I

1 MsMI)

=(2,q~, Ma I
e '" "p,„I„(k,MsMr)

I
1,

—M, M, ),—
(4.13)

(4.14)
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where F,~(k, MsM&) is the elastic scattering form factor.
In general, Schmidt orthogonalization of the excited
states to the ground state results in replacing e '

pp
by e '"'

pz k
—F,&(k), and it significantly reduces the

calculat ed SL ( k, co ).
Most of the details of the calculation of the response

are given in Appendix C. Here we briefly comment on
the importance of various terms and the approximations
made in the calculation. Figure 7 is meant to illustrate
the effect of the correlations [F;,F;k] in the final state
[Eq. (3.1)]. It shows the longitudinal response of He at
k =400 MeV/c calculated with uncorrelated final states
(F =1) and correlated basis states

l
n, Q ). None of the

orthogonality corrections are included in obtaining the
response shown in Fig. 7. We note from this figure that
the short range correlations in the final states reduce the
response by —10%.

The eA'ects of orthogonalizing the correlated states are
shown in Fig. 8. The curves labeled GSO (denoting
ground state orthogonalization) are obtained by replac-
ing the e '"'

pz k by e '"'
p k

—F,&(k) in the calcula-
tion of the response. Thus these curves show the eA'ect

of orthogonalizing the final states to the recoiling ground

state. This correction also reduces the response by
—10%%uo, and hence it is as important as the short range
correlations.

The curve GSO(dp) in Fig. 8 shows the contribution
of the d + p states to the response in the approximation

A (q, cT,MdMs }-Ao(q, o.,MdMs) .

Further corrections to it come from the orthogonaliza-
tion of the d + p states among themselves by the Lowdin
transformation (3.8). These Lowdin corrections are
given by the terms A;»(q, cT,MdMs) [Eq. (4.12)]. They
are quite small as shown in Fig. 8, and we simplify their
calculation significantly by calculating the kernel
[ 2, qo. ,Md l

2, q'0. ,'M d ] in the approximation F = 1.
The 3N states

l
3, Q ) used to calculate SI (k, cu, MT, 3)

have quantum numbers

Q =qo, ~„plsj m, tm, , (4.15)

where qo. ,~, specify the "spectator, " Isjm tm, give the
angular momentum, spin, and isospin of the "pair, " and
the energy E2 of the pair is A p /rn. We have neglected
the Lowdin corrections in the calculation of
SL (k, co, MT, 3) by approximating:

(3,Qle '"
p klIMsMr)=I3Q le '"

p kl1MsMT) (4.16)

"
p„,k F,l(k)

l

1 MsMT)

Ij,(»Q
l

»q'&'Md & &»q'~'Md
l

e '"'"pp, k l

I MsMT ) .
(2~)

z d

(4.17)
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FIG. 7. The He longitudinal response at k =400 MeV/c
obtained with the CBF states

l
n, g) are shown by solid lines.

The curves labeled total, d+ p, and 3N-'So, respectively, give
the total response, and the contributions of d+ p states and
3N states with Isj ='So. The dashed curves labeled UC give
the results obtained upon neglecting the correlations between
the spectator and the interacting pair by setting F =1. ~,h and
co mark the energies for the d+ p threshold and the max-
imum energy up to which the response is calculated. The
points with error bars show the observed response from Ref. 1.
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~m

~ (MeV)
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FIG. 8. The curves labeled CBF (dashed), GSO (dotted),
and CO (solid lines) show the response obtained with the CBF
states

l
n, Q), with states obtained by orthogonalizing the CBF

states to the ground state, and with the correlated orthogonal
states. See caption of Fig. 7 for other details.
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Of all the three-nucleon continuum states, those with
two particles (the "pair") in a 'So state give the largest
contribution. This contribution is shown in Fig. 8 with
various approximations. We see that orthogonalizing
the 3N continuum states to the d+ N states has a large
effect on the response, while orthogonalization to the
ground state has a smaller but significant effect.

The energies of the final states, as calculated with non-
relativistic kinematics in the lab frame, are

g2k 2 3g2q 2

ENR +
6m 4m

+E2, (4.18)

where E2 Ed f——or d + N states and E2 —fi p /m —for 3N
states. It may be more accurate to calculate the final
state energies with relativistic kinematics. They are

2 1/2

ERK —— A —+q +m 2

3

2

+ A —q +M2
2k 2

3

1/2

—3m (4.19)

where M2 is the deuteron mass for d+ N states and

Mz ——2( m +p )
' for 3N states. The responses shown

in Figs. 7 and 8 are obtained with ENR, while the
response obtained with ERK is compared with experi-
ment and the results of NR calculations in Fig. 9. We
see that the presumably more accurate calculation using
relativistic kinematics is in slightly better agreement
with the experimental data. The results shown in all
subsequent figures are obtained with the ER&.

In principle, one has to sum over all values of lsj to
calculate the contribution of 3N states to the response.
In practice, this sum has to be truncated. We have tak-
en a somewhat pragmatic approach to this problem. We
know the total integral,

uses the correct ground state wave function and a com-
plete orthonormal set of final states must reproduce the
SL (k).

The 3N states with Isj = So give a large contribution,
while states with other lsj values give relatively small
contributions that are expected to add up to a contribu-
tion of the order of the 'So contribution. We calculate
the contributions of states with Isj&'So crudely by
neglecting their orthogonalization to the d+ N states.
The calculated contributions are shown in Fig. 10. We
expect that these contributions are overestimated, and
that orthogonalization to d + p states would reduce
them. The response obtained by including all the l =0
and 1 contributions gives SL (k)=0.90, while the more
accurate ground state calculation" gives Sz (k) =0.92 at
k =400 MeV/c. If the contribution of l =2 states is also
included, the SI (k) becomes -0.99, i.e., it is overes-
timated by —7%. This essentially means that the con-
tribution of 3N states with lsj = S&, Po, P„P2, and
'P, has been overestimated enough to compensate that
of states with l )2. Hence we truncate the sum over I at
I =1 for He. In the case of H, where the d+ n contri-
bution to the SL (k, co) is relatively smaller, we have to
include contributions from 3N states having l =0, 1, and
2 to obtain reasonable values of SL (k).

The statistical error in the Monte Carlo calculation of
the matrix elements of e '"

p t, (Appendix C) intro-
duces an error in the theoretical SL (k, co). This error is
negligible in the region of the quasi-elastic peak; howev-
er, it grows with increasing energy loss co. Hence we
truncate the microscopic calculation of SL (k, co ) at
co=co, where the statistical error is —10%. The value
of co is marked on all the figures.

At co=co the calculated response is larger than that
obtained from the impulse approximation:

—f Sz (k, co)dco=SL (k), (4.20)
Z ct) )

where Z is the charge of the target, from the ground
state calculations. " Any calculation of SL(k, co) which

d k' Ak
SL,A(k, co)= f n (k')5 co-

(2m. ) 2m

A' k.k'

(4.21)
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FIG. 9. The total response obtained with CO states and rel-
ativistic (solid line labeled RK) and nonrelativistic (dotted line
labeled NR) kinematics. See caption of Fig. 7 for other details.

FIG. 10. The contributions of d+p and 3N states with
l =0, 1, and 2 to the response of He at k =400 MeV/c. See
caption of Fig. 7 for other details.
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TABLE I. SL(k) and WL(k) of He at k =400 MeV/c.

180
225

S, (k

0.90
0.91

5S (k)

0.07
0.05

W (k)

98.7
100.5

AWI (k)

17.2
12.4

where n (k') is the momentum distribution of protons in
P

the ground state. However, we obtain an SL (k, co) that
is quite smooth at co=co by assuming that

SL ( k, co & co~ ) =cSL,~( k, co ),
c =Sr (k, co )/SI, A(k, co ) .

The SL(k) and the energy weighted sum W~(k),

(4.22)

(4.23)

WL(k)= —I SL(k, ~)codes,
el

(4.24)

are calculated with the approximate tail (4.22) for
cu&cu . This approximation is somewhat ad hoc; how-
ever, since m is quite large, it is not very important.
For example the total values of Sl (k) and WI (k) for
He at k =400 MeV/c are compared with tail contribu-

tions bSL(k) and hWI (k) for co =180 and 225 MeV in
Table I.

V. RESULTS

A. The longitudinal response of He

The response calculated with correlated orthogonal
states at k =300, 400, 500, and 600 MeV/c is shown in
Figs. 11—14. These figures also show the experimental
data from Saclay, ' and the response obtained in impulse
approximation (IA) using the proton and d+ p momen-
tum distributions in the ground state. ' The variational
wave function of Ref. 10 is used for the ground state in
these calculations.

We note that the response obtained with the CO states
is in significantly better agreement with the experimental
data than that with the IA. As mentioned in the preced-
ing section, both orthogonalization of the final states and
short range correlations in the final states reduce the
response in the quasi-free peak. At lower values of k or-
thogonalization has the more dominant effect. At
k = 300 and 400 MeV/c the peak of the theoretical
response is at slightly higher energy as compared with
experiment, while the lowest order CO states theory
seems to work much better at k =500 and 600 MeV/c.

As mentioned earlier, the sums Sl (k) and WL(k) of
the response have been calculated exactly from the

ground state. "' In Table II we compare the sums cal-
culated from the CO response with the more reliable
ground state (g.s.) calculation results, and the Sl (k) de-
duced from experimental data. '' Note that the agree-
ment between the CO and g.s. SL (k) is not meaningful
because the sum over I in 3N states is truncated by
matching these. However, a comparison of the CO and
g.s. WL(k) is meaningful. It suggests that higher order
corrections to the CO calculation will shift the response
to lower energies and improve agreement with experi-
ment.

Lastly, we note that the contributions of the d+ p
states and 3N states with Isj ='Sp account for —80%%uo of
the response. These contributions are calculated with
reasonable accuracy in the present work.

B. The longitudinal response of H

The results obtained for H are given in Figs. 15—18 ~

The contributions of d+n states and 3N states with
lsj ='Sp account for less than half of the total CO
response. Thus these results may be less accurate than
those for He. However, it can also be argued that the
corrections from orthogonalizing the 3N states with
lsj+ Sp to the d+ n states, which are neglected in the
present work, may not be very important for H, because
the d+ n contribution to the response is small. The
sums obtained with CO response are in reasonable agree-
ment with the g.s. calculations"' (Table III), and there-
fore the present calculation of the H response may not
be too bad.

We note that the response of H is much smaller in
the quasi-free peak region than that given by the IA, and
it is broader than that of He. The He response shown
in Figs. 15—18 has been divided by 2 to account for the
difference in the charges of H and He. We hope that
the experimental Rc (k, co) will soon be available from
data taken at Bates.

VI. CONCLUSIONS

The longitudinal response of He, obtained with the
lowest-order theory using correlated orthogonal states,
has a reasonably correct sum and energy weighted sum,
and it is also quite similar to that seen experimentally.
There are, however, systematic differences between the
calculated and experimental response. For example, at
small cu, near the d + N threshold the experimental
response is always much larger than the theoretical one.
The response in this region is due to states with small
value of

~ q ~

for which our correlated state
~

2, g) may
not be very accurate. The present

~

2, g ) states are ob-

TABLE II. Sums of longitudinal response of 'He.

k
(MeV jc) CO

Sc(k)
g.s. Expt.

W (k) (MeV)
CO g.s.

300
400
500
600

0.77
0.90
0.96
0.97

0.78
0.92
0.97
0.99

0.75
0.86
0.94
0.98

56.0
98.7

153
207

52.3
94. 1

143
196
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tained from an uncorrelated state in which the relative
motion of the deuteron and the nucleon is described by a

iq (rl —R23)
plane wave e ' " . Perhaps it may be more accurate
at small values of 1q to use the real part of the
deuteron-nucleon optical potential to calculate this part
of the wave function. It may be necessary to make such
improvements before attempting a calculation of higher
order corrections.

Unlike the calculations of the sums SI (k) and WL(k)
reported in Refs. 11 and 12, the present calculation of
SL ( k, co ) is not exact. It essentially includes the
minimum interaction effects on final state wave functions
required to ensure orthogonality and reasonable short
range behavior. It is nice that the theory comes quite
close to experiment just by including these minimal
effects.

It should also be possible to calculate, with the
methods developed here, the SL (k, co) of the He nucleus.
It can be studied experimentally with high accuracy, and
the calculated' values of 8'L(k) suggest that interaction
effects are larger in this nucleus.
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APPENDIX A: THE CORRELATION
OPERATOR F;~

Let us consider two nucleons in the relative Sp state.
Their wave function,

g('So, r) =—u (k, r)y ~,r
(Al)

where y" is the spin and angle part, is obtained from
the solution of the Schrodinger equation,

p2 d2 g2k2
+v ('So, r) u (k, r)=

m dr2 m
u (k, r), (A2)

where v ('So, r) is the potential in the 'So channel. The
radial wave function ( I lr)u (k, r) diff'ers from the unper-
turbed radial wave function jo(kr) at small r due to the
strong v ('So, r), and at large r due to the phase shift.
We want to express the difference between the
(1/r)u (k, r) and jo(k, r) at small r by a multiplicative
correlation function f ('So, r) The ratio . of ( 1 lr)u (k, r)
and jo(kr) is not very sensitive to k at small r. The
phase shift, on the other hand, depends strongly on k
and is calculated perturbatively with correlated states.

Following techniques developed in the theory of nu-
clear matter, ' we define a new short-range potential:

v('So, r)=[v('So, r)+A('So)]e(d, r) . —(A3)

Let u(k, r) be the solution of the Schrodinger equation
for v('So, r) The A, ('So) i.s chosen so that

TABLE III. Sums of longitudinal response of 'H.

k
(Me V/c) CO

SL(k)
g.s.

8' (k) (MeV)
CO g.s.

300
400
500
600

0.83
0.88
0.91
0.93

0.83
0.94
0.98
1.00

64.8
107
162
232

64.5
110
162
218
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f ( So,r)= —u(k, r)ljo(kr),1

r (A5)

for some typical value of k. The f ('So, r) equals one for
r &d, by construction, and it reAects the diff'erence be-
tween (1lr)u (k, r) and jo(kr) at small r where
A, ('So) &&v('So, r). The correlation function f (lsj, r) in
other uncoupled states like P] is calculated in a similar
way.

Let us now consider two nucleons in the relative S&
state, which is coupled to the D

&
state by the tensor

force. The Schrodinger equation is solved for the two-
body potential:

v(3S, , r) =[v' &(r)+vt &(r)L S+vt~&(r)(L S)2+v( &(r)L +V( S& )]e(d, —r)+[vo &(r)+A, '( S& )]Size(d, —r), (A6)

g( S, , r) = —u (k, r)y &' + w(k, r)y, '—1
(A7)

and the A, '( S, ) and A, '( S, ) are chosen so that

—u(k, r &d, ) =j 0(kr),
1

r

w(k, r &d, )=0 .

(A8)

(A9)

The radial and tensor correlations in the S, state are
then obtained as

f ( S&,r)= —u(k, r)lj 0(kr)
r

(A10)

and

f '( S&,r)= —w(k, r)l[&8jo(kr)] . (A 1 1)

where v 0, (r) for x =c; b, bb, q, and t denote the central,
(L S), (L S)~, L~, and tensor potentials in the t =0,
S =1 channel. The solution of the Schrodinger equation
has the form

The f '( S&, r & d, ) =0 by construction.
The radial correlations in 'So, Po, P2, S„D3, and

'P] states and the tensor correlations in S& and P2
states are calculated in this way. These eight correla-
tions are expressed as an operator:

F;, = g f~(r, )Ot', .

p =1,8

where Otj
=' are given in Eq. (2.4), and

(A12)

Ot'= ' =(L S) and (L S)r; rj . (A13)

The parameters d„d„and k chosen for the calcula-
tion of F, have values of 1.4 fm, 1.9 fm, and 0.78 fm
This value of k corresponds to E],], -50 MeV. The re-
sults of this work are not very sensitive to -20%
changes in these parameters. The calculated f~(r) are
shown in Fig. 19. Note that in all the calculations re-
ported here we have used the correlation operator (2.3),
in which the spin-orbit correlations f~ = ' are set to
zero.

APPENDIX 8: CALCULATION OF NN SCATTERING

The plane waves e'"'
I
sm, tm, ) are expanded into partial waves:

e'"'I sm, tm, ) =4m g(i)j~(kr)[ZI, '(k)] y,'~ ~

tm, ),
jm -1

J

Z, '(&)—=y(i, , ~

' J)F, (k) .
mi

(B2)

The CBBA T matrix is given by
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T(ksm, , k's'm, ';t)=(4n) g (i) [1—( —1) +'+']Z, ', (k')[Zj, '(k))*Hjj'j'(k),
jm . 11'

J

2

Hrr'r'()r)—:(jr(kr)y'' rm, Y rr — (V —k ) yr j(rkr)Y" rm,
J m J

(B3)

(B4)

m

4~%
(B5)

where we have used k'=k. The operators F UF and F V' F are easy to calculate, as discussed in Ref. 19. The
differential cross section in the center of mass (c.m) frame, for nn scattering, is given by

d~nn
(km„k'm, ', s) =

~

T(ksm„k'sm, ';t =1)
~

while that for np scattering is

(km„k'm, ', s) =—
4

2

~

T(ksm„k'sm, ';t =0)+T(ksm„k'sm, ';t =1) (86)

In the calculations reported here we have retained all
terms having j (5. The spin averaged cross sections
shown in Figs. 1 —6 are defined as

do. 1 do. dCT

dQ 4 dA ' ', dA
(k, k', s =0)+ g (km„k'm, ', s =1)

m m
S S

(B7)

APPENDIX C: CALCULATION
OF MATRIX ELEMENTS AND OVERLAPS

11,MsMT) = f'(ij ) U Cy (M M ), (Cl)
t &j&3

U3=S g 1++fp~ku~~(r, )Op~
t &J&3

(C2)

given in Eq. (2.3) of Ref. 10. We use f 3 and u~3 to
denote correlations in the ground state. These functions
are also given in Ref. 10 along with the three-nucleon
functions ftjk.

The correlation operator F in the continuum states
~

n, Q) is written as

1. Calculation of
(n, g ~

e '"
p~ ), F)(k MsM—r )

~

1 MsMr)
F,j f '(r,j ) 1+ g ——u j'(r,, )O,j,'

p =2, 6

These matrix elements are calculated with the Monte
Carlo method discussed in Ref. 10. The variational
wave function of the three-nucleon ground state is writ-
ten as

f'(r, )U, (ij),—

and the states
~

n, Q) then have the form

(C3)

~

n, Q)= —g f'(r&z)f'(r») —,
' [U2(12), U~(13))e ' "X (1)pz (23) .

3
(C4)

The matrix element is written as

(n, g ~

e '"
p z F,~(k, MsMz. ) 1—,MsMr)=&3 f dr, dr~dr38 (r, , r2, r3)X(k, n, g) . (cs)

W(r&, r2, r3) =f'(r)z)f'(r&3)f 3(r&2)f 3(r23 )f&(r3) ) (C6)

X(k, n, g) =X (1)pz r(23)e ' "
—,
'

[ U2(12), U~(13) I [e '"
p~ „F„(k,MsMr ))U343(M—sMT ), (C7)

and evaluated with the Monte Carlo method by using 8'(r&, r2, r3 ) as the weight function. We used 75 000
configurations to calculate the matrix elements with d + N states and 3N states with l =0, and 18 7SO configurations
for 3N states with l =1 and 2.
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2. Calculation of the overlaps

The overlaps (2,qo, M~
~
2, q'cr,'M~ ) and (2,qo, M~

~

1,MsMr ) are needed to calculate the Lowdin corrections to
the d+ N part of the response [Eqs. (4.10)—(4.12)]. These matrix elements are easily calculated with the approxima-
tion F =1. In this case (2, qcr, M~

~
1,MsMT) becomes the amplitude for finding a deuteron and a nucleon with

momentum q in the three-nucleon ground state. These amplitudes are calculated in Ref. 10.
Approximating F = 1, we obtain

(2, qcr, M~
~
2, q'cr,'M~ ) = (q(1,23)cr, (1)r,(1)PM (23)

~ g q'(i jk)cr,'(i)r, (i)P, (jk) )
CPC

=2(cr, (1)r,(1)P~ (q'+q/2, 23)
~

cr,'(2)r, (2)P, (q'/2+q, 31)),
(C8)

(C9)

iq-(r, —R . )
where q(i jk) stands for e ' '" and pM {k,ij) is the

d

deuteron wave function in momentum space,

pM (k, ij) =[u(k)y, M (k, ij )+w(k)y iM (k, ij)], (C10)

Here and in the rest of this appendix we suppress isospin
functions for brevity.

The two-nucleon wave function p(p, lsjm ) in the 3N
states has the form

where 5&J(p) are the phase shifts and e~(p) are the mix-
ing angles.

Since the corrections from orthogonalizing the 3N
states to the d + N states have been studied only for the
ease lsj = 'So, we discuss only this simple case. The
Fourier transform of P(p, 'So) is calculated by isolating
the asymptotic part of u (p, 'So ):

P(p, lsjmj ) =—u (p, lsj, r)y" {r),

1 . l~
u(p, lsj, r~ oo )=—sin pr — +5„,(p)

(Cl 1)

(C12)

u (p, 'So ) = u „{p, 'So ) +u, (p, 'So ),

u„„(p, 'So ) =cos5O(p)rjo(pr) —sin50(p)ma(pr),

(C16)

(C17)

for uncoupled channels like lsj= 'So. For coupled chan-
nels like S, , where j = l + 1,

where 5O{p) is the 'So phase shift. The u, (p, 'So ) is a
short ranged wave function whose Fourier transform
u, (k,p, 'So) is not singular. We obtain

p(p, Isj m~ )=—u (p, lsj, r)y," (r)+ —w (p, l'sj, r)y' ' (r),

(C13)
P( k,p, So ) = 2rr cos50(p )

1 2 5(k —p)
kp

l~ +5(„(p)

and l ' = l +2. The asymptotic forms of u and u are

1
u (p, lsj, r~ oo ) = —cos[e;(p)]sin pr—

1 1+4~ sin 5o(p )—P
p I 2

p
2

1 I '~
w (p, lsj, r~ oo )=—sin[@ (p)]sin pr — +5&, (p)

(C14) +u, (k,p, 'So) y~~, (C18)

(C15)
I

where P denotes the Cauchy principal value. In the
F = 1 approximation we obtain

(3,qcr, p 'So
~
2, q'cr,'M~ )=2(cr,'(1)P(q'+q/2, p, 'S0, 23)

~
cr,'(2)PM, (q'/2+q, 31) ) .

d
(C19)

The overlap,

(3,qcr,p 'So
~
I,Ms ) =&3f dr, dr2dr3o, (1)P (p, 'S0, 23)e

is calculated by the Monte Carlo method of Ref. 10. The overlap matrix element in Eq. (4.17) is then approximated as

(3,qcr, p 'S,
l
2, q'cr,'Mq ) =(3,qo, p 'So

l
2 q'cr,'Md ]

=(3,qo.,p 'So
~

2, q'o,'Mz ) —g(3, qcr, p 'So
~

I,Ms )( I,Ms
~

2, q'cr,'Mz ),
s

and all the matrix elements in (C22) are calculated as discussed above in the approximation F = 1.

(C21)

(C22)
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