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We present the first global relativistic optical-model treatment of proton-nucleus elastic scatter-
ing. Energy-dependent optical potential parameters for the Lorentz vector and scalar potentials
of Dirac phenomenology are given. Several different assumptions regarding the optical-model en-
ergy dependence are considered. Constraints from relativistic mean-field theory are presented.

The recent rapid development of relativistic treatments
of nuclear reactions has increased the need for relativistic
optical model potentials for use in relativistic descriptions
of reactions such as (e,e'p), (p,p’), (p,2p), (p,xX), or
(7,p). In this work we give the first results of a global
fitting approach using the program GRUNT! to obtain
these potentials. We consider a large body of elastic
scattering data at energies above 150 MeV for p+“’Ca.

The standard scalar-vector (SV) model of Dirac phenom-
|

f(E,r) and g(E,r) = |1+exp )

In this work we consider several different assumptions re-
garding the energy dependence of the potential parame-
ters above 150 MeV. The extension to lower energies will
be given separately, as the shape of the imaginary poten-
tials is expected to deviate from a Fermi form. The
dependence on mass number will be considered else-
where.*

In our first parametrization we restricted the geom-
etries of the real optical potentials to shapes shown to pro-
duce high quality fits at each energy individually.>-®
These constraints were based on relativistic mean-field
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enology is employed with several different assumptions for
the energy dependence of the potential parameters.
The optical potentials used have the form

V(E,r)=Vo(E)fo(E,r)+iWo(E)go(E,r) , )
SE,r)=Vs(E)fs(E,r)+iWs(E)gs(E,r) , )

where f(E,r) and g(E,r) are chosen to be symmetrized
two-parameter Fermi shapes,

a(E) 3

I
calculations. We considered two different ways of deter-
mining the parameters for the form factors of Eq. (3).
First (case 1), we considered a simple folding model, de-
scribed in Ref. 5, based on two-body Yukawa potentials
for the exchange of scalar (o) or vector (w) mesons. In
this case the real vector parameters are ro, =1.0159 fm
and a, =0.6678 fm, and the corresponding scalar parame-
ters are ro=1.0098 fm and a,=0.6918 fm. Then we
used (case 2) two-parameter Fermi fits to relativistic Har-
tree potentials.5~8 These parameters are 7o, =1.0600 fm
and a, =0.5817 fm for the vector and r¢ s =1.0672 fm and
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TABLE I. Global parameters for the scalar and vector optical potentials for the p+ *“°Ca cases 1 and
2 global fits. The real geometries are energy independent and fixed at either the OBEP geometries (case
1) or the relativistic Hartree geometries (case 2) as described in the text. The energy dependence of the
real and imaginary strengths as well as the imaginary geometry parameters is quadratic. The form is
given in the text in Egs. (4).

Case 1 Case 2
a b c a b c
Vo 0.8894 —0.3765 0.0700 0.6861 —0.1618 —0.0144
Wo 1.1446 0.1406 —0.0924 0.5030 0.3274 0.0739
rou 1.0842 —0.0090 —0.0032 1.1658 —0.0882 —0.0224
ao 0.5702 —0.0599 0.0064 0.4861 0.0603 0.0205
Vs 0.9730 —0.2170 0.0109 0.6987 —0.0506 —0.0336
Wi 1.2072 0.2324 —0.2913 0.3212 0.2613 0.0969
ro,s 1.0872 —0.0090 0.0070 1.2019 —0.1026 —0.0681
as 0.5587 —0.0452 —0.0521 0.4204 0.0926 0.0282

a;=0.6111 fm for the scalar. The differences between
these sets give some measure of the uncertainty in this
constraint procedure.’ All of the energy dependence of
the scalar and vector potentials is in the strengths and in
the imaginary geometries.

The real scalar and vector strength parameters and the
imaginary scalar and vector strengths and geometry pa-

parabolic case and 21 in the cubic case. The parameters
are given in Table II. Note that the parameters in the two
cases are quite similar. To check the stability of the
fitting, we started the cubic fit in a completely different re-
gion of parameter space. The fit was recovered with po-
tential parameters differing by less than 0.1%.

In every case the fits to the p+ “°Ca data at the indivi-

rameters were taken to have parabolic energy dependence dual energies of 161, 181.3, 200, 300, 362, 497.5, 613,

of the form 797.5, and 1040 MeV were very good.'® The fits pro-
duced calculated observables for the various cases that

- 2
Vo(E) =300(a,+b1E+ciE?) (4a) are, in general, graphically indistinguishable even though
Wo(E) =—100(a,+brE+c,E?) (4b)  the chisquares per degree of freedom of 15, 22, 17, and 16
for cases 1 through 4 are rather different. Although the
V(E) = —400(a3+b3E +c3E?) , (4c)  fits are of comparable quality, the individual potential pa-

= 2 rameters at a given energy can be quite different. These
W.(E) =100(as+biE+ciE?) (4d) differences are most pronounced at the lower energies, for
where E =(T,—400)/400 with T, the projectile kinetic
energy is the laboratory frame. The imaginary geometry
parameters are also parabolic, for example, rg
=(a+bE+cE?). In these two cases a total of 24 param-
eters are varied. The data set we have used contains 1600
data points, so this number of parameters is not excessive.
The coefficients a, b, and ¢ for the global best fit potentials

TABLE II. Global parameters for the scalar and vector opti-
cal potentials for p+ “°Ca for cases 3 and 4. The imaginary sca-
lar potential strength was found to be 66.6224 MeV for case 3
and 64.7099 MeV for case 4.

are given in Table I for both cases 1 and 2. Case a b c d
Next we investigated a more restrictive scenario in
which the parameterized geometries were assumed to be 3 Vo 0.8299 —0.1820 —0.0510
. .. 3 Wo 0.8150 0.0610 0.0290
energy independent. All energy dependence is imbedded
. A R 3 Vs 0.8940 —0.0510 —0.0910 coee
in the strength parameters. This does not imply that the
d-ord Di i tral d . bit 4 Vo 0.8348 —0.1558 —0.0742 —0.0095
S(gc‘;ln . d°.’ er ‘facl etq)“a ‘t‘.’“ 1°°‘; rat. la“ S‘;”."O’ ! 4 W,  0.8005 0.0711 0.0369  —0.0160
chrédinger equivalent) optical potential geome neGs are 4 v, 0.8962 —0.0101 —0.0915 —0.0479
energy independent, as neither is linear in S and V.° To
improve the systematic behavior of the imaginary Real
strengths, we took the imaginary scalar potential to be en-
ergy independent. This constrains the ratio of vector to Case ro. (fm) a, (fm) ros (fm) a; (fm)
scalgr str}:ngths and puts all_ of the .energy'dependence in 3 1.0137 0.6500 1.0097 0.6866
the imaginary vector potential. This also insures reason-
. . . . 4 1.0128 0.6485 1.0084 0.6861
able behavior of the imaginary potential strengths.
Two assumptions for the energy dependence of the real Imaginary
scalar and vector and imaginary vector strengths were C (fm) (fm) (fm) (fm)
made. First, the energy dependence was taken to be para- ase rop UM % m ros m 4 m
bolic (case 3) as in Egs. (4a)-(4c), and second (case 4) it
was assumed to be ct?bic with the addition of a term dE3 3 1.0792 0.5440 1.0909 0.5053
4 1.0800 0.5443 1.0910 0.5050

to Egs. (4a)-(4c). The number of parameters is 18 in the
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FIG. 1. Predicted elastic observables for p+ *°Ca at 400 MeV. The potentials of case 1 were used in the calculation.

example, at 160 MeV the real vector potential strength
varies between 342 MeV (case 1) and 233 MeV (case 2).
These differences are due to the strong correlations be-
tween individual potential parameters which exist in Dirac
optical model fits. Sensitivity of reaction calculations to
input optical potentials may be checked by repeating the
calculations using potentials corresponding to several
different cases. The predictive power of these global fits
was tested by predicting observables for an energy not in-
cluded in the fit. Data at 400 MeV were not included, and
the predicted fit for case 1 shown in Fig. 1 is quite accept-
able. All cases predict the 400 MeV observables essential-
ly as well; the calculated observables are almost indistin-

guishable on a graph. Extrapolation to lower or higher
energies, is, in general, not advisable for global fits. This
is especially true for polynomial parametrizations. We
find, for example, that extrapolation to 135 MeV produces
very poor agreement with experiment. As mentioned
above, work is underway to include mass-number depen-
dence of the potential parameters as well as to extend the
range of validity of the parametrizations.3*
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