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Rotational model and shell model pictures of magnetic dipole excitations
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A comparison is made of the rotational model and the large shell model for the calculation of
the magnetic dipole excitations in selected nuclei in the s-d and fpshell-s. Focus is given on both
the relatively low lying strong states and higher "spin Aip" excitations. It is found that the two
models agree fairly well for summed 8 (M1) strength, but for the deformations that were used give
different results for orbital and spin decomposition. The rotational model yields too much low ly-

ing strength as compared with the shell model. A technique for eliminating spurious contributions
to the summed strength in the rotational model is developed. It is shown that in the asymptotic
limit in some nuclei the magnetic dipole excitations are purely orbital. The implications of these
calculations to results in heavier deformed nuclei for "scissor mode" excitations is discussed.

INTRODUCTION

We have previously studied magnetic dipole excita-
tions in the single j shell approximation in the titanium
isotopes with several motives. ' We wished to draw an
analogy with the recently discovered "scissor" modes
that were found in the deformed region, especially ' Gd
(at 3.1 MeV). We gratified that such states were looked
for in Ti and Ti and that indeed strong excitations
were found at energies that, allowing for a reasonable 3
dependence, were systematically similar to those in

Gd (4.3 MeV in Ti and 3.8 MeV in Ti). We
wished to show that such states could be described in
shell model terms and indeed that even the single j shell
truncation had in it enough degrees of freedom to make
sensible predictions for these low lying excitations.
Furthermore, the shell model results could be put into a
simple correspondence with interacting boson model cal-
culations done in heavier nuclei (this point was especial-
ly emphasized by Talmi). We also studied the effective
interaction dependence of the energies and strengths of
these modes, showing, for example, that using at one
extreme quadrupole-quadrupole interaction these collec-
tive modes are very strongly excited, but at another ex-
treme, with a pairing interaction (as shown analytically
by Halse ) all the strength went to higher isospin states.

A two state rotational model was devised to describe
these low lying excitations. It was found to give too
much strength, as compared with the shell model, prob-
ably because of the neglect of pairing correlations. We
studied the isospin nature of these models (in the single j
shell these excitations are rigorously isovector) and the
spin and orbital ratio of the 8 (Ml) strength [in the sin-
gle j shell approximation for j =I+—,

' the ratio of orbit
to spin matrix elements is 1/(pv —p„)]; in the deformed
region the excitation is evidently mainly orbital.

Now we wish to look at larger spaces in both the shell
and rotational models. While the single j shell model
may be good enough to qualitatively describe the low ly-
ing states in various nuclei, there are higher excitations
of interest which it cannot describe, such as spin Aip ex-
citations from f7&2 to d&zz. Also it is not clear a priori

whether the low lying strong excitations resulting from
single j shell calculations will or will not be completely
fragmented when larger spaces are used. Also larger
spaces are needed to get the general strength distribu-
tions. These spaces are also of interest in answering
questions that have come up in the heavier deformed
region —for example, does the 3.1 MeV excitation in

Gd exhaust all the orbital strength or is there more
strength still unseen at higher energies?

There have been extensive studies of magnetic transi-
tions in the s-d shell using shell model programs. These
include works of Preedom and Wildenthal, Brown and
Wildenthal, ' Chavez and Poves, " and some others. '

The use of special distribution methods for studying
magnetic dipole strength distributions in the s-d shell
was pioneered by Halemane and French. ' In the ' Gd
region itself, preliminary results of a projected Hartree-
Fock calculation by Moya de Guerra and Dieperink'
were reported at the Santonder course. These results in-
dicate that the total calculated strength is significantly
larger than what is found experimentally in the 3.1 MeV
region.

ROTATIONAL MODEL FOR THE TOTAL
MAGNETIC DIPOLE STRENGTH:

ELIMINATION OF THE SPURIOUS STATE
CONTRIBUTION

The expression in the rotational model for a transition
from the K =0, J=O ground state of an even-even nu-
cleus to a K = 1, J= 1 excitation state is

8(M1)=
i
M

i

M=V3/4~(%=I x(g, I++g, s+); r. =0l,
l

where l+ and s+ are the angular momentum raising
operators for orbit and spin and the sum is over nu-
cleons. Bare values of the g factors are used:

proton: gI ——1, g, =5.586,
neutron: gI ——0, g, = —3.826 .
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for each of these:

Particle state

'„2,rr &—

—,2, v)
~

—,', 2, v&

~

—,', 3, v&

~

-'„l, v&

)
—,', 2, v&

[
—,', 3, v&

Hole state

[
—,), I,~)

[

—), 1,~&

—,', 1 v &

P, l, v)
f

—,', l, v)
—,', l, v&

—'„l,v&

i

—'„ l, v&

M
I

'
(AN&

2.869
0.010
0.046
0.014
0.010
0.205

0.017
0.150
2.857

0.241

The simple sum g B (M 1) will contain spurious
components. We can form the spurious state

~

K, ) by
acting with the operator J+ ——g, j+(i) on the ground
state

~
K, ) =XJ+

~

K =0), where X is a normalization
factor. The spurious state can be expected as a combina-
tion of the basis states

~

a )
~

K, ) = g d a ) . In more
detail,

~
K, &= gd( „K, „K, )v~ K, ,K„,v&

+d (K,Kh, vr)
~

K,Kh, 7r) .

The total strength, from which the spurious contribution
is reduced, is equal to

g'B(MI)= g M
~

—M(K, )~,

where M (K, ), the spurious contribution is given by

M(g, )=s 3/4ss(g, X (g ( 4g, s ); 0s)s.

We then see that the correct summed strength is

We form K = 1 basis states by exciting particles from
occupied Nilsson orbits to unoccupied ones. The single
particle Nilsson orbit is denoted by

~

K, m, rr ) and

~
K, m, v ) for the proton and neutron, respectively,

where m corresponds to the mth state (counting from
low energy to high energy) with quantum number K.
For example, the state

~

—,', l, vr) is the state which in the
weak deformation limit would become d&/2 &/2',

~

—,', 2, ~)
would become s &/2 &/2 and

~
—,', 3, rr ) would become

d3/p j/2 etc. The time reversal state of
~

K, m, ~ ) is ex-
pressed as K, m, m ), which has quantum number K. —
We write K= 1 basis state as

~
K~, m~, Kh, mh, 3r) corre-

sponding to proton excitation from
~
Kh, m)„~) to

K~, m„,vr). Neutron excitations are denoted in the
same way. We use the abbreviated notation

~

a) =
~
K~, m&, Kh, mh, m) for these basis states.

To make things more concrete we give some details of
the calculation in Ne. We here list the various

~

K = 1 ) states and the value of
~

M ~, where

M = ( K, m, Khm h,
3r(or v)

~

M(1)
~
g. s. )

g'B(Ml)= gM M'

where M' =M —g&d d~M&. It is easy to show fur-
ther that g M M' = g ~M„'

We can look at this from a slightly different point of
view. M' can be regarded as the matrix element of a
new operator,

g (gati+ +g, s+ l, gR J—+,

where gz is obtained by requiring that

g, X(g) +gss ); —sgs Js 0) =0,
1

i.e., the operator will not connect the ground state with
the spurious state. One can show that gz Ng ——d M .
In effect, then, to remove the spurious component from
the summed strength, we perform the calculation the
same way we would otherwise do provided we replace gI
»d g, by gI' ——g~ —gz and g,'=g, —gz.

IMPORTANCE OF REMOVING SPURIOUS
STATE COMPONENTS

FROM THE SUMMED STRENGTH

To see how important it is to remove the spurious
components from the summed magnetic dipole strength,
we make a comparison of gMM with gM'M'. The
later also being equal to g MM'. Let us consider Ti as
an example. We find the following results:

Orbit: g (MM), =2.89, g (M'M'), =1.56,

Spin: g (MM), =6.64, g (M'M'), =6.61,
B (M 1): g (MMj= 1 l. 16, g (M'M') =9.40 .

We see that the removal of spurious strength is most
important for the orbital part ~ This is true for the other
nuclei.

In doing the calculation we used different values of gz
for evaluation g (orbit), g (spin), and B (Ml). These
values are listed in Table I. In other words, gz is a func-
tion of g~ and g, . In evaluating g (orbit), we used the
condition

g, X (gt( ); —gs Jss 0) =0,
I

etc.

COMPARISON OF THE SHELL MODEL
AND THE ROTATIONAL MODEL

FOR THE TOTAL STRENGTHS

The shell model calculations were done with oxBASH
code of Brown, Etchegoyen, and Rae. ' The nuclei con-
sidered are zoNe, Ne, Ti, Ti, and Ti. In the sd
shell all possible configurations were allowed. All possi-
ble configurations in the fp shell are allowed for the nu-
cleus Ti, but for Ti and Ti only two particles are al-
lowed to leave the f7/2 shell.

The interaction used in the s-d shell was Wildenthal's
3 =17—39 "USD" interaction. ' For the f-p shell nu-
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TABLE I. Values of gq used to eliminate spurious state
contributions.

Nucleus

e
e

44Ti

46T1

48T1

Orbit

0.487
0.434
0.462
0.439
0.504

Spin

0.023
—0.121

0.066
0.065
0.155

Total

0.510
0.313
0.528
0.504
0.659

clei the FPY interaction is used. ' The results are
shown in Fig. 1.

Note that in the shell model calculations the main
strength for N =Z nuclei ( Ne, Ti) goes to higher iso-
spin states, but for Z&N nuclei most of the strength is
to states with the same isospin as the ground state. This
is readily understood from the fact that for T=O to
T=O transitions only the isoscalar part of the magnetic
multipole operator enters. Since the sign of the magnet-
ic moment of the neutron is the opposite of that of the
proton the isovector transitions are strongly suppressed.

For N&Z nuclei with ground state isospins T we can
get isovector contributions to all excited 1+ states. This

is because
i
T+ I

i

= T —1, T, or T+1.
We see that the overall B(M1) strengths in the two

models are in surprisingly good agreement. However,
the breakdown into orbit and spin is less impressive.
For the titanium isotopes the rotational model gives too
much orbital strength and too little spin strength as
compared with the shell model.

The deformation parameter used for neon isotopes is
g=6, while g=4 was used for the titanium isotopes.
The Nilsson wave functions were obtained from
Nilsson's original paper. '

In general, the B (Ml) strengths in the rotational mod-
el depend on the choice of the deformation parameter.
To show this we consider the case of Ne in two ex-
treme limits —zero deformation and asymptotic limit
g~ OO ~

The intrinsic state for one K = —,
' nucleon in the zero

deformation limit is d»2, &&&. In the asymptotic limit it
is (&2do —so)/&3 with spin up. In the asymptotic limit
it is easy to see that the only state the M1 operator can
connect to is d& with spin up, and this can occur only
via the orbital term. There is no spin excitation in this
limit) Thus we find

asymptotic: g (orbit) =3/n. =0.95 p~, g (spin) =0.0, QB(M1)=0.95 pz,
zero deformation: g (orbit) =0.65, g (spin) =6.77, g B (M 1 ) =9.58 p~ .

2
2a(orbit)

2
I~A

K (spin)

Q Rotational model
& Shell model higher T
0 Shel model lower T

P/

Qm//i' ~/l //

Note that the value of B (Ml) varies rapidly with de-
formation. Therefore it is essential to have the correct
deformation (or in the case of shell model calculation the
correct effective interaction) before one can make any
meaningful statement concerning whether or not the
magnetic transitions are quenched.

COMMENTS ON THE ENERGY DISTRIBUTION
OF THE LOW LYING STRENGTH

IN THE SHELL MODEL

z, E|(Mt)
/C. .

Ne Ne I i Ti Ti
FICx. 1. A comparison of the summed M1 strength in the

rotational and shell models. The dashed rectangles correspond
to the rotational model results, the open rectangles to lower T,
and the dotted rectangles to higher T excitations in the shell
model.

Note that for N =Z nuclei the energies of the low ly-

ing strong states is considerably higher than for N&Z
nuclei. Thus in Ne the energy is 11.2 MeV for the
strong T=1 state, whereas in Ne it drops to 6.48 MeV
(we have taken the centroid of the lowest two states). In
a recent publication Chavez and Poves" have questioned
why one of the present authors got the "scissor model"
so low in the titanium isotopes, e.g. , 4.0 MeV in Ti in a
single j shell calculation, whereas they got the mode at
very high energy in Ne —about 11.2 MeV. This
analysis answers the question. Part of the answer is, of
course, the 2 dependence and the other part is due to
the fact that these authors only focused on N =Z nuclei.
The sudden drop in energy in Ne, as compared with

Ne, makes it much less surprising that in Ti the state
should come at 4.3 MeV.

Note that there is also a drop in the energy of the low
lying strength when one compares Ti and Ti with the
X =Z nucleus Ti. This was also noted in the previous
single j shell work. '

It should be noted that Chavez and Poves" make the
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"scissor mode" interpretation of the 11.2 MeV state in
Ne plausible by cleverly showing that the intrinsic

state quadrupole moments for the ground state band
(J =0+,2+,4+, . . . ) and for the

~

X = I ) band, of which
the 11.2 MeV 1+ state is a member, are fairly close to
each other.

COMPARISON OF ORBITAL STRENGTH
OF LO% LYING STRONG STATES

TO THE TOTAL ORBITAL STRENGTH

Nucleus

Ne

Ne

44T.

48T'

Energy (MeV)

11.2

5.45
6.66

6.54

4.75
6.14

4.45
6.57

(orbit) /g (orbit) (%)

50.66

17.95
22. 19

60.50

45.90
7.03

24.91
2.34

This section is motivated by ongoing debates concern-
ing the nature of collective magnetic excitations in
heavier deformed regions, especially the classic nucleus
for the scissor mode ' Gd. Here Richter's group, using
the 50 MeV electron machine at Darmstadt, found a
substantial bump at 3.1 MeV excitation. This is a mag-
netic dipole excitation. The fact that this bump was not
seen with protons lent credence to this excitation being
mainly an orbital excitation. An orbital "scissor" or
"wobble" mode had been previously predicted by LoIud-
ice and Palumbo, ' in which the excitation consisted of
the neutron symmetry axis vibrating against the proton
symmetry axis. However, whereas experimentally this
mode [now seen with finer resolution to be five separate
states in (y, y') (Ref. 19)] has a strength of 2.1+0.3 pN,
the original prediction was 17 pN and the mode was pre-
dicted to be at an excitation energy of about 10 MeV. In
a proton-neutron interacting-boson-model (IBM-2) calcu-
lation, Dieperink and Iachello ' ' modified the above
picture, allowing only valence nucleons to participate in
the collective motion. Except for the fact that IBM-2
predicts only one state rather than five, their calculation
of the B (Ml) and energy are in fairly good agreement
with the experiment.

However, others feel that the 3.1 MeV orbital strength
represents only a splinter of the total orbital strength
and the latter occurs at higher energies, perhaps strongly
fragmented over many states.

Aside from their own intrinsic interest, we can view
the light nuclei in the s-d and f pshells as playing -fields

in which the ideas proposed for the heavier nuclei can be
put to the test. We can take advantage of the fact that
in these light nuclei large shell model calculations can be
and have been carried out.

In Table II we show the results for states in Ne,
Ne, Ti, Ti, and Ti. The first thing to note is that

TABLE II. The percent of orbital strength in selected low

lying strong states in the shell model.

the low lying "strong" states do carry considerable orbit-
al strength, and in this sense bear some analogy to the
states in ' Gd. The states do not exhaust all the orbital
strength, however. For nuclei with N&Z, one obvious
source of fragmentation of the strength is the distribu-
tion into two isospin channels. For example, in Ne
65.64% of the orbital strength is in T=1 states and
34.36% in T=2 states. In Ti the corresponding num-
bers are 70.44% and 29.56%.

It is interesting to note that in the shell model calcula-
tion some of the orbital strength gets hidden in the sense
that the orbital and spin add destructively to get a very
small value of B(M1). For example, in Ne there is a
calculated state at 17.2 MeV which contains 22% of the
total strength, but for which B (Ml) is equal to 0.003 pN,
which is truly negligible.

Looking at Table II we see that there is more frag-
mentation of orbital strength for N =Z nuclei than for
N&Z nuclei. In the titanium isotopes, for example, the
strongest low lying state has 60.5% of the strength for

Tj, 45.9% for Ti, but only 24.9%%uo for Ti.

THE OVERALL STRENGTH DISTRIBUTIONS
IN THE ROTATIONAL AND SHELL MODELS

In the rotational model relatively few K=1 states are
strongly excited. In Table III we give such states, using
the somewhat arbitrary criterion that the value of
B (Ml) has to be greatest than 0.5 pN to make the list.

We see that by this criterion only the low lying excita-
tions in the cV =Z nuclei Ne and Ti carry significant
strength in the rotational model corresponding to transi-
tions from the last occupied orbit K to the first unoccu-
pied orbit %+1, i.e.,

~

—,', I, m. ) —+
~

—', , l, n. ) and

i
—,', 1,v)

i
—,', 1,v).

For Ne, Tj, and Tj one other transjtjon js jmpor-
tant, from P, l, v) to

~

—,', 2, v). This is also a low lying
transition. In fact, for Ne this transition has a lower
Nilsson energy splitting than does the proton transition

~

—,', l, vr) ~
~

—,', 1,~). It is interesting to note that in the
zero deformation limit this transition would vanish. In
the s-d shell it would correspond to a transition from
ds/z, —3/2 to si/z i/2, and in the f pshell from f7/2 3/-2

to p 3/2 i /p, However, at the other extreme ( il ~ co )
the transition in the s-d shell is from d i l to d

& &, a
strong spin transition.

Surprisingly, the transitions to the stats which in the
zero deformation limit would correspond to a spin flip
transition, i.e. , ds/2~d3/2 or f7/2~fs/2, have very lit-
tle strength at the deformation that are used here.

We see that one problem with the rotational Nilsson
model is that although the summed B (Ml) strength
comes out fairly good, the energy distribution is not well
reproduced. Most of the strength, if we use the Nilsson
single particle energy split tings as a criterion, comes
much too low in energy. Indeed, all the "strong" states
are at relatively low energies. In more realistic models
we can expect some of the strength to be pushed up
from the fact that one has to break two J=O pairs to
form a 1+ state and from the fact that there is a repul-
sive particle-hole interaction.
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TABLE III. Strength to states in the rotational model with B(M1)&0.5 pN.

Nucleus

Ne

e

44Ti

Particle state

i

—', , 1,v&

-', , 1,~)
i

—,', 2, v&

)

—', , l, n. )

i
—,', 1,v&

Hole state

i
—,', 1,v&

)

i —,', 1,v&

B(M1) (~

(g=6)
1.901

0.502

2.275

3.175

(g=2)

6.050

0.652

1.969

(g=4)

4.833

0.220

1.472

4'Ti

[
—,', 3, vr &

—', , 1,v&

~

—,', 2, v&

~

—,', 3,v &

—,', 3,vr)

i

—', , 1,v&

i
—,', 2, v&

i
—,', 3, v&

i

—', , 1,v)

i

—', , 1,v)

i
—,', 1,v)

i

—', , 1,v&

—', 1,v&

i
—,', 1,v&

5.620

0.652

1.471

0.973

0.825

4.443

0.650

0.924

1.038

0.773

4.993

0.221

0.983

2.144

0.298

4.290

0.218

0.603

2.245

0.244

In Table IV and in Fig. 2 we give the shell model re-
sults obtained from the oxBASH code. We list the iso-
spins, energies, the values of (orbit), (spin), and B (Ml)
for all states in zoNe, Ne, ~Ti, and Ti which have
B (Ml) values greater than 0.2 pN, and also a few other
states of interest [including the 17.2 MeV state in Ne,
for which the orbit and spin terms are relatively large,
but interfere destructively to give a very small value of
B (Ml)].

In Ne, as noted by Chavez and Poves" most of the
B(M1) strength is concentrated in one state. In Ne
there is more fragmentation. This is also a feature of the
rotational model.

Note, however, that most of the orbital strength in
Ne is in the first two states, at 5.43 and 6.66 MeV.

The state at 9.19 MeV has a value of (orbit) =0.001.
This is negligible compared with the value of B (Ml),
1.95 pN.

In the Z&N nucleus Ti there are three regions of
significant strength. The first is the lowest state at 4.79
MeV with B (Ml) =1.38 pN and the second region is at
9.82 and 9.96 MeV with B(Ml) strengths of 1.16 and
0.67 pN, respectively. these may correspond to spin Hip
excitations with the same isospin as the ground state.
Lastly, at 14.55 and 14.68 MeV the strength are 0.70
and 0.38 pN. These states have isospin T=2.

In Ti the strength seems more fragmented. Howev-
er, one common feature of all the calculations is that
there still is a low lying, relatively well isolated state (ex-

44—

Z93
I,I I i I

l ( I I / / f ) I I

=
I

= 2

(b) I

t
II

a I 4 i I!I
I I I I [ ~ 1 I I

(
I f I I I I

48

(c)

0
I I I i. JL

I 1 I I
(

I I & 1

(
1

5 IO

Ex (Me&i
l5

FIG. 2. Shell model predictions of the values of B(M1) in
titanium isotopes using the FPY interactions.
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TABLE IV. Calculated Ml strength in the shell model to states with B(M1)~0.2 p~ and other
selected states.

Nucleus

Ne

e

'4Ti

46T1

Isospin Energy (MeV)

11.2
17.2

5.4
6.7
9.2

10.0
11.1
11.8
16.2

6.5
9.0

12.0
12.5
12.9
13.4
14.2

4.8
6. 1

8.4
9.8

10.0
10.3
1 1.0
14.5
14.7
15.2

4.5
6.6
8.4
9.2
9.4

10.0
14.8
15.4
15.9

(orbit ) (p~ )

0.62
0.21

0.15
0.19
0.001
0.001
0.003
0.001
0.01

0.64
0.02
0.09
0.02
0.05
0.001
0.00

0.32
0.05
0.000
0.002
0.002
0.000
0.004
0.05
0.04
0.002

0.14
0.01
0.000
0.003
0.001
0.005
0.01
0.02
0.05

(spin) (p&)

0.38
0.34

0.02
0.37
1.88
0.19
0.31
0.48
0.1 1

1.30
0.10
1.07
1.57
2.08
0.22
0.16

0.37
0.18
0.20
1.25
0.58
0.19
0.26
1.14
0.65
0.25

0.16
0.13
0.20
0.42
0.52
0.97
0.22
0.24
0.97

B(W1) (~

1.95
0.004

0.27
1.08
1.95
0.22
0.37
0.43
0.21

3.76
0.21
0.53
1.25
1.47
0.19
0.18

1.38
0.41
0.21
1.16
0.67
0.19
0,20
0.70
0.38
0.21

o.eo
0.21
0.21
0.40
0.49
0.84
0, 12
0.13
0.59

cept for Ne, where there are two nearby states) which
carries a significant amount of strength, and which—
relative to higher energy strong excitations —carries a
large amount of orbital strength.

It should be noted that the results in Table IV will be
modified if spin and orbit renormalizations are intro-
duced, in general making the spin contributions smaller
and the orbital ones bigger.

CLOSING REMARKS

In this work we have compared the rotational model
and shell model applied to the problem of magnetic di-
pole excitations in open shell light nuclei. %'e see that
the simple rotational model is not good enough to give a
quantitative description of the magnetic dipole distribu-
tion, but it can provide some qualitative insights con-
cerning some general features. For example, as previ-
ously mentioned, in the asymptotic limit (q~oo) the
magnetic excitation in Ne would be purely orbital, and

indeed in the shell model calculation the strongest state
in Ne has a large orbital part in it. In the rotational
model for Ne there is an additional contribution due to
a neutron excitation. This is a spin contribution. This is
also borne out by the shell model —the spin contribution
in Ne is much larger than in Ne. Both the rotational
and shell models predict strong, relatively low lying
states, but the rotational model overpredicts the strength
by a significant amount. The summed strength, howev-
er, is fairly close in both models.

We find that the low lying strong states carry a
significant amount of orbital strength, although by no
means all of such strength. Much of the orbital strength
not in the lowest states is strongly fragmented over
many states, including states of higher isospin. It would
therefore not be surprising if, in ' Gd, the "scissor"
mode at 3.1 MeV did not contain all the orbital strength
and that some strength would be favored, albeit highly
fragmented, at higher energies.

On the other hand, the behavior in the lighter nuclei
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is in many ways analogous to that in the deformed re-
gion. The low lying states do carry considerable M1
strength and also considerable orbital strength. The
transitions are mainly isovector and in the single j shell
approximation they are rigorously so. To form these
states one therefore needs both open shell neutrons and
protons. For these reasons one has a right to call these
states collective modes both in the light nuclei con-
sidered here and in the deformed region around ' Gd.

Tote added. We note the appearance of work by
Moya de Gurra et aI. concerning scissor model excita-
tion in Ti and light nuclei. They performed a de-
formed Hartree-Fock calculation with pairing, including
several major shells. They claim that their calculation
supports a "scissor mode" interpretation for the erst ex-
cited 1+ state in Ti and that the ratio of orbit to spin is
much larger than what one obtains in a single major

shell calculation.
Very recently papers closely related to this one have

been published by the Tokyo Institute of Technolo-
gy, ' using shell model methods. One should also note
group theoretical approaches by the Sussex collabora-
tion. ' A critical comparison of these different works
in the near future would be in order.
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