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A model of nuclear matter is given in which nonrelativistic quarks, carrying color, moving in

one dimension, interact through a contact interaction. Solutions for the ground-state energy as a
function of density may be found exactly using a method based on the Bethe ansatz, which is ex-

plained in detail. The model system shows characteristic behavior of a Fermi gas of nucleons

(bound clusters of quarks) at low density, and of a Fermi gas of free quarks at high density, with a
smooth transition between these limits.

I. INTRODUCTION

In this paper we present theoretical methods for
finding the ground-state properties of a model of nuclear
matter considered as a system of interacting quarks.
The model is meant to represent some of the features of
nuclear systems that are expected to emerge from any
theory based on quark degrees of freedom, such as quan-
tum chromodynamics (QCD). An outline of this model
has been presented in an earlier publication, ' with some
of the results. In the present paper we explain the
theory of the ground state, derive in detail its properties,
and give some further results. Earlier methods, based on
a variational approach, are explained in Ref. 2.

The motivation for the present quark model of nuclear
matter is to be able to explore the consequences to nu-
clear physics of the basic idea that nucleons and nuclear
systems alike consist of interacting quarks, as given by
the theory of QCD. Since the evidence of low energy
nuclear physics indicates that interacting nucleons pro-
vide the dominant degrees of freedom for low energy ex-
citations, one expects to find quarks in nuclei to be or-
ganized more or less into nucleons as correlated objects.
However, QCD leads us to expect that under compres-
sion to higher than normal density, quarks may be less
localized than in isolated nucleons. At sufficiently high
densities (or at high temperature) nucleon systems may
transform to a quark-gluon plasma phase, with totally
unlocalized quarks.

The model treated in this paper consists of a system of
nonrelativistic fermions (quarks) of three colors, moving
in one spatial dimension, interacting through a contact
potential with color exchange. For the present we do
not consider spin or Aavor degrees of freedom. The po-
tential represents only part of the interaction among
quarks; it can bind quarks into clusters (nucleons) but it
will not confine them against all excitation. Color
confinement is represented by boundary conditions on
the system as a whole, i.e., quarks are confined to the
nuclear volume.

This simple many-body model has the interesting
property that it exhibits clustering behavior analogous to
that discussed above in connection with QCD; namely,
at low density the ground state behaves like a Fermi gas

of nucleons, while at high density the behavior is closer
to that of a Fermi gas of quarks. The situation
representing real nuclei lies somewhere in between,
presumably closer to the low-density (nucleonic) end.

The model is one of a class of many-body systems for
which there exist exact constructive techniques for
eigenstates and energies that go under the title of the
Bethe ansatz. This allows us to explore the nature of the
ground state in some detail, and to exhibit the degree of
clustering as a function of density. Although the basic
exact techniques have been around for more than twenty
years, they have not been much applied to problems of
clustering in Fermi systems. Therefore some of the
methods in this paper are new, while many others follow
earlier results. We have attempted to make the presen-
tation self-contained, since the theoretical subject is not
well known to nuclear physicists. It is possible to use
the techniques of this paper to explore other clustering
phenomena in nuclear physics, e.g. , the old problem of a
clusters in nuclei.

The present paper is devoted to the construction of
the ground-state wave function, and derivation of the
ground-state energy. In Sec. II we explain the model
and introduce the Bethe ansatz form of the wave func-
tion. The existence of bound clusters and their proper-
ties is discussed in Sec. III. In Secs. IV and V we find
algebraic equations which determine the ground state
and its energy, for an Ã-particle system. These are con-
verted into an integral equation for the infinite system,
in Sec. VI. Finally, properties of the ground-state ener-
gy are obtained in Sec. VII. This is followed by a discus-
sion section and conclusions.

II. ONE-DIMENSIONAL MODEL
AND THE BETHE ANSATZ

The model system consists of X nonrelativistic identi-
cal particles (quarks) obeying Fermi statistics, and mov-
ing in one space dimension. The only explicit internal
degree of freedom is SU(3) color. (Spin and flavor can be
included, but at the cost of considerable complication,
and are not considered in this paper. One can consider
the present model to have spin and Aavor both frozen
into "up" states, thus having no eFect on the dynamics. )
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The interaction is a two-body contact potential,

V;, =~X, A. 5(x; —x, ), (2.1)

(2.2)

with g & 0 for an attractive quark-quark interaction. For
the present model, the Hamiltonian is therefore
effectively color independent. However, when spin and
Aavor degrees of freedom are included, the color-
exchange form (2.1) limits the nucleon cluster size to
three quarks, which (2.2) does not (see Ref. 2, Sec. V B).

For the many-body system, we impose periodic bound-
ary conditions in length L, containing N quarks. In Sec.
VI, we shall find the ground state in the limit of an
infinite system: N, L ~ oo with fixed particle density

p =N/L.
The Schrodinger equation with this Hamiltonian has

solutions in the form (Bethe ansatz)

f(x, , . . . , x~)= ga(Q, P)exp i gk(P, )x(Q, )

P

(2.3)

where k (j), j = 1, . . . , N, are N different quantum num-
bers (momenta), P are the permutations of the indices

[jI of the k (j), and Q are permutations of the indices

[jI of the positions x (j)=x, to put them in the order

where A, A, gives the SU(3) color exchange form of one-

gluon exchange, although the short range form of (2.1)
has nothing to do with the usual perturbative gluon po-
tential. For our purposes (2.1) is an effective interaction
between quarks, which can produce clusters (nucleons),
but not color confinement. Since we have suppressed
other degrees of freedom, the antisymmetry of the
quarks in space and color can be used to eliminate the
color-exchange operator. The contact interaction (2.1)
only acts on space-symmetric quark pairs, which are
therefore color antisymmetric. The operator A, , A. then
always takes on the numerical value ( k;.A, ) = —( —,'), so
that we may simply introduce a new coupling constant
g = —( —', )i~, and write the Hamiltonian in the form

boundary conditions introduces a set of constraints on
the values of the k(j). The dynamical problem reduces
to satisfying the constraints. The solution (2.3) has the
energy

E=(2M) 'gk (j), (2.5)
J

equal to the kinetic energy in any domain (2.4) away
from the boundaries x; =x .

A wave function of the type of (2.3) was first intro-
duced by Bethe as the solution of a one-dimensional
chain of interacting (magnetic) spins; the term Bethe an-
satz now refers to a variety of related constructions.
The use of such forms for the Hamiltonian of (2.2) was
discovered by Lieb and Liniger in the context of a Bose
gas with a repulsive interaction and by McGuire, for a
general (finite) system of N particles. General proofs of
the consistency of solutions of the form (2.3) for the
Hamiltonian (2.2) were given by Brezin and Zinn-Justin
for an open system of any symmetry, and by Yang, who
extended them to periodic boundary conditions.

Gaudin gave a method of solution for a spin- —,
' Fermi

gas with the attractive interaction (2.2), leading to an in-
tegral equation for the ground state, analogous to that of
Lieb and Liniger for the Bose gas with g~0. Yang
gave a different (equivalent) method for the spin- —,

' Fermi
system with repulsion (g&0); Takahashi' showed the
connection of Gaudin's and Yang's solutions for the
ground state. The spin- —,

' Fermi system is equivalent to a
two-color system, analogous to the three-color system of
this paper. Sutherland" extended Yang's method to N
colors, with repulsive interactions. Yang' gave some
further properties of bound clusters for the Hamiltonian
(2.2).

The method used in the present paper draws on the
work of Refs. 5 —12, but does not follow specifically the
constructions of Gaudin and Yang. Since the immediate
interest is in the ground state, our derivation is some-
what more direct and simpler than those of Refs. 8 —11,
and closer in spirit to that of Ref. 5. We will need first
some properties of bound clusters, to which we turn
next.

III. BOUND CLUSTERS
0&x(Qi)&x(Q2)« . x(Q~)&L . (2.4)

The notable property of (2.3) is that the wave functions
can be expressed everywhere as linear combinations of
plane-wave functions, with the same set [k(j)I of mo-
menta. The configuration space is divided into domains
by the ordering (2.4) of the particle positions, which we
label by the permutations Q. In each domain, each par-
ticle Q may carry any of the N momenta k (P ), accord-
ing to the permutations P. The particles interact only at
the boundaries of the domain (2.4), i.e., where x; =x for
some i,j [The form fo. r N=2 is shown in (5.3), for
x2 )xi. ]

For an open system (no boundary conditions imposed
at x =O, L) a solution of the form of (2.3) exists for
every set of unequal momenta [k(j)I. The amplitudes
are determined by the interaction, for a given set of
[k(j)I, as we see in Sec. IV. The imposition of periodic

N particles acting under the Hamiltonian (2.2) may
form a bound state (cluster) which is space symmetric,
for a set of momenta for the wave function (2.3) (see
Refs. 6 and 12):

k (j)=K +imc,

N —1

2

N —1

2

(3.1)

E~ —— Mg N ( N —I ) I24 —. (3.2a)

Here we have defined c =Mg, and have not (yet) includ-
ed the constraints of Fermi statistics, or imposed period-
ic boundary conditions. The set of momenta (3.1) have
the same real part K but different imaginary parts which
sum to zero. Therefore, the c.m. momentum of the clus-
ter is given by NK. In the c.m. the energy is [from (2.5)]



36 QUARK CLUSTER MODEL FOR NUCLEAR MATTER 2049

For the present three-color model antisymmetry limits
the cluster size to N=2 and N= 3, with energies

[n ] in color (three equal rows). These are one-
dimensional permutation representations, so the wave
function factors

E,= —Mg /4, (3.2b)
%(1, . . . , N)=g(x„. . . , x~)X, (4.1)

E3 = —Mg (3.2c)

The N=3 cluster is color neutral, and serves as our
model nucleon. The N=2 cluster carries color, but is
less well bound than the nucleon: from (3.2b) and (3.2c)
we see that E3/3&Ez/2, and thus will play no role in
the many-body ground state. For N=3, (3.1) gives mo-
menta

k+ ——K+ic, ko=E, k =K —ic . (3.3)

The cluster function, for total momentum zero, takes the
form (not normalized)

for

(x] x2 x3 )=exp[ —c (x3 —x, )] (3.4)

Xi &X2 &X3

or

(3.5)

for any ordering of the x;. Comparing (3.4) and (3.5) to
(2.3), one sees that only one permutation (P) of momenta
(3.3) has a nonzero amplitude a(Q, P) for each Q. This
follows from the usual requirement of bounded solutions
for any x ~+~.

The cluster wave function (3.5) is evidently symmetric
under permutation of the x, . The color wave function is
totally antisymmetric:

&i23=( ~aY+~ Ya+Va~ PaY a—YP YPa)— —(3.6)

where a, p, Y are the three color states, and particles are
ordered 123 from the left. A cluster with total momen-
tum (3K), given by (3.3), has the total wave function

0'z(123) =g, (x»x2, x 3 )X,23exp[iK (x, +x2+x, )] .

(3.7)

With no boundary conditions imposed, the ground state
consists of n bound clusters (of three quarks), each of the
form (3.5), at large separation from each other, so there
is vanishing cluster-cluster energy. Since there are no
bound states with N & 3 in this system, this arrangement
gives the most binding energy. More appropriate to the
Bethe form (2.3), the clusters can be said to have form
(3.7), with vanishing momenta K. We expect the form of
the ground state to remain similar, even with periodic
boundary conditions, as long as cL »n, so that the clus-
ters rarely overlap. [Note that the cluster size is of or-
der c ', e.g. , from (3.5).]

With these considerations, we construct the ground-
state wave function as follows. Starting with the Bethe
form (2.3), we assign the N momenta k (j), j = 1, . . . , N,
in triplets, k+, ko, k, as in (3.3), with a common real
part K for each triplet. We label these real momenta by
m =1, . . . , n: K(m). With the K(m) taken to be un-

equal real quantities, we also satisfy the requirement that
the k (j) be unequal, which is sufficient for (2.3) to be a
solution of the Schrodinger equation with Hamiltonian
(2.2), for an open system. The imposition of periodic
boundary conditions will only constrain the real momen-
ta K(m), since the imaginary parts are unaffected as
long as cL »1 [see following (3.7)]. This construction
gives the true ground state in the limit of L~ oc for
finite N, as we see later. We assume the same form for
all values of N/L; this will be justified by the analytic
properties of the ground state which are discussed in
Sec. VII.

To determine the values of the momenta K(m), we
first consider the N-body wave function (4.1) constrained
to have three particles at each of n points y
pl =1, . . . )n;eg. ,

y] =x) =x2=x3

y2 =x4=x5 =x6
(4.2)

The imposition of periodic boundary conditions in
0&x &L restricts the values of K, which property will
be used in the following sections. The boundary condi-
tions do also introduce corrections to the imaginary
parts (3.1) and therefore to the wave functions (3.5),
which, however, can be shown to be small for cL »1,
and disappear in the limit L ~ ao. Therefore, the
boundary conditions only affect the real momentum E,
in the large L limit, in which we are interested.

IV. GROUND STATE

For a color-neutral state we take N=3n quarks, n of
each color. Since the interaction (2.2) is attractive, the
ground-state wave function should have maximal space
symmetry consistent with the Pauli principle: i.e., [3 ]
in space (three equal columns, in a Young's tableau) and

+N —2 +N —1 +N

Next, consider the constrained wave function

(4.3)

at well separated points, i.e., y; —yj ~

&&c '. Under
this condition, the original Bethe form (2.3) can be seen
to take a reduced Bethe ansatz form

n

P(y~, . . . , y~)= ga(q, p)exp i +3K(p )y(q )

J

(4.4)

where the p are the permutations of the indices m of the
K(m) and the q are permutations of the indices i of the
y(i)=y;. The point is that for well-separated coordi-
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nates y;, each triplet in (4.2) forms a bound cluster, with
momentum 3K(m). The internal wave functions drop
out: $, =1, (3.5). All other components of (2.3) with
different distributions of the k(j) other than those in-
cluded in (4.4) become vanishingly small at large separa-
tions, due to the damping of plane waves with complex
momenta (3.3).

We may consider (4.4) to be a cluster wave function
with cluster (c.m. ) coordinates y;, and cluster momenta
K(m). It represents only the one assignment of quarks
to clusters given in (4.2); other assignments can be ob-
tained from the permutation symmetry of (4.1). It also
represents the actual ground state only for nonoverlap-
ping clusters. However, if we can determine the ampli-
tudes a(q, p) and the momenta K(j) of (4.4), we actually
can determine all the amplitudes a (Q, P) of (2.3) [and of
course the momenta k(j)], and thus construct the wave
function (4.1) at all points.

Now for a fixed L (cL. )) I ) we use the periodic
boundary condition on the reduced wave function (4.4),
i.e.,

Therefore
n

a[p(1)l= II ~ (pi,p )a[p(n)l .
J=2

From (4.8) we obtain

(4.12)

n

( —1)" 'e ' = g A(pp ),
J =2

(4.13)

which is a set of n algebraic equations [with (4.10) and
(4.11)) relating the n momenta K(j).

The ground state is given by the solution of these
equations which gives the lowest energy. In Sec. V we
derive (4.9)—(4.11), returning in Sec. VI to find the equa-
tions for the ground state.

V. AMPLITUDES

The wave function (4.1) for N quarks, now including
the color labels explicitly, may be written

, (x, , . . . , x~)=(c„.. . , c~
~

%(1, . . . , N)),
P(O, y2, . . . ,y„)=P(L,y2, . . . ,y„), (4.5) (5.1)

and similarly for all y;. This boundary condition is
sufficient to determine the allowed momentum K(j), by
methods similar to those used originally by Lieb and
Liniger, ' as follows.

First, the antisymmetry of the cluster wave function
(4.4) in the y, allows us to restrict the discussion to one
permutation q of the coordinates, say q =I: q =j. The
amplitudes in all other domains q' are related to those
for q =I by

a(q', p) = ( —1)'a(p), (4.6)

where s is the signature (odd or even) of the permutation
I~q', and a(p)=a(I, P).

The boundary condition (4.5) can be rewritten, using
antisymmetry

P(O,y„. . . , y„)=(—1)" 'P(y&, . . . , L) . (4.7)

This implies a relation in q =I:
( —1)" 'e ' a[p (n)] =a[p (1)], (4.8)

~lp (J)]=~ (P P, )~[p (J +1)l (4.9)

wherep(1)=p, ,p2, . . . ,p„;p(n)=p, , . . . ,p„,pi.
Next, we consider the cyclic permutation from p(1) to

p(n) as decomposed into a series of pair permutations
p&+ p2, p&~p3, . . . ,p&~p„, each defining a permutation
P(Ji=pz~. ~pg P»p&+» Pn.

We shall find (Sec. V) a relation between amplitudes
whose permutations differ by any one of these pair per-
mutations:

where c is the color state of the jth quark. The
coefficients a (Q, P) in the expansion (2.3) of (5.1) will
also carry the labels c&, . . . , c&. Antisymmetry of the +
in space and color allows us to work in one region of Q,
e.g. , Q =I;

0&xi &x2 ' ' &x~ &I (5.2)

for two momenta k], k2', the other factors are
suppressed.

Using the continuity of (5.1) across the boundary and
the discontinuity of the derivative, one can establish the
following condition relating the coefficients in (5.3) for
colors ab and ba (Appendix A):

a,b(12) a,b(21)
ab (12) ™ab (21) (5.4a)

where M, 2 is an operator on color indices

M, 2
——

—1Z12P12 +C

LZ )2 —C
(5.4b)

With this restriction we drop the label Q: a (I,P) =a (P).
Concentrate on a boundary, e.g. , x =x ', with x =x,x'=x +„and the dependence of (5.1) on x,x' and

colors. Single out the following terms with color labels
c =a, c +& ——b,

a,b(12)exp[i(kix +k2x')]+a, b(21)exp[i(k2x +k ix')],
(5.3)

A (i,j)=— ix +c
lx —C

ix +2c
lx —2c

x =K(p, ) —K(p. ) .

with A (i,j) a complex amplitude of unit modulus:

(4.10)

(4. 1 1)

with Z, 2
——k& —k2, and P&2 interchanges color indices:

P )2a,b
——aba.

Now we apply these relations to amplitudes involving
clusters. As noted for (3.5), a bound cluster has only one
permutation of the momenta (3.3), namely k, ko, k+,
for increasing x . The color state is given in (3.6).
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First consider a four-quark system, consisting asymp-
totically of one cluster plus one quark of momentum k,
and color a—this is the asymptotic description when

xi «x2, x3 x4 or x i,x„x,«x4. (This can be con-
sidered the state for scattering of a quark of momentum
ki from a cluster of momentum K; see Ref. 11.)

Define the following permutations P; of the momenta:
1 =k] 2=k 3=ko 4=k+ '

p, =1234,

1 =K& ic, 2=K&, 3=%& +ic

4=K~ —ic, 5 =%2, 6=K2+ic,
(5.10)

and we denote p(1) to be the permutation order 123456,
and p (2) =456123 to be the order with the clusters inter-
changed. The amplitudes for these permutations are
a(p), corresponding to (4.6).

We find easily by applying (5.8a) and (5.9) three times
that

a[p (1)]= A (1,2)a[p (2)], (5.11a)

P, =2134,
P3 ——23 14,

P4 ——2341 .

The color states corresponding to P, and P4 must be

(5.5)

A (1,2)=— lx +c
1X —C

Lx +2c
lx —2c

(5.12)

A (1,2) =P(K, ic ——K2)P(K, Kz )P—(K, +ic K2 )—,
(5.11b)

X(P, ) =aX234,

X(P4 ) =X123a

(S.6a)

(5.6b)

with x =K
&

—K2. This leads directly to the results
quoted in (4.9)—(4.11), for an n-cluster system.

a apay +aayp a aypa ) (5.7a)

with X,b, given by (3.6), to give the appropriate asymp-
totic behavior of particle plus cluster. The coefficients of
these states are therefore given by the following linear
combinations of the amplitudes a,b,d(P):

8(P, )=(6) ' (a p +a p +a

VI. INTEGRAL EQUATION
FOR THE GROUND STATE

b =JK(j +1)—K(j) . (6.1)

We return to finding the ground state from (4.13) fol-
lowing Lieb and Liniger. We expect the K(j) to be
bounded symmetrically: K&K (j)—& K with smallest
possible spacings. Define

8(P4)=(6) (a py +apy +ay

+paya + aypa a ypaa ) (5.7b)
First setting K(p, )=K(j), then K(p, )=K(j+1) in
(4.13), and taking the logarithm, obtain

with P, , P~ understood for each a (P) in (5.7a) and (5.7b).
Now the amplitudes a(P) for different permutations

P, of (5.5) are related by operators M „,(5.4). For exam-
ple,

—iZ14a p y(P3)+ca py (P3)
M, 4a py (P4)=

IZ )4 —C
(S.ga)

Then, if we consider the coefficients a,b,d(P; ) to define
vectors on which the M &; operate, we may relate the two
coefficients (5.7) by a numerical factor,

3i b,
~
L=ln g A (j+. 1, 1)/A (j, 1)+2m.mj, (6.2)

with integer m chosen to m.inimize the 5 . For ci. ~&1,
expand (6.2) in b, /c —(cL) ', using (4.10):

3h L =2cb, 1

[k (j)—k (1)]'+c'
2

[k(j)—k(1)] +(2c)
8 (P, ) =P(k, —ko)B (P~), (5.8b)

P(ki —ko)= (8(P1)
l
M12M13M14 B(P4)) .

Straightforward algebra (Appendix B) yields

(5.8c)

where the factor P is the matrix element in this vector
space obtained by repeated operation of (5.4a) on (5.7b):

+21ym, +O(b, '/c') .

Define the density of momentum states per unit k:

f (k )=(b,L).
Now take the limit of (6.3) as L~ oo:

(6.3)

(6.4)

y(k, —k, )=— i (k, —ko)+c
i (k, —ko) —c

(5.9) 3f (k)=2nm +2f (k) ' f dqf (q)G(q —k),

The result (5.9) can be seen to be unitary (for real k, , ko)
and independent of the odd particle color (a), as expect-
ed.

Next, consider six quarks, arranged so that asymptoti-
cally they form two clusters of momenta 3K&,3%2,' the
momentum labels are taken to be

or, alternatively:

2mmf (k)=3 —2 f dq f (q)G(q —k),—K

with

(6.Sa)

(6.5b)
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limG (q —k) =2m6(q —k), (6.7)

G(q)=, , +
c +q (2c) +q

The integer m is independent of k, and can be deter-
mined by taking the limit c ~0+, for which

Then (6.10) and (6.11) become

3 1

r =p/e =— dx f, (x),
U —j

, 3M E 9
e = —= —1+ dx x f, (x)

c N 2rU

(7.3)

and

2mirf (k) =3 4m f (—k),

f (k)=
(2m +4)m.

(6.8)

Since in this limit of no interaction, the density of
momentum in the ground state must have the free quark
(Fermi) gas value f (k)=(2ir) '; we find m= 1. The in-
tegral equation for the ground state is then

2mf(k)=3 —2 f dq f(q)G(q —k) . (6.9)—K

f, ( z) =f, (z)—, f,'(z) )0 for z )0,
0 &f„(0)&f, (z) & 3/2ir .

(7.Sa)

(7.Sb)

where r and e are the dimensionless density and energy.
The notation emphasizes the dependence of the solution
f„(z) (and therefore r, e) on only one parameter, u. It is
clear from (7.4) that the density enters only as r =p/c,
so that the ground state behavior for p~ ap is given by
c ~0, and for p~0 by c~ oo.

Physical solutions require non-negative f, (z), as is
seen from (6.4). Some further properties of f, (z) for
( —1&z &1) are easily obtained directly from the in-
tegral equation (7.2), and this restriction:

Since the number of particles (quarks) is given by
n

N=3+1,
j= 1

the density p =N/L in the L ~ ao limit is given by

p=3 dk k (6.10)

Two interesting limiting cases are given by

v ~ oo, vg ( x )~0,
limf (z) =3/2',
r~O, e~ —1 .

(7.6a)

The ground-state energy per quark is given by one-
third of the binding energy of a nucleon cluster (3.2c)
plus the average kinetic energy

l2 3 n

3 g k(j)

which becomes, in the limit

v ~0, vg (x)~2~5(x),
limf (z) = I /2rr, (7.6b)

r ~ oo, e ~a r /18 .2 2

For fixed c, these give the p~0, p~ ao limits. Since
p~ (x) is equivalent to c ~0, the system in this limit is a
Fermi gas of quarks, with a density of states (per color)

N 2M
+ —f dk k'f (k)3+p--

f (k)=1/2m. , K&k &K—
(6.11) where K is the quark Fermi momentum and

(7.7a)

These equations were given in Koltun and Tosa. ' An
alternative derivation of these equations may be obtained
starting with Sutherland's treatment" of the three-color
system with a repulsive potential. ' '

z =k/K, U =c/K, (7.1)

so that (6.9) may be rewritten in dimensionless from us-
ing (7.1)

1

2vrf„(z)=3 —2u f dx f, (x)g, (z —x),—1

g, ( )=, , +1 2
x2+u' x'+(2u)

(7.2a)

(7.2b)

VII. PROPERTIES OF THE GROUND-STATE
ENERGY

The solution f (k) of the integral equation (6.9) for a
given value of K determines both the ground state densi-
ty of the system, through (6.10), and the ground-state en-
ergy per quark, from (6.11). It is simpler, both for for-
mal properties and for numerical solution, to rescale the
momentum variables and constants as follows:

E K2 ~2p2
p 3K/n, ——+

6M 54M ' (7.7b)

E E—=3—= —Mg
n N

(7.8)

equal to the cluster energy (3.2c). For 0 &p «c, this can
be seen to behave like a Fermi gas of nucleons, as fol-
lows. Expanding all quantities in K =c/U and keeping
lowest order terms in (7.2) —(7.4), we find

f (k)=3/2~, —K &k &K,

p =9K/~,
~g 2 K 2 ~g 2 ~2p 2

+ +
3 6M 3 9 6~

(7.9a)

This expression was also obtained by a variational
method, independent of the Bethe ansatz, in Ref. 2.
These quantities refer to the quarks: momenta k, densi-

as K =c/U ~ ~.
The other limit gives a dilute gas of nucleons (clusters)

with energy per nucleon
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ty p, energy E/N. The nucleons have momenta P=3k,
so the nucleon Fermi momentum is PF =3K, and the
quantities in (7.9a) may be rescaled for nucleons:

fN(P) = f(k) 1

3 2' '

pN p/3 PF—/~

—PF &P &PF,

(7.9b)

p2 7T pN

rt 6(3M) 6(3M) '

where fN(P) is the density of states in nucleon momen-
tum, and pN the nucleon density. Comparing (7.9b) with
(7.7), the differences between the Fermi gases at the two
extremes of density can be seen to come from the
different masses: M for the quarks and (3M) for the nu-

cleons; and, from the color, three states for the free
quarks and one (neutral) state for the nucleons.

The nucleons at low density actually do have a mutual
interaction, which is expressed in the amplitudes A (i,j )

of (4.10). (The interpretation of these terms as cluster-
cluster scattering amplitudes has been discussed by

McGuire and Yang. ") The phase of (4.10) is always
equivalent to a repulsive interaction. In the low density
limit, x~0, (4.11), and A~ —1, the amplitude for a
repulsive "core" (effective) potential

E M—(p))—
N 3 9'6M (7.13)

f„=3 2m+4 tan
V

1+4 tan —'
2v

r =6f /u, (7.14)

which is the nucleon Fermi gas result of (7.9a).
The functional dependence of E/X on p is that of a

monotonically rising function bounded by (7.11) and
(7.13). This is related to the fact that p~O gives the
true ground state for no boundary condition (see discus-
sion below).

The solutions of the integral equation may be found
numerically: sample results are shown in Figs. I and 2.
In Fig. 1, we see the smooth change of the density of
states f„(x) with varying u, passing between the two lim-
its of (7.6). Similarly, Fig. 2 shows the smooth variation
of energy with density, approaching the lower bound
(7.12b) at low density, and the upper bound (7.11) at
high density. A simple approximation of assuming f, (x)
to be a constant f, for all u is surprisingly accurate for
the energy; this is shown by the solid line of Fig. 2 ~ The
resulting equations are obtained by setting f, (0)=f, in
(7.2):

VNN(y, . —y )= lim G5(y; —V ) .
G~ oo

(7.10) 1e= —1+
2v

N P —54M 3gP (7.1 1)

However, the interaction (7.10) has no effect on the ener-

gy in this limit, since the nucleons (clusters) are Pauli ex-
cluded from y,. =y. by antisymmetry. Thus, the energy
at low density given by (7.9b) has only internal nucleon
energy plus kinetic energy.

At higher density, the interaction will appear in the
ground-state energy as a repulsion relative to the nu-
cleon Fermi gas, or as an attraction relative to the quark
Fermi gas. It is in fact easy to establish upper and lower
bounds for E/X at any density p. First,

This clearly gives exactly both the limiting cases of (7.6),
since f, (z) =f, in these limits.

We come to the question of whether the solution of
(7.2) represents the true ground state at the density by
(7.4). First, with no restriction of the density (zero pres-
sure) the true ground state is given by isolated (N=3)
clusters, with energy (7.8). This follows from the com-
pleteness of the Bethe ansatz wave functions (see, e.g. , Li
et al. '

) and the limitation of clusters to N (3 for the
present model [see (3.1) and (3.2)]: no other bound states
exist.

follows variationally, since the interaction is attractive;
the quark Fermi gas kinetic energy is an upper bound.
The linear term is the Hartree-Fock contribution of the
potential of (2.2). (See Lieb and DeLlano, ' for the two-
color case. )

A lower bound may be obtained from the inequality

f dx x f, (x)) —,
' f dx f, (x), (7.12a)—1 —1

which follows from the concavity of f (x), (7.5a). Using
this with (7.3) and (7.4) gives

N
UJ

2.8-

g
2 2

0
i.8—

M

I ~ ~ I I I I I
1

I I I ~
1

~ I I ~ I ~ I I

e ) —1+(2u )

Further,

(7.12b)

i.4—
hJ
n

0 I

0
I 1 I

0.2 0.4 0.8 0.8

MOMENTUM

I ~ I l I I ~ I I I I I I 1 I I ~

i. O

9c
p&

~V
(7.12c)

follows from (7.3) with f(x)(3/2'. Then combining
(7.12a), (7.12b), and (7.12c) we obtain the lower bound

FIG. 1. The density of states 2mf, (x) is plotted vs the di-
mensionless momentum x =k /K, for several values of
U =c/E, (7.1); from tke top: U=10, 1, 0.25, and 0.166, from
numerical calculations.
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FIG. 2. Plot of energy per quark vs quark density in dimen-
sionless form: e [Eq. (7.4)] vs r [Eq. (7.3)]. The dashed lines
give the quadratic upper and lower bounds, corresponding to
(7.11) (with linear term neglected) and (7.12). The crosses are
calculated from numerical solutions of the integral equation
(7.2), the solid line from the approximation (7.14).

VIII. DISCUSSION

We have found in the previous section that the
ground-state energy of our model system approaches
that of a Fermi gas of nucleons at low density, and that
of a Fermi gas of quarks at high density, with a smooth
transition between those limits (see Fig. 2). What hap-
pens in the wave functions? For very low density the
construction followed in Sec. IV effectively assigned
every particle to a nucleon cluster, the clusters forming
an interacting gas, as in (4.3) and (4.4), with the permu-
tation symmetry of the entire system preserved. In this

Second, Eqs. (7.2) —(7.4) can be seen to have smooth
variation with parameter c, except near c=0. For the
related (Gaudin) problem of a two color system,
Takahashi has proved the analyticity of the ground-state
energy (6.11) or (7.4) for real c (c&0) of either sign.
This obtains also for the present model, giving analytic
behavior of f, (x), r, and e in the parameter v =c/k. It
follows that E/X(p) is analytic in p for all finite p,
which means that there are no "level crossings. " It also
follows from the variational principle that at each densi-
ty the energy can be lowered by decrease of density,
when gives the monotonic behavior of E/X(p) (see Ref.
15).

Strictly speaking, this means that solution of (7.2)
gives the lowest state of the same permutation symme-
try: we have restricted ourselves to [3"] in the construc-
tion, beginning in See. IV. Therefore, states of different
symmetry could conceivably become the ground state at
some density. This could only be eliminated by solution
of the Bethe ansatz equations for the appropriate sym-
metry. It is clear, however, that for sufficiently low den-
sity the %=3 cluster must be the true ground state: e.g. ,
for E/N & 0, only the %=2 or N=3 clusters compete.

limit, the nucleon momenta are small, 3E «c, so that
on the average, the clusters are separated by distances
large compared to the internal size of a cluster as given
by (3.5), i.e., c

~ y, —
y~ ~

&&1, for which (4.4) is a valid
representation of (4.1). The clusters are anticorrelated,
as discussed in connection with (7.10), so that the cluster
wave function (4.4) has nodes at y, =yj, in the low densi-
ty limit. Thus the wave function exhibits the nucleon
Fermi gas behavior seen in the energy, in this limit. The
anticorrelation can equally well be considered to be a
consequence of the repulsive effective interaction (7.10)
between clusters. For the present model, this does not
affect the energy, because the wave function (4.4) is also
antisymmetric. However, for closely related models with
different cluster symmetry, the repulsive interaction at
low density is apparent, e.g. , for the "two-color" fermion
model of Gaudin, for which the clusters are Bose-like:
in the low density limit, the energy is that of a Fermi gas
of clusters, because of the nodes imposed by the repul-
sion. (The repulsion is clearly a Pauli exclusion effect of
the quarks. )

At higher densities, the form (4.1) of the ground-state
wave function is unchanged, with the momenta assigned
in triplets corresponding to clusters. However, the clus-
ters are generally overlapping, and the wave function
(4. 1) is not well represented by (4.4) everywhere; there
are other significant terms not of that form, for
c

~ y; —y
~

5 l. [This does not affect the method of Secs.
IV —VI for the determination of the E(m), since (4.4)
can be used for any pair of clusters at large separation,
independent of the positions of the other particles. ] In
the regions of overlap, the spatial forms of the clusters
are changed from that of (3.5), and indeed the identities
of the clusters are mixed. This regime of partially over-
lapping nucleons is of interest in the context of looking
for quark effects in low energy nuclear systems. For the
present model, the quark effects appear in the energy as
a repulsive interaction between nucleons. But since the
nucleons in this model are modified when they overlap,
it would be interesting to study effects specific to these
changes, such as the response to excitation by external
probes, e.g. , in scattering of electrons. It would also be
interesting to follow the ground-state properties (other
than energy) as a function of density.

Here the availability of exact constructive methods for
the eigenstates of the model are of some use. For exam-
ple, it is easy to see that the lowest-energy excitations of
the system will involve changes of single-nucleon mo-
menta, rather than break up of nucleon clusters. How-
ever, the present technology of the Bethe ansatz does not
lead directly to interesting quantities like the two-body
correlation function, or the response function, in a
manner analogous to the ground-state energy. These are
a subject for further study. For some purposes, it may
be more profitable to study finite systems at fixed I.,
rather than the infinite-system limit.

The present model obviously has many shortcomings
as a representation of quark structure in nuclear physics.
Some of these may be obviated by improvements in the
model; others are clearly beyond its scope. One obvious
extension is to include other internal degrees of freedom
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of the quarks, such as spin and Aavor. This is currently
under investigation (see also Ref. 2, Sec. VB and a re-
cent paper by Kebukawa' ).

The restriction to one space dimension is a severe lim-
itation to making the model more realistic. The
methods used in this paper (Bethe ansatz) cannot be ex-
tended to more dimensions, but the variational approach
of Ref. 2 is possible for a generalized three-dimensional
model. However, other elements in a more complete
theory are also missing: e.g., relativistic quarks,
confining interactions, gluonic degrees of freedom, etc.
These are clearly beyond the scope and the goal of the
present approach.

IX. CONCLUSIONS

The main goal of this paper has been to obtain the
ground-state energy of our quark model of nuclear
matter, and demonstrate the transformation from nu-
cleonic to quark matter, with increasing density. This
has been accomplished, using a construction based on
the Bethe ansatz, which reduces the problem to the solu-
tion of a linear integral equation. The transition of the
energy with density can then be followed between the
nucleonic and quark-gas limits. Further study of this
model system and extensions of the model are under
way.
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APPENDIX A: DERIVATION OF EQ. (5.4)

or using (Al) and (A2)

a
[g,b (x e—,x ) P—b, (x —e,x }]

a,b (12)+a,b(21 }+ab, (12)+ab, (21 }=0, (A5}

while (A4) leads to

iZ, &[a,b (12)—a,b (21)—ab, (12)+ab, (12)]

=c [a,b(12)+a,b(21)—ab, (12)—ab, (21)], (A6)

with Z,2=k~ kp ~ These can be rearranged in the ma-
trix form given in (5.4).

APPENDIX B: EQUATION (5.9)

Write the operator of (5.8c) as T =M&2M, 3M,4, with
M „.of (5.4) expressed in the form

M] = 2 P] +B. A. +B = 1

—lZ])-
A, =

lZ]i C

c
B,-=

EZ]i —c

(B1)

Then operating on the six components of the coefficient
B (P4) of (5.7b) (we indicate only the color indices),

T(aPya ayPa) =»B3B4—(aPya ayPa)—
+B2B3A4(aPay —ayaP)

—A 3 A4(aaPy —aayP)

+B2 A 3B4(aypa apya )+

=c [f,b(x, x) —1(b, (x,x)] . (A4)

Equations (A2) and (A4) are boundary conditions on the
color-antisymmetric wave functions; the color-symmetric
wave functions have a node at the boundary.

If we apply these conditions to the Bethe form (2.3),
now expressed as in (5.3), Eq. (A2} yields

Starting with the wave function (5.1), consider two
quark variables only: x,x' with colors a, b; all other
variables are held fixed. We study the neighborhood of
the boundary x =x'. Antisymmetry gives T(yaPa —Paya) = —A ~ A4(ayaP aPay )—(B2a)

P,b(x,x') = gb, ( ',—x)x. (Al) + A2B3B4(aypa —apya)+
Continuity of g at the boundary and (Al) give the condi-
tion

(B2b)

P,b(x, x)= Pb, (x,x) . — (A2) T(Py aa yPaa) = —A2A3—(aPya ayPa), —(B2c)

a
g,b(x, x')

X=X +6

X =X
2cg,b (x,x), —(A3)

The Schrodinger equation for P with the Hamiltonian
given in (2.2) may be integrated across the boundary, to
obtain

where we have kept only the components which actually
contribute to the vector B (P, ), (5.7a); those components
orthogonal to (5.7a) are denoted by . The ampli-
tude for each component of B (P; ) is given by the (nor-
malized) sum of coefficients of that component in Eq.
(B2), e.g. ,
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(ctaPy
~

T
~

B (P4) ) = —6 '~ A 3A 4

(k, —ko)(k, —ko —ic)1 0 1 0

[i (k, —ko) —c][i(k,—ko)]

i (k, —ko)+c
6 —1/2

i (k, —ko) —c

Similarly, for each component of P, one obtains by straightforward algebra the same coefficient as for (B3), which
then leads directly to (5.9).

D. S. Koltun and S. Tosa, Phys. Lett. B 172, 267 (1986).
S. Tosa, Phys. Rev. C 34, 2302 (1986).

3H. A. Bethe, Z. Phys. 71, 205 (1931).
4Some recent reviews of the subject: H. B. Thacker, Rev. Mod.

Phys. 53, 253 (1981); N. Andrei, K. Furuya, J. H. Lowen-

stein, ibid. 55, 331 (1983); M. Gaudin, I.a Fonction d'Onde de
Bethe (Masson, Paris, 1983); B. Sutherland, in Exactly Solv-

able Problems in Condensed Matter and Relativistic Field
Theory, edited by B. S. Shastry, S. S. Jha, and V. Singh
(Springer-Verlag, Berlin, 1985), p. 1.

5E. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
J. B. Mcguire, J. Math. Phys. 5, 622 (1964).

7E. Brezin and J. Zinn-Justin, C. R. Acad. Sci. Ser. B 263, 670

(1966).
8C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).
M. Gaudin, Phys. Lett. 24A, 55 (1967), and Ref. 4.

' M. Takahashi, Prog. Theor. Phys. 44, 348 (1970).
"B.Sutherland, Phys. Rev. Lett. 20, 98 (1968).

C. N. Yang, Phys. Rev. 168, 1920 (1968).
' T. Sugiyama, private communication.
' M. Kardar and D. R. Nelson, Phys. Rev. Lett. 55, 1157

(1985).
E. Lieb and M. DeLlano, J. Math. Phys. 19, 860 (1968).

t6B. Z. Li, S. Q. Lu, and F. C. Pu, Phys. Lett. 110A, 65 (1985).
T. Kebukawa, Phys. Rev. C 35, 794 (1987).


