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The first Green's function Monte Carlo calculations of A =3 and 4 nuclei with spin-dependent
interactions are reported. Green's function Monte Carlo methods for calculating properties of
coupled channel quantum systems are described in detail, including both exact and approximate
schemes. Results are presented for A =3 and 4 nuclei with a V6 interaction. For the triton, the
Green's function Monte Carlo calculations are compared with Faddeev and variational methods.
Green's function Monte Carlo calculations of the alpha particle provide the first test of variational
methods for systems with spin-dependent interactions. For this interaction, variational methods
underestimate the binding energy of the alpha particle by =2 MeV. Other ground state properties
of light nuclei have also been determined. Implications of these results for more realistic interac-
tions are discussed, along with the possibility of future extensions of Green's function Monte Carlo
methods to treat momentum dependent and three nucleon interactions.

I. INTRODUCTION

The Green's function Monte Carlo' (GFMC)
method has proven to be very successful in determining
ground state properties of a wide variety of quantum
many-body systems, including solid and liquid helium
and atomic and molecular ' systems. However, it has
only been used to treat systems with simple state in-
dependent interactions, '' severely limiting its applica-
bility in areas such as nuclear physics, where the spin
dependence of the interactions is extremely important.

In this paper, Green's function Monte Carlo methods
to treat systems with a strong spin dependence are intro-
duced. An exact method (which may involve transient
estimation ")and a "fixed phase" method (a generaliza-
tion of the fixed node '" method used for spin-
independent interactions) are described. These tech-
niques are outlined in the first section of the paper, and
a simple coupled harmonic oscillator problem is present-
ed to illustrate the method.

In Sec. II, the application of the GFMC method to
light nuclei is discussed. Previously, 3 =3 nuclei have
been calculated with variational, ' ' Faddeev, ' ' and
coupled cluster' methods. For A =3 nuclei, it is possi-
ble to include enough channels to perform essentially ex-
act Faddeev calculations. For 2 =4, however, both
Faddeev' and coupled cluster' methods are extremely
dificult. As a consequence, variational calculations are
the principal method used for light nuclei with A &3.
The error inherent in these calculations is not known, so
the development of other methods is very important.

Results for the triton with the ATS-3 (Ref. 19) poten-
tial are presented in the Sec. III. This potential involves
only central and spin-spin interactions, so it is conceptu-
ally simple. Both exact and the approximate fixed phase
methods are employed for this problem. A comparison
of the results yields information concerning the
deficiencies of the variational wave function.

Results of calculations of He and He nuclei for a V6
(1, o"o, r.r, o"or r, S, and Sr r) interaction are also
presented in Sec. III. These results are compared with
Faddeev calculations of the triton and variational calcu-
lations for both He and He nuclei. The accuracy of
the variational calculations is discussed with regard to
implications for more realistic two and three nucleon in-
teraction models.

Finally, future generalizations and applications of
GFMC methods are discussed in Sec. IV. Important
generalizations of these methods include more realistic
nuclear interactions, such as L.S and three body interac-
tions. Other applications include semirelativistic and
nonrelativistic constituent quark models.

II. GFMC METHODS FOR SPIN DEPENDENT
INTERACTIONS

Green's function Monte Carlo methods involve a
series of random walks constructed to solve the
Schrodinger equation for the ground state. Two types of
methods are commonly employed, the domain Green's
function method and the short time approximation.
The domain GFMC method has several advantages, the
principal one being that no time step errors are intro-
duced, and consequently no extrapolation to zero time
step is necessary. On the other hand, short time
methods are extremely simple, and this is a compelling
virtue when studying complex spin-dependent systems.
Consequently, this work will be undertaken in the frame-
work of the short time approximation.

In this method, random walks are constructed to solve
the Schrodinger equation in imaginary time

V(r) =exp( —Hr)%(0),

by writing the propagator exp( Hr) as a product —over
short time intervals,

36 2026 1987 The American Physical Society



36 GREEN'S FUNCTION MONTE CARLO STUDY OF LIGHT NUCLEI 2027

exp( H—r)= g exp( H—br) . (2) 4(R, r+br)= f dR'exp[ —V(R)br]

These short time propagators are then approximated as
the product of a free particle propagator and an ex-
ponential factor involving the potential,

exp( Hh—r ) =exp( —Vb r )exp( —Tb r ) .

This leads to errors in the propagator of order
squared, which can be eliminated by performing calcula-
tions using different small values of h~ and extrapolating
to zero time step.

The integral equation for +(R,r) is

XN exp 0'(R', r) . (4)
—(R —R')
2b& /m

This integral equation is solved by using Monte Carlo
methods to sample the free particle propagator and in-
cluding branching to take the exp[ —V(R)b,r] factor
into account. The equation is then iterated until the sys-
tem has converged.

In practice, Eq. (4) is multiplied by an importance
function 4 (R) to improve the statistical accuracy of the
method. This yields an equation:

—R —R'
4 (R)%(R,r+hr)= f dR'4 (R)exp[ —V(R)br]N exp

2AM /m

When sampling from the Green's function with impor-
tance sampling, the ratio 4 (R)/4 (R') is approximated
with an expression accurate to first order in R —R'.
After sampling R, the result is corrected by introducing
a weight given by 4 (R)/4 (R') divided by the approxi-
mate value used to generate R. This weight is multi-
plied by exp[ —V(R)b,r] and used to control the branch-
ing of the population.

In principle, the extension of this method to treat
spin-dependent interactions is straightforward. The
Green's function then becomes an operator in spin

I

I

space, again given to first order in A~ by

&R,s
I
exp( Hb, r)

I

R—', s')

= & R, s
I
exp( —Vb, r)

I
R,s')N exp

—(R —R')
2AM /m

where s and s' indicate spin states. The exact and trial
wave functions are column vectors in spin space, and the
equivalent of Eq. (5) is

I 2

0', (R)%,(R, r+br)= f dR'0', (R)&s
I
exp[ —V(R)hr]

I

s')Nexp
2b, M /m

+, (R')4, (R', r) .
+, (R')

Two points must be addressed to perform a calcula-
tion. First, the exponential of —VA~ must be calculat-
ed. For a system with more than a very few channels,
computing the eigenvectors and eigenvalues of the po-
tential matrix is impractical. Since A~ must be small,
the exponential must be evaluated a very large number
of times to ensure convergence to the ground state.
However, the evaluation of exp[ —V(R)b, r] is only re-
quired to be accurate to first order in Av. One could, of
course, approximate the exponential by

exp[ —V(RQr]
I

s ) = &s
I

s') —hr&s
I
V(R)

I

s') .

I

first divide the weight in each channel by the importance
function in that channel. A new point R is chosen by
sampling the free particle propagator, and the column
vector representing the wave function is multiplied by
the exponential of the potential matrix. Finally, the
overlap in each channel of this column vector with the
importance function at the new point is computed.

In general, the weights in each channel will not be
real. However, one can use the real part of the sum of
these weights to control the branching of the population,
and determine the energy of computing the overlap of
the exact wave function with a trial function 0 .

However, this would require an extremely small time
step to give an accurate representation of the Green's
function. The choice of approximation must be guided
by the interaction itself. This point will be discussed in
greater detail for the special case of the nucleon-nucleon
interaction.

Assuming that an appropriate approximation to the
short time Green's function can be obtained, the itera-
tion of Eq. (7) is very simple. In order to propagate a
configuration from one generation to the next, one must

W&q'IH
I
e)

w&e'I e)
In principle the trial and importance functions may be
different, but in practice they are often taken to be the
same. As long as all regions of spin and coordinate
space are accessible to the random walk, no approxima-
tions (except for the finite time step) need be introduced.

However, the statistical error of the calculation may
grow for larger w. The GFMC method will converge to
the lowest eigenstate of the Hamiltonian consistent with
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the spin symmetry properties of H. That is, if the Ham-
iltonian commutes with the total spin S, then the ground
state determined by the GFMC method is the ground
state of the system with the same spin as the trial wave
function. As long as the approximation of
exp[ —V(R)b, r] preserves the same spin symmetries, the
fact that all spin states are assumed over at each point in
the walk ensures that states of different total spin will
not enter.

However, the GFMC ground state may not be the
physical ground state of the system. In this case, the
Monte Carlo iteration of Eq. (4) will eventually converge
to an unphysical state, giving a rapid increase in the sta-
tistical error.

The second source of increasing statistical error is
present even if the GFMC ground state corresponds to
the physical ground state. In this case, the sampling
over paths introduces an arbitrary overall phase for each
configuration. The difference between these phases
grows for large ~, causing an increase in statistical error.
However, in many cases (including light nuclei) this in-
crease is slow enough to allow the true ground state to
be accurately determined.

The wave function need not be positive definite in all
channels in order for the GFMC method to succeed.
For example, consider a one body problem in three di-
mensions. The diagonal elements of the potential are
harmonic oscillators, and they are coupled by a term
proportional to the third coordinate of the particle:

r

7 z

z 1+r2 (10)

with units given by A /2m =1.
The ground state wave function of this system is spa-

tially symmetric in the first channel, and spatially an-
tisymmetric in the second, due to the odd parity cou-
pling. Obviously, the wave function in the second chan-
nel is not positive definite. However, the GFMC
method is stable over propagation times ~ large com-
pared to the inverse of the lowest excitation energy of
the Hamiltonian. Assume an importance function that
has the wrong sign in the second channel relative to the
first, and that also has an incorrect spatial dependence,

exp( —r /2)
q(I

0.4z exp( r l2)—
The initial set of configurations give a distribution of

weights in the two channels as shown in Fig. 1. At ~=0
the weights are positive in both channels in all regions of
configuration space since they are proportional to the
square of the importance function in that channel. For
larger ~, the weights in the two channels change as
shown, eventually stabilizing at the ground state. Since
the relative signs of the two channels are opposite for
the exact and importance functions, the weights in the
second channel eventually become negative. The energy,
which is the overlap of (4

I

H
I
4), is shown as a func-

tion of ~ in Table I.
The GFMC calculation is stable because components

of the wave function with an incorrect relative sign de-
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FICx. 1. Weights at different propagation times ~ for the
coupled harmonic oscillator problem in the text. The upper
curves give the weights in the first channel, and the lower
curves the weight in the second. The second channel has been
multiplied by a scale factor for clarity.

A„(R) g P„,(R) . (12)
n =1 $=1

S is the total number of spin channels in the problem.
In the fixed phase approximation, the number of chan-
nels may be reduced to any number N less than or equal
to S. The spin states s are assumed to be orthonormal,
as are the restricted basis states labeled by n. Con-
straints are placed upon the amplitudes A„(R) and the
"phases" P„,(R). First,

(13)

for all values of R, and the amplitudes 2 are real,

TABLE I. Coupled harmonic oscillators.

0.0
0.1

0.2
4.0
Exact

Energy

3.101+0.005
3.044+0.006
2.972+0.006
2.830+0.009
2.829

Weight (1)

0.990
1.022
1.039
1.075

Weight (2)

+ 0.001
—0.022
—0.039
—0.075

cay more quickly than those with the relative sign of the
ground state. This wave function is at least superficially
similar to s-shell nuclei in that it consists of large spatial-
ly symmetric components of the wave function coupled
to small negative parity components.

For many problems the physical ground state of the
system will not be equivalent to the GFMC ground
state. In this case, it will sometimes be possible to use
transient estimation techniques to project out the state
of correct symmetry before the onset of large statistical
error. In other cases, it will prove useful to introduce an
approximation analogous to the fixed node method.

The fixed phase approximation is obtained by writing
a wave function of the form

N S
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J'A„(R)=0 . (14) III. LIGHT NUCLEI

For a prescribed set of phases, one may then solve for
the amplitudes which give the lowest variational energy.
Writing out the expectation value of the Hamiltonian
with this form of wave function and making use of the
fact that H is Hermitian and A is real, the energy is

E= dR A„R V A„R
n

g2 V'+ ggV" ~r, —r, ~O,", ,
i(j k

(19)

where V are functions of the pair separation and the
operators 0;"& are, for example,

Models of nuclei as systems of interacting nucleons in-
volve Hamiltonians of the form

+ f dRQ A„(R) [Vgt, VP„,]A„(R)
n, $

0 =1, o. .o) ~.w) cr.o w. v) S, S~-w) L.S) L Sw-v. ) L

L2O o I 27 7, L20 CT7 (20)

+ dR Ani R
p g $ V$ $ pg $

n, n, $,$

+P„,.V, ,P„,)A„(R). (15)

Therefore, the amplitudes A solve a Schrodinger equa-
tion with a Hamiltonian given by

p2+
2m

where the potential V is

$2
V„„.= g [VP„,.VP„,]5„„

$

+ g —,'(P„,V, , P„,.+P„,.V, ,P„,) .
$, $

The first term in V is associated with the kinetic energy
of the phases, and the second term is the spin averaged
potential. Any variational wave function may be written
in the form of Eq. (12), and any wave function with an
exact set of phases will yield the exact ground state ener-

gy
The most drastic fixed phase approximation involves

turning the problem into an equivalent one channel
problem, and the least restrictive corresponds to fixing
the complex phase of the wave function in each channel.
In general, one would like to allow the most general
wave function possible. The degree of approximation
which must be made to retain stability depends upon the
problem.

In one channel, this method is equivalent to writing
+(R)= A (R)exp[ie(R)], requiring A and e to be real,
and solving the equation

—fi V+ ~Ve~ +V A(R)=EA(R).
2m 2m

(18)

The fixed node approximation is obtained by taking
e=0 where the trial wave function is positive, and
e=m. where it is negative. The "phase potential" is then
zero except at the nodes, where it is represented by the
square of a delta function, implying that no
configuration may diffuse from the positive to negative
regions of the trial wave function.

Approximations along these lines may also be valuable
in scattering calculations. In the next section we discuss
the applicability of these methods to light nuclei.

For this initial study, we consider two simplified Ham-
iltonians where only the first two and the first six opera-
tors are included, respectively. The ATS-3 (Ref. 19) in-
teraction incorporates a difference between spin singlet
and spin triplet channels, but no tensor or more compli-
cated operator dependence. Its principle advantage for
these calculations is that it has a relatively weak central
core, approximately 1000 MeV, so it is feasible to use
relatively large time steps and eSciently explore the pos-
sibilities of the method.

Results are also presented for a somewhat more com-
plicated V6 interaction. The radial forms of the poten-
tial are taken to be those of the Argonne V14 (Ref. 21)
interaction. The potential is truncated to these first six
operators. Obviously this interaction will not correctly
describe the scattering data, and it gives too small a
binding energy for the deuteron. Nevertheless, it should
provide a good test for variational calculations of the al-
pha particle.

The variational wave functions for the light nuclei are
taken to be of the form

gFJ. A4. (21)

The 4 are antisymmetric spin-isospin states of the
correct spin and isospin for the nucleus of interest. The
pair correlation operators F; involve spin and isospin
operators and are determined by solving two body
differential equations. References 13 and 14 give some-
what different asymptotic boundary conditions on the
pair correlations. The second set of boundary conditions
(Ref. 14) give more accurate asymptotic normalizations,
but for the alpha particle no statistically significant im-
provement in the binding energy is obtained. Both sets
of boundary conditions have been employed in the
GFMC calculations. The Metropolis Monte Carlo pro-
cedure used to determine the variational energy is de-
scribed in Ref. 12.

An approximation to exp[ —V(R)br] must be
developed for GFMC calculations of light nuclei. For
the alpha particle, a brute force diagonalization would
be just feasible even on a supercomputer, as a crude esti-
mate indicates that several hundred central-processing-
unit (CPU) hours on a Cray XMP would be required.

It is apparent that an approximation to
exp[ —V(R)br] is required. Whatever approximation is
chosen, it must be accurate to at least first order in A~,
and should provide a good approximation to the com-
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piete exponential when two particles are near each other.
In addition, efficient calculations of the approximation
must be feasible.

We have chosen to approximate the exponential by

exp[ —V(R)br]=4 g exp( —V, b,r)
I (J

(22)

The 4 stands for a symmetrization operator, indicating
in this case a random choice of the order of pairs in the
product. This form is accurate to first order in A~, and
it also closely approximates the full exponential in the
core region. Errors of higher order in A~ arise only due
to the fact that the potential operators from different
pairs do not commute. These errors are large only when
three or more particles overlap within a core region, a
very restricted part of phase space.

In addition, this approximation to the exponential
may be calculated very efficiently. Consider the poten-
tial written in the spin-isospin channel representation:

Voo(r), S =0, T =0
Vo, (r), S =0, T =1
V,D(r)+ Vto(r)S S:1 T =0
V»(r)+ V„(r)S,, S =1, T =1 .

(23)

'J i &J J V

Since (S; ) = 1, the exponential in these channels is

exp( —Vb r) =exp( —Vb,r )[ cosh( —V, b, )r
+sinh( —V, hr)S;, ] .

(25)

(26)

Once the exponential is calculated in channel form, it
may easily be converted into operator form to calculate
exp( —V(R)b, r) acting on the wave function.

For the alpha particle, the Coulomb interaction is tak-
en from Ref. 14. It includes a cutoff from the charge

The spin singlet channels are not coupled to the spin
triplet, and the isospin zero and isospin one channels are
also not coupled to each other. Therefore, in the spin
singlet channels, the exponential of the potential carriers
no operator dependence. In the spin triplet channels, it
is possible to rewrite the potential as

V)o(r)+ Vio(r)S S =1 T =0
v= -"

(24)(V„(r)+Vt)(r)S, , S =1, T =1

where the operator S, is given by

distribution of the protons. The projection onto a T =0
trial wave function introduces an extremely small error,
much smaller than the statistical error of the calculation.

IV. RESULTS

We first review the results of the triton calculations
with the ATS-3 interaction. This interaction incorpo-
rates only different spin singlet and spin triplet interac-
tions. The results of several different calculations are
presented in Table II. The asymptotic form of the varia-
tional wave function was taken from Ref. 13. The pa-
rametrization of Ref. 14 yields somewhat better binding
energies and asymptotic normalizations for the three nu-
cleon system, but we are primarily interested in testing
the G.FMC method.

The variational wave function, which was not careful-
ly optimized, yields a binding energy of —8. 12+0.03
MeV for the triton. Faddeev methods give a binding
energy of —8.765 MeV, for a difference of approximate-
ly 0.65 MeV.

The first GFMC calculation was a fixed phase approx-
imation restricted to only one channel. With a relatively
small time step (2.0&&10 MeV '), the binding energy
was almost identical to that of the variational calcula-
tion. This fixed phase approximation solves for the
lowest energy state with the same relative magnitude in
all spin channels as the variational wave function. The
fact that the GFMC energy is very near the variational
energy (and quite different from the Faddeev) indicates
that the deficiencies of the variational wave function are
embedded in its spin dependence. This result is con-
sistent with many calculations of spin-independent in-
teractions for 3 =3 and 4 nuclei, for which variational,
GFMC, and Faddeev calculations agree very well.

The other calculations listed in Table II do not involve
a fixed phase approximation. Two different time steps
were used, and the configurations were propagated for a
total time of 0.7—1.0 MeV '. This time is more than
enough to ensure convergence to the ground state, since
the first fermion excited state is at approximately 5
MeV. During these calculations, the weights of a very
few (approximately 0.5%%uo) of the configurations became
negative. The contributions of these walks were retained
in the averages given in the table. Eventually these neg-
ative weights would lead to large statistical errors, but
only long after convergence to the ground state.

In all cases, a linear extrapolation has been used to
determine the zero time step result. Although the error

TABLE II. Triton with ATS-3 interaction.

Method

Variational
Faddeev (34 channels)
Fixed phase GFMC
GFMC
GFMC
Extrapolation

Time step
(MeV ')

2.0X 10-'
1.0&& 10-'
5.0X 10—4

Energy
(MeV)

—8.12+0.03
—8.76
—8.15+0.02
—8.87+0.04
—8.80+0.07
—8.73+0. 10

(V„&
(MeV)

—40.0+ l.0

—40.6+ l.0
—43.9+0.9
—42.4+ 1.0
—40.9+ l. 5

(r2)1/2
(fm)

1.68+0.03

1.66+0.04
1.66+0.04
1.69+0.05
1.72+0.07
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TABLE III. Triton with A V6 interaction.

Method

Variational
Faddeev (5 channels)
Faddeev {34 channels)
GFMC
GFMC
GFMC
Extrapolation

Time Step
(MeV-')

4.0X10 4

2.0X 10
1.0X10 4

Energy
(MeV)

—6.33+0.05
—6.46
—7.15
—7.23+0.08
—7.20+0.08
—7.23+0.08
—7.22+0. 12

—43.7+ 1.0

—49+ 1

—50+ 1

—49+ 1

—52+3

(p2)1/2

(fm)

1.95+0.03

1.88+0.04
1.83+0.03
1.85+0.03
1.75+0. 10

in the Green's function is second order in A~, the num-
ber of steps required for a given total propagation time
is of order A~ '. More thorough checks of the extrapo-
lation would be useful, but the extrapolations are gen-
erally quite small. For the ATS-3 interaction, the extra-
polation of the GFMC calculations agrees with the Fad-
deev results within the statistical error of approximately
0.15 MeV.

The next set of calculations are for the triton with the
"Argonne V6" interaction. In this case, the asymptotic
boundary conditions on the variational wave function
were taken to have the more accurate forms of Ref. 14.
However, the precise values of the variational parame-
ters were not carefully optimized. The variational bind-
ing energy obtained was —6.33+0.05 MeV. The 34
channel Faddeev result for this same interaction is
—7. 15 MeV. This difference between variational and
Faddeev results is significantly larger than for more real-
istic potentials, so great care must be used when trying
to draw parallels between calculations using different in-
teractions. Faddeev calculations restricted to only five
channels also give a small binding, as listed in Table III.
Thus, the effects of the higher partial waves appear to be
more important than for more realistic potentials.

GFMC results are listed for three different time steps.
Each calculation employed approximately 4000
configurations which were propagated for a total imagi-
nary time of 0.4 MeV '. The results given in Table II
were obtained by averaging between ~=0.2 and ~=0.4
MeV

The convergence of the calculation to the true ground
state energy can be determined by examining the energy
as a function of ~. Since the first excited state of the
trinucleon system is at approximately 5 MeV, the contri-
bution of even the 1owest excited state decreases by a
factor of 1/e in a time of 0.2 MeV '. By comparing the
average between 0.01 and 0.20 MeV ' to that between
0.2 and 0.4, the energy can be shown to have converged
to within several hundredths of a MeV, much less than

the statistical errors of the calculations.
It is possible to accurately calculate the ground state

of the triton because the lowest state of the system is the
antisymmetric one. These calculations could be ex-
tended to a somewhat larger ~ without a great increase
in statistical error. However, the statistical error will
eventually increase because of the arbitrary relative
phase introduced in the Monte Carlo sampling.

Extrapolation of the GFMC results to zero time step
gives a binding energy of 7.22 MeV, which is again con-
sistent with the Faddeev result. The statistical error of
the calculation is approximately 0.12 MeV. The expec-
tation values of the Argonne V6 interaction and the
point nucleon radii are also given in Table II. The result
for quantities other than the ground state energy is
determined by first extrapolating to zero time step, and
then extrapolating from that mixed estimate to the
ground state expectation value.

Finally, ground state properties of the alpha particle
were calculated. For the alpha particle, no other exact
method is presently available. Variational wave func-
tions with the asymptotic boundary conditions of both
Refs. 13 and 14 were employed, and the optimum values
of the variational parameters obtained for each case.
The energy of the two variational forms were statistical-
ly indistinguishable, but the statistical error associated
with the first form seemed to be slightly lower than that
of the second. Consequently, it was chosen as the trial
wave function for the GFMC calculations.

The results of the alpha particle calculations are sum-
marized in Table IV. In this case approximately 2000
configurations were employed, and they were propagated
for a total imaginary time of 0.15 MeV '. The first ex-
cited state of the alpha particle is at approximately 20
MeV excitation energy, so that the system should have
converged to the ground state. As for the triton, the
GFMC energy stabilized very quickly, and no statistical-
ly significant decrease in energy occurred after a propa-
gation time of approximately 0.03 MeV

TABLE IV. Alpha particle with A V6 interaction.

Method

Variational
GFMC
GFMC
Extrapolation

Time Step
{MeV ')

1.0X 10
5.0X 10-'

Energy
(MeV)

—22.75+0. 10
—24.89+0.12
—24.84+0.09
—24.79+0.20

(v„)
(MeV)

—122+ 1

—126+ 1

—124+2
—122+30

( 2)1/2

(fm)

1.50+0.01
1.49+0.02
1.50+0.02
1.50+0.04
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FIG. 2. Point nucleon distribution for the alpha particle
with the AV6 interaction. The curve labeled "GFMC" is the
mixed estimate for the smallest time step used (see text).

Two different values of the time step were used.
These values are smaller than those used for the triton
since the system is more dense and the potential energy
is larger by roughly a factor of 2. Extrapolating to zero
time step, a ground state energy of —24. 8 MeV is ob-
tained, with a statistical error of approximately 0.2
MeV. Thus, the GFMC ground state energy lies ap-
proximately 2 MeV below the variational energy.

The population growth can also be used to estimate
the ground state energy. This estimate of the energy is
below the variational result and consistent with the
GFMC mixed estimate result, but has a somewhat
higher error bar and a larger time step dependence.

The increase in binding energy obtained with GFMC
methods is not large enough to explain the difference be-
tween experiment and variational calculations with two
nucleon interactions alone. Models of the two pion ex-
change three nucleon attraction therefore remain attrac-
tive candidates for understanding the binding energy of
the alpha particle.

On the other hand, it appears to be premature to draw
conclusions about details of the three nucleon interac-
tion from variational results. GFMC studies with more
realistic interactions seem likely to given an energy 1 —2
MeV lower than variational calculations. Methods to in-
corporate more accurate interaction models are being in-
vestigated, and the possibilities are described briefly in
the next section.

In addition to the binding energy, the point nucleon
distribution function of the alpha particle has also been
computed with both the variational and GFMC
methods. The results are presented in Fig. 2, where the
curve labeled "GFMC" gives the mixed estimate for the
one body distribution function. This estimate is ob-
tained by taking the overlap of the variational and
GFMC wave functions. No extrapolation to the exact
distribution function has been attempted, since the sta-
tistical errors of each curve are comparable to the
differences between them.

The GFMC one body distribution has less structure
for r &0.5 fm than the variational curve. In general, it

appears that form factors obtained from variational cal-
culations should be fairly accurate at low momentum
transfer, but may be in error for larger values of q .

The spin-isospin averaged pair distribution function
has also been calculated with both methods. This distri-
bution is proportional to the probability of finding two
nucleons separated by a distance r, averaged over all of
the spin and isospin states of the pair. The pair distribu-
tions of the two calculations are nearly identical.

The difference between variational and GFMC binding
energies of the alpha particle is slightly more than twice
as large as in the triton. This suggests that the two body
correlations may not be suSciently accurate in the varia-
tional wave function. In this regard, it may prove in-
structive to compare the pair distribution functions in
the four spin-isospin channels.

V. SUMMARY AND OUTLOOK

The calculations and methods presented in this paper
demonstrate the practicality of GFMC calculations for
systems with spin-dependent interactions. The methods
should prove to be very valuable in many areas of nu-
clear physics. The applications to light nuclei are obvi-
ous. In addition, GFMC methods should allow accurate
ground state calculations to be performed for many
quark models. Constituent quark models of single- or
few-hadron systems typically involve a Hamiltonian with
a strong spin dependence, usually modeled as a one
gluon exchange interaction. GFMC methods should
be applicable to many of these problems. Nonrelativistic
models ' may be calculated exactly as described, while
"semirelativistic" models [which use a (p +m )' ki-
netic energy operators] involve only the introduction of
a different free particle propagator. Quark models are
presently being studied with GFMC methods.

These calculations demonstrate that great care must
be taken when trying to draw conclusions from relatively
fine details of variational calculations of the alpha parti-
cle. For the triton, this V6 interaction yields an unusu-
ally large difference between variational and Faddeev re-
sults. Variational calculations of the alpha particle with
more realistic interactions may also be more accurate
than for this V6 interaction. However, this V6 model
significantly underbinds helium-4, and the larger central
density associated with more realistic two and three nu-
cleon interactions may increase the error in the varia-
tional calculations.

There is an obvious need for extensions of GFMC
methods to more complicated interactions involving
momentum dependent terms and three nucleon interac-
tions. These terms are relatively small for nuclear in-
teractions, and it may be feasible to keep only first order
terms in A~, and still retain a low statistical error.
Three nucleon interactions are simple to treat in this
way, since it is only necessary to calculate the interac-
tion acting on the wave function. Momentum depen-
dence is more di%cult to handle, but may still be feasible
to first order in h~. The essential element in employing
a momentum dependent interaction is to write down the
integral equation for the wave function to first order in
delta tau and use integration by parts to remove the
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derivative operators. These calculations are being vi-
gorously pursued.

ACKNOWLEDGMENTS

The author would like to thank several people for
their contributions to this work. K. E. Schmidt provid-

ed very valuable guidance on the application of GFMC
methods to light nuclei. J. L. Friar performed the Fad-
deev calculations of the triton, which were indispensable
checks of the GFMC, and also contributed to valuable
discussions. The author would also like to thank M. H.
Kalos and R. M. Panoff for their assistance. This work
was supported by the U.S. Department of Energy.

'M. H. Kalos, Phys. Rev. 128, 1791 (1962).
2M. H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A 9,

2178 (1974).
K. E. Schmidt and J. W. Moskowitz, J. Stat. Phys. 43, 1027

(1986).
4P. A. Whitlock, D. M. Ceperley, G. V. Chester, and M. H.

Kalos, Phys. Rev. B 19, 5598 (1979).
~M. H. Kalos, M. A. Lee, P. A. Whitlock, and G. V. Chester,

Phys. Rev. B 24, 115 (1981).
M. A. Lee, K. E. Schmidt, M. H. Kalos, and G. V. Chester,

Phys. Rev. Lett. 46, 728 (1981).
7R. M. Panoff, Condensed Matter Theories, edited by R. Kalia,

P. Vashishta, and R. Bishop (Plenum, New York, 1987), Vol.
II.

J. W. Moskowitz, K. E. Schmidt, M. A. Lee, and M. H.
Kalos, J. Chem. Phys. 77, 349 (1982).

J. G. Zabolitsky and M. H. Kalos, Nucl. Phys. A356, 114
(1981).

' J. G. Zabolitsky, K. E. Schmidt, and M. H. Kalos, Phys.
Rev. C 25, 1111 (1982).
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).
J. Lomnitz Adler, V. R. Pandharipande, and R. A. Smith,
Nucl. Phys. A361, 399 (1981).
J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl.
Phys. A401, 59 (1983).

~4R. Schiavilla, V. R. Pandharipande, and R. B. Wiringa, Nucl.
Phys. A449, 219 (1986).

~5C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys.
Rev. C 31, 2266 (1985).

~ J. L. Friar, in New Vistas in Electro-Nuclear Physics, edited
by E. L. Tomusiak, H. S. Caplan, and E. T. Dressier (Ple-
num, New York, 1986).

' J. A. Tjon, Phys. Rev. Lett. 40, 1239 (1978).
8M. Gari, H. Hyuga, and J. G. Zabolitsky, Nucl. Phys. A271,

365 (1976).
I. R. Afnan and Y. C. Tang, Phys. Rev. 175, 1337 (1968).
D. M. Ceperley and B. J. Adler, J. Chem. Phys. 73, 3897
(1984).
R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev.
C 29, 1207 (1984).

~~J. L. Friar, private communication.
J. L. Friar, J. Carlson, and G. L. Payne, submitted to Phys.
Rev. C.
A. De Rujula, Howard Georgi, and S. L. Glashow, Phys.
Rev. D 12, 1147 (1975).
Nathan Isgur and Gabriel Karl, Phys. Rev. D 20, 1191
(1979).
L. Heller and J. A. Tjon, Phys. Rev. D 32, 755 (1985).
J. Carlson, J. B. Kogut, and V. R. Pandharipande, Phys. Rev.
D 28, 2807 (1983).


