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The effects of charge-symmetry breaking of nuclear forces can be observed in neutron-proton
elastic scattering. We present and apply a formalism used to compute the effects. The major con-
tributions arise from the neutron-proton mass difference in one-pion and one-rho exchanges, from
the neutron anomalous magnetic moment in one-photon exchange, and from rho-omega meson
mixing. Two-pion exchange and quark effects were found to be very small. We find our results in

agreement with the one existing measurement.

I. INTRODUCTION

Charge symmetry implies the invariance of a system
under a transformation which reverses the sign of the
third component of the isospin for all of its components,
(e.g. , p~n and n~p). The significance of charge-
symmetry breaking (CSB) has been discussed previously
in a number of reviews. ' Here v e are interested in the
phenomenon of neutron (n) -proton (p) elastic scattering.
This is of special interest because Coulomb forces are ab-
sent and hence it is possible to establish the existence of
CSB unambiguously. A number of theoretical treat-
ments of CSB in the n-p system have appeared previous-
ly. ' A recent TRIUMF experiment has found evi-
dence of CSB in this system. In a recent, brief publica-
tion we reported on a calculation which agreed with the
TRIUMF result. The purpose of the present work is to
provide a complete formalism (including relativistic ki-
nematics) that will allow more detailed dynamics to be
included in future calculations, to present some new re-
sults for CSB potentials, and to extend our earlier calcu-
lations to higher energies.

We begin this introduction with a brief discussion of
the TRIUMF measurement of the difference in
neutron-proton analyzing powers in n-p elastic scattering
at a laboratory energy of 477 MeV. Their nonzero result
is direct evidence of CSB. The difference in n and p
analyzing powers is b, A (0)= A „(0)—A (0), where
A„(0)and A (0) are the neutron and proton analyzing
powers, respectively. AA (0) is expected to be small, i.e.,
of the order of the fine structure constant. For this
reason a zero-crossing measurement was performed, i.e.,
a measurement of the angle at which the analyzing
power goes through zero. The actual measurement was
of the difference in laboratory zero-crossing angles for
the n and p analyzing powers, which is converted to the
difference in analyzing powers at the zero-crossing angle V =D(r, +r2)3 . (F 1)

(b, A) by multiplying by the slope of the analyzing power
as a function of the laboratory scattering angle. The
difference in zero-crossing angles was 60=0„—0
=0.13 +0.06'(+0.03') (for the neutron scattering angle),
where A „(0„)and A (0 ) are zero by definition. In
terms of center-of-mass (c.m. ) angles (0„), =(0~),
=70'. The quoted result at 477 MeV (determined from
neutron laboratory scattering angles) is b, A = [37+17
(stat. )+8 (syst. )] &&10, which is significant since CSB
had not previously been established unambiguously. '

An experiment at 350 MeV is planned at TRIUMF,
while another at 188 MeV is proceeding at the Indiana
University Cyclotron Laboratory. Similar measure-
ments at energies up to 800 Me V are possible at
LAMPF. '

For completeness we present a few well-known
definitions. Charge independence results when the sys-
tem Hamiltonian H commutes with the total isospin
operator T, i.e., [H, T]= [H, T ]=0. Charge symmetry is
a weaker symmetry, which requires only that H by in-
variant under reflection in the x-y plane is isospin, if the
z axis is the T3 (i.e., the charge) axis. With our conven-
tions the charge operator for a system of protons and
neutrons is Q =e(8/2+T3), where 8 measures baryon
number and e ~0 is the charge of the proton. Charge
symmetry requires (P„,H) =0, where P„=exp(imT~).
Charge symmetry not only implies equality of the nn
and pp forces, but also has consequences for the np sys-
tem.

Following Henley and Miller, ' potentials in the NN
system can be divided into four classes. Class I poten-
tials are isospin (i.e., charge) independent, while class II
potentials are charge dependent but maintain charge
symmetry. Both class III and IV potentials violate
charge independence and charge symmetry. Class III
potentials have the general form
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While class III potentials differentiate between nn and

pp systems, they clearly can not lead to CSB in the np
system since for T3=0 systems [V'",T ) cc [T3,T ) =0
which implies that no isospin mixing is possible. Only
class IV potentials can contribute to CSB (and hence to
AA) in n-p elastic scattering and they have the general
form

p 4p

(C)

V' =E(r, —r2)3+F(r, Xr2)3 (1.2)

where [V', T ]&0. Assuming both parity conservation
and time-reversal invariance, the simplest class IV po-
tentials are

V =(r, r2)3(o,—o2). —LU(r),Iv

V =(ri Xr )23( crXo 2).Ltc(r),

(1.3a)

(1.3b)

where L is the orbital angular momentum operator in
the center of mass frame and r=r, —rz is the internu-
cleon separation.

CSB in n-p elastic scattering implies mixing of isospin
T=O and T =1 states. Isospin mixing requires that
there must also be spin singlet-triplet mixing, i.e., of
S =0 and S =1 states, since parity conservation implies
that L remains unchanged. Thus only states with J =L
can contribute to CSB in n-p elastic scattering and hence
to AA.

Our aim here is to provide a complete formalism to al-
low computation of CSB effects. Earlier work in Refs. 4
and 7 included effects of strong distortion but did not in-
clude enough partial waves to handle the electromagnet-
ic (em) contribution at all angles. Conversely, sufficient
partial waves were included in Refs. 5 and 6, but no ac-
count was taken of the effects of nuclear distortion on
the n and p radial wave functions. Here we include both
effects and try to present an account complete enough to
allow more extensive calculations. In addition, we at-
tempt to understand the nonzero result for 63 in terms
of em interactions, one-boson exchange potentials
(OBEP), and the two-pion exchange potential (TPEP).
Careful attention is paid to relativistic kinematics.
Quark effects will also be considered. Detailed compar-
isons between different theories are made.

A brief report on some of the results to be presented
here has already been made. We shall see that the dom-
inant contribution to 63 arises from the n-p mass
difference in the one-pion exchange potential (OPEP).
Although the conventional OPEP is well known, in this
process we are isolating a new spin-transition matrix ele-
ment that has never been measured before. In this sense
we are making a novel test of the meson exchange
theory of nuclear forces. The other contribution from a
long-range force arises from the effect of the neutron
anomalous magnetic moment on the motion of the pro-
ton. Other shorter-ranged effects are associated with rho
exchange, rho-omega mixing, two-pion exchange, and
quark interactions, the last two of these giving very
small contributions. The diagrams contributing to CSB
are shown in Fig. 1 (except quark effects). The total of
these contributions to AA give a result in agreement
with experiment.

The remainder of this paper is organized as follows.

(e)

FIG. 1. The charge-symmetry breaking processes considered
in this work. Shown are (a) one-photon, (b) one-pion or one-
rho, (c) mixed rho-omega, and {d) uncrossed and (e) crossed
two-pion exchanges. No diagram depicting quark effects has
been included. The crosses indicate the CSB vertex function
arising from the neutron-proton mass difference. The cross
hatching refers to the usual subtraction procedure.

In Sec. II we introduce the formalism (with relativistic
kinematics) necessary to describe the CSB amplitudes,
while the various CSB contributions and their origins
are discussed in Sec. III. The details of our calculations
and the numerical results are presented in Sec. IV, where
our previous calculations are extended to higher ener-
gies.

+e(o, +o z).n+f(o, —o z) n] . (2.1)

where k; and kf are the initial and final c.m. momenta
for the scattered particle (particle 1) and where

kf+k, kf —k, k; XkfI—= I= Il =
I
kf+k, I

'

(2.2)

In terms of the scattering matrix spin operator 1Q', the
differential cross section for unpolarized particles in the
c.m. system is

=—~,=—,'Tr(QQ ')
unpol

=-,'(
I
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I

'+
I
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I

'+
I
c

I

'

+
I
d

I

'+
I
e

I

'+
I f I

') . (2.3)

II. FORMALISM

Assuming only Lorentz invariance, parity conserva-
tion, and time-reversal invariance the scattering matrix
for the elastic scattering of two spin —,

' particles can al-
ways be specified in terms of six invariant amplitudes. "
These amplitudes are complex functions of the total
center-of-mass (c.m. ) energy Er and the c.m. scattering
angle 8. Using invariant amplitudes a, b, c, d, e, and f
we can write

19=—,'[(a+b)+(a —b)(o, n)(o2. n)

+(c +d)(o, .m)(o', .m)+(c d)(u, I)(o—, I).
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The most general form for the c.m. differential cross sec-
tion in a polarization experiment is"

dCT
0 pqik

pol

= —,Tr[(o, .p)(o 2 q)Q(o, i)(o z.k)Q ],
(2.4)

b, A (8)= A „(8)—A (8)=2 Re(b'f ) lo 0 . (2 6)

where the four arbitrary unit vectors p, q, i, and k
specify the polarization directions of the scattered,
recoil, beam, and target particles, respectively.

The experiment of interest to us here is that of a neu-
tron beam (particle 1) impinging on a proton (i.e., hydro-
gen) target (particle 2), where either the beam or target
are initially polarized perpendicular to the scattering
plane [i.e., with polarization in the direction n of Eq.
(2.2}]. The ratio of the resulting cross sections to the un-
polarized cross section (o.o) gives the neutron and proton
analyzing powers A„(8)and A (8), where"

A„(8)—=Xoo„o=—,'Tr[19'(o, .n)Q t]=Re(a*e+b*f )Icro,

(2.5)

A (8)=Xooo„———,'Tr[Q(cr2 n)1& ]=Re(a "e b*f )l—oo .

Hence we have for the difference in analyzing powers

g(r)—=U(r) and ( —1) w(r) (2. 1 1)

for Eqs. (1.3a) and (1.3b), respectively. The distorting
effects of the strong interaction are included through the
radial wave functions Rz(r) and RJJ(r), both of which
are normalized such that

R (r) ~ sin(kr —,' Jar+5—)lkr,
P~ oo

(2.12)

where 5=5& and 5&J for RJ(r) and RJJ(r), respectively.
In our calculations R (r) are solutions of the Schrodinger
equation for the Reid soft-core potential, ' which ade-
quately describes the relevant (J =L) experimental phase
shifts. ' This point will be discussed in more detail in
Sec. IV. In Appendix A we give some conventions and
describe how to relate invariant amplitudes' of OBEP's
to CSB potentials.

the potentials V of Eq. (1.3) in the distorted wave Born
approximation (DWBA). This then allows a calculation
of the singlet-triplet transition amplitude f (k, 8)(o„—o~) n in terms of the V' potentials. Using the results
for f (k, 8) and approximating sin(2yJ }=2yJ (since yJ is
very small), we find

y~= 2E—rk&J(J+ I) f dr r RJ(r)g(r)RJJ(r),
0

(2.10)

where Er —= (total) c.m. energy =2E with E the energy
per nucleon in the c.m. frame and where

CSB can be observed in n-p elastic scattering if it is ac-
companied by spin singlet-triplet mixing, which can only
occur if f&0 in Eq. {2.1).

We now wish to relate the class IV CSB potentials of
Eq. (1.3) to f (k, 8) in Eq. (2.1) (k =

~
k,

~

=
~ kf

~

). We
will maintain relativistic kinematics throughout this
work. It is possible to generalize the bar phase shift L-5
representation of N-N scattering' to include a new pa-
rameter y J which is the mixing angle of the spin
singlet-triplet transition. ' '" Using the definition

S(J)=1+2iT(J), {2.7)

(J 1
~

T(J)
~

JO) = ——,'si (2ny )eJpx(i5 Ji+5 )JJ, (2.8)

where 6J and 6&J are the singlet and uncoupled triplet
bar phase shifts, respectively. The bar phase shift L-S
representation of the scattering matrix can be related to
the six-amplitude representation of Eq. (2.1) and in par-
ticular we have

then the matrix element (L 'S'
~

T(J)
~

LS ) for the
singlet-triplet transition is

III. CLASS IV CONTRIBUTIONS

In this section we discuss the various class IV contri-
butions, beginning with the two of longest range, i.e.,
those due to one-photon and one-pion exchange. The
first of these requires special treatment since Eq. (2.9) is
a divergent sum due to the infinite range of the em in-
teraction. The shorter range contributions due to one-
rho exchange, rho-omega mixing, two-pion exchange,
and quark effects are then treated.

Before proceeding to the details of the class IV CSB
potentials, we include a few general remarks. Note that,
while the n-p mass difference does give rise to class IV
potentials (see Sec. III), no such forces arise due to the
appearance of the n and p masses in kinematic factors
[e.g. , Eq. (A2)] and so to an excellent approximation we
can use the average nucleon mass (M) in place of M„
and M„in such factors. Similarly, in the c.m. frame we
replace the n and p energies, E„andE~, by E:——,'Ez- in

any factors not contributing to class IV CSB potentials.

oo

f(k, 8)= g (2J+1)sin(2yJ)
2k q

xexp(i5J+i5~J )d,o(8), (2.9)

where the d &0 are Wigner functions. Since the CSB po-
tentials are very small it is a good approximation to treat

A. One-photon exchange

The class IV part of the em spin-orbit force arises
from one-photon exchange between the proton charge
and the anomalous magnetic moment of the neutron.
The photon-nucleon interaction Hamiltonian density,
with the anomalous magnetic moments included, is given
by
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~i,NN
——ep (F, +F, r3)y" A„

max

f(k, g)= g (2J+1)[sin2(yJ+y I )exp(i6&+i5~J)
2k J

(F—', +F,'r, ) ~i"a,~„y,2M
(3.1) 2y em-B]d J (g)+f em-B(k g)

where F, and F, are isoscalar and isovector nucleon
electromagnetic form factors, respectively, and e &0 is
the absolute value of the electronic charge. If we were
to neglect the q dependence of the form factors and
take them to have their q =0 values, where

q=—kf —k, , (3.2)

then we would find V' has the form of Eq. (1.3a) with

vr(r)=— e +n M 1 d 1

4m 4M2 F. r dr r
e

(3.3)

since the neutron anomalous magnetic moment (i~„) is
given by

a„=—1.91=2[Fi (0)F2(0)—Fi(0)F2 (0)] (3.4)

The q dependence of the form factors can be included
by replacing x„in the momentum-space form of Eq. (3.3)
with

2[Fi'(q')F 2 (q') —F
1
(q')F2'(q') ]

For our calculations a simpler form factor was chosen,
which consisted of the momentum-space replacement

1 1 A
2 2q2 q2 A2 +q2

(3.5)

with A=412 MeV fixed to reproduce the proton rms
charge radius. We found the results insensitive to
changes in the form factor. Equation (3.3) contains a
factor (M/E), which is a relativistic correction.

We first address the problem of how to sum Eq. (2.9)
for the one-photon exchange contribution, since the
infinite range of the em interaction causes large J contri-
butions to be important. In practical calculations we
wish to calculate y J using Eq. (2.10) for only a finite
number of J's. For large J the nuclear distortion effects
can be neglected and y J can be well approximated by
replacing RJ(r) and R&J(r) with the spherical Bessel
function jJ(kr). We then find the results'

e

—em-B
J 4' 2M[J(J+1)]' (3.6)

and from Eq. (2.9) using sin(2yJ ) =2y 1 and 5J ——6JJ ——0,

2 sinOfem-B(k g)
4ir 2M ( 1 —cosg )

(3.7)

where the superscript 8 implies that these results are in
first Born approximation only (i.e., no distortion). If yz
denotes the sum of all CSB contributions except y J
then we can subtract some y P terms and add f' to
Eq. (2.9) to obtain

(3.8)

where J,
„

is the largest J included in the calculations.
We typically include all partial waves J = 1, . . . , 5.
Having established this result we can now turn to the
various strong interaction CSB effects which constitute
—N
V J

B. One-pion exchange

The neutron-proton mass difference leads to a class IV
CSB potential when it is explicitly included in the one-
pion exchange term. ' To calculate V' for this case it
is sufficient to consider pseudoscalar coupling for the
pion-nucleon vertex, since in using Eqs. (A2) —(A4) of
Appendix A to obtain V' the nucleons are always on
mass shell and so the results are identical to those ob-
tained with pseudovector coupling. The pion-nucleon
interaction Hamiltonian density we use is then

NN= &.it&ys& —4'0 (3.9)

where g„—= 4rr2Mf NN/m is the pseudoscalar cou-
pling constant and where (g„/47r)=14.4 and m is the
77 mass.

We keep the first relativistic correction and the first
order term in the n-p mass difference and find a CSB po-
tential with the form of Eq. (1.3b) where

iv„(r)=—
2

1 M
2M'

3

M„—M 1 d 1 mr—e
2M ~rdr r

(3.10)

F (q')=
A —m

A —q
2 2

(3.11)

and where A„=1300MeV.

C. One-rho exchange

The n-p mass difference also leads to a class IV CSB
potential in the one-rho exchange term. The rho-
nucleon interaction is given by'

~pNN= —0 gpy"p„+ 2M
r" d~, (3.12)

where g and f are the vector and tensor rho-nucleon
coupling constants, respectively. The coupling constants
that we use are g /4m. =0.55+0.06 and f /g =6. 1

+0.6, which are typical values extracted from low ener-

where (M/E) is a relativistic correction. No form fac-
tor is shown, but in calculations a form factor F„was
applied to the vertices, ' ' where
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gy analyses. ' The uncertainty in the coupling constants,
particularly f Ig, leads to considerable leeway in the
prediction of this CSB contribution.

We have found contributions of both types (1.3a) and
(1.3b). The contribution of type (1.3a) arises from the
vector-vector coupling and has the form

1 d eX—
r dr

—m r —m r' —e

fpg~ 1 (coiH ip )
42r 2M m —m 2

67 P

(3.17)

u (r)=— gp 1 M
4n 4M 2 E

3

M„—M
2M

—m r

rdr r
(3.13)

where m =770+3 MeV is the rho-meson mass. The Eq.P
(1.3b) contribution has vector-vector (g ), vector-tensor
(fpgp), and tensor-tensor (f ) pieces and is given by

where (co
~

H
~ p ) is the p -co mixing matrix element.

Again we have not explicitly shown the form factors in
Eq. (3.17). No relativistic correction has been included
in the above, so for consistency we put ET~2M in Eq.
(2.10) for the p-cg contribution. The mixing matrix ele-
ment (co

~

H
~ p ) has been extracted from data by a

number of groups' with predictions ranging from
—3400 to —6000 MeV . We adopt the former, more
conservative value here, i.e., (co

~

H
~ p ) =3400 MeV .

The uncertainty in this effect is at least 30%%uo. Note that
~ -g mixing does not give rise to a class IV force.

w (r)=—
2

gp
4~

E+3M fp E+M fp1+
2M g 2M g

'+ E. Tao-pion exchange

3
1 M Mn M 1 d 1 —m y

X P

2M~ E 2M r dr r

(3.14)

Relativistic corrections have been included (and vanish if
we take E~M). No form factor is shown, but again in
calculations a form factor was applied to the ver-
tices, ' ' where

A —m
F ( q

2
)

p p

A'+q'
P

(3.15)

and where A =1400 MeV. These results [Eqs. (3.13)
and (3.14)] differ from those reported by Gersten. From
the values of the coupling constants it is clear that this
contribution is dominated by the tensor-tensor piece, i.e.,
the (f Ig ) term in Eq. (3.14).

D. Mixed rho-omega exchange

The p -co mixing part of the OBEP also has a class IV
CSB contribution, the omega-nucleon interaction is the
isoscalar equivalent to the isovector rho-nucleon interac-
tion, i.e.,

'Y ~„+ (3.16)

We use the coupling constants' g /4~=8. 1+1.5 and

f,„lg„=0.14+0.2. These coupling constants are not at
all well known. ' The form factor for the omega-
nucleon vertex' ' is F„,which is also given by Eq.
(3.15), but with m —= omega meson mass =783 MeV and
A„=1500MeV replacing m and A .

The resulting class IV CSB is of the Eq. (1.3a) type
with'

The class IV CSB contribution from the two-pion ex-
change potential (TPEP) has its origins in the n-p mass
difference. The size of the effect is smaller than might
otherwise be expected since the crossed and uncrossed
two-pion exchange diagrams tend to cancel. ' There are
at least two ways of estimating the effect. One approach
consists of evaluating directly the CSB contribution from
both the crossed and uncrossed pion diagrams using the
approach of Partovi and Lomon (PL). An alternative
approach is to study the exchange of the delta, which is
a scalar-isovector meson which plays the phenomenolog-
ical role of two-pion exchange in OBEP model calcula-
tions. ' These approaches give similar results.

We begin with an evaluation of the two-pion exchange
graphs of Figs. 1(d) and (e). The charge symmetry
breaking can arise from the n-p mass difference, or in
principle from possible charge dependence of the cou-
pling constants.

Allowing the magnitude of the m.NN coupling to vary
with the nucleon charge does not change the form of the
vertex operator, and thus produces no class IV force.
[For example, a y5 acting at each vertex of Figs. 1(d)
and (e) gives no charge-asymmetric (o, —o 2)-type term. ]

Thus we consider this influence of the n-p mass
difference. The masses appear in the evaluation of the
initial and final spinors and in the intermediate state
Feynman propagators. We shall show below that the
latter effect produces no class IV force. Thus we are left
with the mass dependence of the n and p spinors.

The approach of PL is employed to obtain this first es-
timate of the influence of two-pion exchanges. In PL the
y5 form of the ~NN vertex function is used. The prob-
lem involving anomalously large s-wave pion-nucleon
scattering does not arise here, since we shall be examin-
ing isovector terms.

The evaluation of Figs. 1(d) and (e) proceeds by apply-
ing the procedure of PL with one modification. The spi-
nors representing the initial and final states are charge
dependent:
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t3 du
u(p, M)=u(p, M) ——(M„—M ) (p, M)

Thus we need only state the results. The class IV part of
the TPEP VTpE has contributions of both types given
in Eq. (1.3). Define the radial function of the term of
type (1.3a) as UrpE(r) and that of type (1.3b) as wTpE(r).
Then

(M„—M )
UTpE(r) = g [4I,(r)+ 5Iz(r)

Sm M3

—10I&(r)+4MrI7(r)],

(3.18a)

(M„—M )
WTpE(r)= g I4I, (r)+4[I~(r) —I3(r)]}8~

(3.18b)

where I„(r)with n = 1, . . . , 7 are integrals defined by

Ii(r)= f f dggdpD[1+rE(g )]e
0 0

I2(r)= f f ding
' dpD[1+rE(g)]e '~'"(I —2g),

0 0

I3(r)= f f dggdp f dgD[l+rE(g g )]e
1 1 (3.19)

I4(r)= f f dgdpg'~ f "dgD[l+rE(g' )]
—E(g' )r~e

u(p')y"u(p) —u( —p')y"u( —p)=0, so there is no class
IV contribution from Fig. 1(d). Similarly the term of
Fig. 1(e) behaves as

~, —g (&~ ).(r2)~ (r~ —r2)3(~1)g (~2)rn (kl —k2) (3.23)
n, m

and has no class IV piece. Thus the charge dependence
arising from the dependence on intermediate nucleon
masses is not relevant here.

It should be noted that the influence of intermediate
6's is not included here. These are absent in the treat-
ment of PL, which nevertheless gives a good accounting
of the relevant T1 ~ 72 terms of the N-N force. A more
detailed evaluation using a more modern force would in-
clude the influence of deltas. However, the small nature
of our TPEP results —combined with the knowledge
that the ~, .v.

2 terms of PL are reasonably well treated—
leads one to suspect that any TPEP model constrained
by the phenomenology of the v1.v2 term would have
similar results.

F. Short-range quark e8'ects

The one gluon exchange potential (OGEP) between
quarks acquires charge dependence via the mass
differences between quarks of different flavor. Here we
are concerned only with the possible influence of the
up-down (u-d) mass difFerence. A straightforward eval-
uation of the OGEP gives a charge-dependent term
H QGF of the form

I (r)= f f dgdpg ' f D[l+rE(g' )]
rv ~s Am

HooE —— A, , A2X (rxp)t3,
2m T m

(3.24)

X e -"«""(1—g)

I7(r)= f f dgdp [I+rE(g )]e
o o (1—g)

where I6(r) is not needed here and where

where m =(m„+md )/2, Am = (m„—md)/2, X =(s,
—s2), and t3 =(r, —r2)3. Note that HooE is not the en-
tire one gluon exchange term, but is only the term that
yields a class IV force at the nucleon level. The term of
(3.24) may be compared with the conventional hyperfine
interaction, H &ATE, with

D =D(g, P) = (1—g) '(1 —P')
—1/2

(3.20) 8m s1's2
H~oHE= cz, X, X2 fi(r) .

m1m2
(3.25)

E(a)=2D'i p + l— (3.21)

These have been evaluated and the results presented in
Ref. 9. Since the effects are small we do not include
TPEP terms in Sec. IV.

Next consider the influence of CSB terms arising from
the charge dependence of the intermediate propagators.
%'e claim that the mass dependence of the propagator
serves to moderate the strength of the graph, but not to
modify the spin dependence. This may be verified by
considering Figs. 1(d) and (e) directly. The relevant am-
plitude for Fig. 1(d), Afd, can be written as

~d rl r2(+I r2)3(kl I 2)rl r2 (3.22)

where k is the 4-momentum of the virtual meson and
k =k"y„. Equation (3.22) is to be evaluated between
spinors u (p') and u (p') for nucleon 1 and u ( —p') and
u( —p) for nucleon 2. It is straightforward to show that

There is an additional relevant term which arises from
the well-known Thomas precession effect. Suppose the
confining potential is of the form V„„f..

Vconf =
2

2
(3.26)

A spin-orbit force, which depends on the quark mass,
arises from the acceleration induced by V„„f.The term
leading to a class IV NN interaction is

H,„= A, A2X (r)&p)t3 .iv p b, m

4m m
(3.27)

Typical values of the various parameters may be ob-
tained from the literature. In particular md-m„ is con-
strained by the n-p mass difference.

The influence of the quark interactions terms (3.24)
and (3.27) can be evaluated in models which incorporate
quark effects in computations of the short range N-N
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force. Here we employ a prescription in the literature
in which one replaces the short-distance NN wave func-
tion by a six quark state. The six quark states are given
by

6

l'PM ~6 /1+ (r;+s ) S'o~6, ,
i=1
6

I'Po&6 =no& r

where
~

'So )6 and
~

S& ) 6 consist of six quarks
confined in a single harmonic oscillator potential. The
spatial wave function is completely symmetric: [6]. The
constants go and g, are introduced so that the states are
normalized to unity. The components

~
PM ) 6 andJ

~

'Po ) 6 appear with amplitudes constrained by con-
ventional NN wave functions evaluated at longer range.
The resulting value of y& is at most —,', of the dominant
OPEP term. A more elaborate computation using the
resonating group method gives results that are even
smaller.

G. Additional effects

To complete this section we briefly address other CSB
effects. The simultaneous exchange of a photon and a
pion will lead to a CSB contribution. While it is not ex-
pected to be important, since it should be of the same
order as the CSB part of TPEP, it should be estimated in
the future. The charge dependence of the exchange of a
pion and a rho (and other meson pairs) is of very short
range and hence is expected to be even smaller. The
influence of pion production is also expected to be unim-
portant since the imaginary parts of the phase shifts are
relatively small at our energies.

There is no class IV CSB from charge dependence of
meson-nucleon coupling constants (at least in the
OPEP), since one needs different operators on the two
nucleon lines to get such a potential (see, e.g. , Fig. 1).
There is no CSB contribution from g-~ mixing since

only a class III potential results. Similarly, the one-
photon exchange coupling to the nucleon magnetic mo-
ments on both nucleons gives rise to no class IV CSB.

IV. NUMERICAL RESULTS

Now that the relevant class IV CSB potentials have
been obtained, we calculate the various contributions to
the spin singlet-triplet mixing angles yJ. These are ob-
tained using Eq. (2.10) for 1 &J &(J,„=5)with the ap-
propriate form factors included.

In our calculations of yJ the distorted radial wave
functions R [see Eq. (2.10)], are solutions of the
Schrodinger equation for the Reid soft core potential.
For J) 3 it is a good approximation to use plane waves
in Eq. (2.10) for E &800 MeV. For the J=L =1,2 par-
tial waves needed, the potential yields real phase shifts
that agree with those of Ref. 14 to typically 10—15%%uo up
to 477 MeV. The agreement is still reasonable at 600
MeV, but less so at 800 MeV. Inelastic effects have been
neglected here (see below). Some uncertainty is intro-
duced by making a particular choice of distorting poten-
tial. There have been some recent calculations of y J and
b, A (8) by Ge and Svenne, who used the Paris poten-
tial. The sensitivity to the potential of the long-range
pion and photon terms should be considerably smaller
than that for the short-range terms. A detailed study of
sensitivity to the distorting potential has yet to be car-
ried out.

Once the mixing angles (yz) have been determined it
remains to calculate b A(0) and hence b, A at the ener-
gies of interest. To calculate b, A (9) we used a program
provided by Knutson after making modifications to al-
low the inclusion of em effects for all J according to Eq.
(3.8). CSB contributions with the form of Eq. (1.3a) are
generally weaker than those of Eq. (1.3b), since the
strong phase shifts are repulsive for J =1 and attractive
for J =2. As a result there is cancellation for the former
potentials and addition for the latter [due to the addi-
tional factor of ( —1) in yJ]. This is part of the reason

TABLE I. The spin singlet-triplet mixing angle parameters y J are given (in deg) for
L =J=1, . . . , 5 at 477 MeV. The vr, y, p, and p-co contributions and their total are given. In each
case the upper results were calculated with form factors and nuclear distortion as described in the
main text. These numbers were used to calculate AA. The lower numbers are exact analytic results
calculated according to Appendix 8 and include no form factors and no distortion.

y'2

r3

Xs

3.72 X 10
1.41 X 10- '

—7.02 X 10—'
—6.82 X 10—'

3.90X 10
3.95 X 10

—2.46 X 10
—2.46 X 10

1.60 X 10
1.60X 10—'

y

3.27 X 10
1.43 X 10-'

6.19X 10—'
8.23 X 10

4.98 X 10
5.82X10 '

4.17X 10-'
4.51 X 10—'

3.51 X 10—'
3.68 X 10

P
5.97 X 10-'
9.66 X 10-'

—1.12 X 10
—1.54 X 10—'

2,21 X 10
2.75X10 '

—4.90X 10—4

—5.44 X 10—4

1.02 X 10
1.08 X 10-4

p-co

2.74 X 10—'
2.72 X 10

5.11 X 10-'
845X10 '

1.43 X 10-'
2.29 X 10

4.10X 10—'
5.89 X 10—'

1.10X 10- '
1.48 X 10-'

Total

1.03 X 10
6.53 X 10-'

3.16X 10
8.32 X 10

1.05 X 10—'

1.23 X 10

2.07 X 10
2.58 X 10-'

5.23 X 10-'
5.44 X 10



36 CHARGE-SYMMETRY BREAKING IN NEUTRON-PROTON. . . 1963

TABLE II. Listed are the laboratory kinetic energy E&,b, the c.m. angle (in deg) at which the
analyzing power goes to zero 8, , and the separate contributions from ~, y, p, and p-co exchanges to
hA (X10 ). Also shown are the total theoretical predictions together with the one experimental re-
sult. The small and somewhat uncertain two-pion exchange and quark contributions are not included.

Ebb
(MeV)

188
350
477
600
800

L9,

(deg)

96
72
70
70
70

7
42
43
34
32

8
3
5

9
14

1

6
8
9

11

p-s

5
—3
—6
—5

1

Total

21
48
50
47
58

Expt.

37+17+8

that the em contribution is not large compared with the
shorter range strong interaction effects.

In Table I we give the calculated values for the m, y,
p, and p-co contributions to yj for J=L =1, . . . , 5 for
the case of 477 MeV. The upper results include the
form factors as described in Sec. III and for J =L =1,2
nuclear distortions were included using the Reid soft-
core potential as has already been discussed. These
upper numerical results were the ones used in the calcu-
lation of b, A (8) and hence b, A. The lower results in the
table have been included for comparison and do not in-
clude any form factors or distortion. These were calcu-
lated using the exact analytic expressions for the yJ s in
Appendix B. The results of Appendix B have been used
to perform a partial check on our numerical calculation
of the yJ s in the limit of no distortion and no form fac-
tors. The agreement was typically better than one per-
cent. As is evident from results of Table I the effects of
form factors and distortion are most pronounced for
L =J=1 and become progressively less important for
the higher partial waves.

Our results for b, A ()&10 ) (i.e., the difference in n-p
analyzing powers at the zero-crossing angle 8, ) from
OPEP, em one-rho, and rho-omega mixing terms are
shown in Table II for various energies of interest. Also
shown are the total predictions for b, A (X 10 ) and the
TRIUMF measurement of hA at 477 MeV. We find
good agreement between our result and the experimental
value. The em spin-orbit contribution (one-photon ex-
change) was found to have a fairly small effect at the
analyzing power zero-crossing angle 0, when realistic
form factors and distortions are included. The remain-
ing long-range CSB contribution from the OPEP is
found to play the dominant role. The shorter range p
and p-co exchange contributions tend to cancel and are
less important. The pcs results difFer slightly from those
in our Ref. 9 due to an error in that work. The very
small and somewhat uncertain TPEP and quark contri-
butions have not been included. In Fig. 2 the various
contributions to AA(8) are shown for the various ener-
gies of interest. From these curves it is apparent that
the photon and p-co mixing contributions change sign
quite near the zero-crossing angle in all but the 188 MeV
case, which suppresses these effects.

There are a number of important sources of uncertain-

ty in the predictions. The most obvious of these are the
uncertainties in the p and co coupling constants and in
the p-co mixing matrix element. The uncertainties in the
p and p-co mixing terms are at least 30%%uo. Fortunately,

is dominated by the relatively well understood
OPEP term. There is a small dependence of our predic-
tions on the exact nature of the form factors used. For
example, if the p-vertex form factor is A =1300 MeV as
in the full Bonn model (cf. 1400 MeV in the OBEP mod-
el), ' ' then this causes a variation of —1)&10 in b, A

from p, and + 0.5&&10 in AA from p-co at 477 MeV.
Another source of uncertainty is in the exact form of the
nuclear distorting potential used, as was previously dis-
cussed.

The choice of the phase shifts used to calculate A (8)
and b, A (8) can also cause some variation in the predic-
tion for AA. In our calculations we used the phase
shifts of Amdt et al. ' and made linear extrapolations to
the energies of interest. In particular, for 188 and 350
MeV the 1983 n-p energy-dependent phase shifts were
used, while for the higher energies at 477, 600, and 800
MeV the more recent 1987 n-p single-energy analysis
phase shifts were used since new high energy data were
included in these. At 477 MeV when we use the 1983
phase shifts rather than 1987 we find essentially identical
results, i.e., the changes are + 2, —1, + 0.3, and —1

for ~, y, p, and p-~ respectively. The changes were
somewhat larger when 1977 phase shifts were used. The
y and p-co predictions are sensitive to changes in the
analyzing power zero-crossing angle, since these contri-
butions also change sign close to this angle.

The results at 600 and 800 MeV have additional un-
certainty over lower-energy results since only first-order
relativistic corrections have been included in the CSB
potentials (and not at all for p-co mixing), and since
inelasticities have been neglected in this work. For our
calculations the inelasticity in the D2 partial wave is ex-
pected to be most important since it is relatively large at
high energies and since it enters into the y2 contribution
to f (k, 8) through Eq. (2.9). Following Ref. 14 (1983)
we have exp(i62)~&gexp(i52), where g&1 when
inelasticity is included. We find for 'D2 that &7)=0.95,
0.86, and 0.84 at 477, 600, and 800 MeV, respectively,
using the 1987 phase shifts. ' From Eq. (2.9) we see that
we can write y2~&gyz since the yJ are small. Thus
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we can test the sensitivity to this inelastic effect by modi-
fying y2. We find changes to the prediction for AA due
to the OPEP (for example) of —1.5, —4, and —5, re-
spectively. This then is an indication that inelastic
effects are significant above about 500 MeV, but that
they are probably not too large.

We study the inAuence of strong distortion and
scattering phase shifts in Fig. 3. We show three curves
for the pion contribution to b, A(9) at each of three

different energies. The first curves (1) for each energy
are the pion results already given in Fig. 2, while for the
curves (2) we have performed the identical calculation
with no strong distortion of the radial wave functions
[i.e., spherical Bessel functions are used in Eq. (2. 10) for
) J]. The third set of curves (3) are calculations of
b, A (0) which include neither radial distortion nor any
phase shifts in Eq. (2.9) for f (k, 0) (which is then purely
imaginary). A comparison of curves (1) and (2) for each
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FIG. 2. We show the contributions to AA (0) at the various energies of interest from ~, y, p, and p-co exchanges as a function of
the c.m. scattering angle 0. The vertical lines show the angle for which the analyzing power vanishes.
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energy shows that the omission of the radial distortion
has had a signi6cant effect, but that the curves are quali-
tatively similar. When phase shifts in f (k, O) are then
neglected, we see from a comparison of curves (2) and (3)
that the predictions are completely different. Thus we
see that the phase shifts play a very important role as to
a lesser extent does the radial distortion. Plane-wave
treatments appear unreliable.

Finally, we have examined the question of whether or
not it was sufhcient to set J,„=5in the partial wave ex-
pansion for the m, p, and p-co contributions. We really
need only consider the ~ contribution, since the other
two arise from much shorter-range forces. In Fig. 4 we
show the change in the rr contribution to b, A(9) at 477
MeV when we use J,„=8 rather than J,„=5. It is
seen that the difference is fairly small everywhere, and is
almost negligible at the analyzing power zero-crossing
angle. At 477, 600, and 800 MeV the changes to the n.

contribution to b, A(0) at the zero-crossing angle (i.e.,
changes to the OPEP part of b A) are 1, + 1 and + 2
(X 10 ), respectively. At 800 MeV the changes in the
OPEP contribution at some angles is =10 (&&10 ), in-
dicating a need for J,„&5 at this energy. A conserva-
tive approach would be to use J „&5 for energies
above say 400 MeV.

As a result of inelastic effects, the possible influence of
relativistic dynamics, and due to an increased need for
the inclusion of higher partial waves at higher energies,
we estimate a further uncertainty of the order of 25%
for our 600 and 800 MeV results in addition to the un-
certainty in our lower energy results.

V. CONCLUSION

FIG. 4. The m contribution to AA(0) at 477 MeV forJ,„=8and J,„=5 in the partial wave expansion.
We have given a reasonably complete description of a

formalism which allows the computation of CSB effects
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in neutron-proton elastic scattering. In particular, we
have shown that it is possible to understand the recent
nonzero measurement of the n-p analyzing power
difference at TRIUMF (Ref. 8) in terms of electromag-
netic interactions, one-boson exchange potentials, and
the two-pion exchange potential. Quark effects were also
considered and found to be very small. While the agree-
ment between prediction and experiment is rather satis-
fying, it should be remembered that the TRIUMF result
is only two standard deviations from a null effect. Clear-
ly there is a need for more accurate experiments to be
carried out in the future. It is also important to test our
understanding at both lower and higher energies against
measurements from ongoing and planned experiments.

The work reported here has been largely exploratory
and there are potential improvements in a number of
areas. Desirable future theoretical developments include
a detailed study of the effects of using different nuclear
distorting potentials, an evaluation of the ~-y CSB con-
tribution, a fully relativistic extension of the formalism
described here, and a means of including inelastic effects
at higher energies.

We are only interested here in the class IV contributions
to V(r), i.e., those that have the form of Eq. (1.3).

Equations (A2) —(A4) are used to obtain the V' (r)
from a particular Feynman diagram. The contribution
to T&; [as defined in Eq. (A2)) arising from some V' (r)
is given in the DWBA by

Sr,,
= f d rg, '*(r)V' (r)1t,'+'(r), (A5)

where the distorted waves g contain spin and isospin in-
formation. They are determined by the radial wave
functions R (r) of Eq. (2.10) and the experimental bar
phase shifts. '

APPENDIX B

As a partial check on numerical calculations it is use-
ful to compare analytic and numerical calculations of
the mixing angles (y~) in the limit where nuclear distor-
tions of the radial wave functions are neglected. In this
limit the radial wave functions Rz and R~z of Eq. (2.10)
are replaced by the spherical Bessel functions jJ. We
will use the identity
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do =
I f

fi
(A 1)

where i ==initial state, f—:final state, M—:average nu-
cleon mass,

APPENDIX A

The potential V' from a particular boson exchange
Feynman diagram in N-N scattering is obtained by tak-
ing the appropriate invariant amplitude' JM&; and mak-

ing a suitable nonrelativistic reduction. The c.m. cross
section is given by

where

(B1)

x —= 1+ fthm

2k

J
AJ(x) —= J+1

1/2

[xQJ(x) —Qi, (x)],

(B2)

(B3)

and where Ql are Legendre functions of the second kind.
For simplicity no form factors are included in the fol-
lowing results.

The result for one-photon exchange has already been
given in Eq. (3.6). For one-pion exchange we find

2

yJ ——( —1)
4~

2 M„—M
Aq (x ), (B4)

where x„=1+m /(Zk ). This result follows directly
from using Eqs. (Bl), (2.10), and (3.10). Similarly the re-
sult for one-rho exchange is

2
gp J E+3M fp
4m' 2M g

fg; —— JR~, ———(2' ) Tg;2mE ' 4
(A2)

and Ez. =(total) c.m. energy=2E with E —=c.m. energy
per nucleon. The reduced T matrix is related to the re-
duced potential V(k&, k, ) in first Born approximation by

Xr Xs V(kg, k;)XsXr ='rg;, (A3)

2

+ E+M fp
2M g

2 M„—M
M E 2M

Aq(x ) .

+ I

2

(B5)

where Xz- and gs are Pauli spinors for isospin and spin,
respectively. The coordinate space reduced potential
operator V(r) is defined by

V(k~, k, )—= f d r e V(r)e ' . (A4)
(27r )

fpg
4m.

k (coiH ip ) [AJ(x ) —AJ(x )] .m' —m'

(B6)

Finally, for the p-co mixing contribution we find the non-
relativistic result (i.e., E~M}
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