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Protonium and baryonium states with the Graz potential
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Atomic and nuclear complex energy (Gamow) states of the pp system are calculated with the
Graz potential. The Coulomb force is included exactly (numerically), separate channels and exper-
imental masses are used for pp and nn, and absorption is included via a phenomenological annihi-
lation channel. Significant model dependence of the n =1 'So protonium level is found, as is a
possible systematic difference among most calculations and recent experiments. Bound and reso-
nant states of baryonium are found in a number of charge and isospin channels, some with widths
as narrow as 16 MeV. Unphysical zero width states are also found and analyzed.

I. INTRODUCTION

The proton p and the antiproton p, having opposite
quantum numbers and charge, can form bound states.
Yet bound states with quantum numbers of zero can
spontaneously annihilate into the vacuum and these
states are all unstable. When most of the binding arises
from Coulomb attraction the states are those of an exot-
ic atom of Bohr radius 58 fm and binding energy 12.5
keV, known as "antiprotonic hydrogen" or "protoni-
um. " When most of the binding arises from nuclear at-
traction, the states are those of an exotic nucleus of ra-
dius 1 —2 fm and binding energy in MeV's, known as
"baryonium. " Knowledge about both kinds of states is
limited since they do not occur naturally; there have
been few p facilities to study them, and they annihilate
rapidly.

The unequivocal observation of low-lying protonium
states is a challenge to the experimental art only now
yielding to the intensity of the Low Energy Antiproton
Ring at CERN. Although annihilation causes the yields
to be too low to observe a full cascade of x rays down to
the n =2 or 1 protonium shells, it is rather certain that
the individual L lines at 1.71 keV (Ref. 1) and the E
lines at 9.4 keV (Refs. 2 —4) have been seen. Studying
this exotic atom is more than a technical challenge, it is
a good way to learn about the largely unknown pp
strong interaction. Specifically, the observed shift of the
atomic levels upwards to less bound energies —in spite of
the exceptionally strong attraction of the pp nuclear
force —can be caused by the presence of baryonium lev-
els far below the atomic ones, or by very strong absorp-
tion. Indeed, some researchers have concluded that
there must be baryonium present since the shifts are so
large.

The existence of baryonium states is controversial
since the pp potential —or even the limits to a potential
description of particle-antiparticle interactions —is not
well understood. It is known that taking the G-parity
transformation of the meson-theoretic, nucleon-nucleon
(NN) potential yields an NN potential with significantly
greater attraction (=2 GeV) than the NN one. Conse-
quently, since the NN potential is strong enough to sup-

port a single strong bound state, the deuteron, the more
attractive NN potential should be able to support even
more. Indeed, many works, ' possibly beginning with
that of Shapiro, ' have found many states of baryonium.

The problem in the preceding logic is that the meson-
theoretic potentials are —at best —valid only at medium
and large distances, and they fail to describe the short
ranged ( (0.2 fm), and important, annihilation. Calcula-
tions including annihilation sometimes find that it either
eliminates the bound states, ' or gives them such large
widths as to make them barely, if at all, observable. ""

Since annihilation is a multiparticle, short ranged, and
high energy process, elementary quark degrees of free-
dom within the baryons may be excited, and it is not
surprising that much attention is being paid to describ-
ing annihilation with quantum chromdynamics (QCD),
or quark bag models of QCD. "' ' In fact, if baryoni-
um is an elementary two-quark —two-antiquark state
(2q, 2q), then it is formed after a qq annihilation, and the
potential approach [which models it is as a NN, i.e., a
(3q,3q) state] may be doomed to failure. Likewise, if
baryonium is a (2q, 2q ) state, it would be a doorway for
the annihilation process, and a meson approach to an-
nihilation (i.e., the rearrangement of six quarks without
annihilation) may also fail.

Even if the NN potential exists and is known, the type
of calculation presented in this paper, an accurate deter-
mination of the NN atomic and nuclear eigenenergies, is
also an active research problem. Inasmuch as these
states decay in time, they are not conventional bound
states and their calculation requires quantum mechanics
to be extended to complex energies (whether the energy
is complex because the potential is complex or because
there is an explicit coupled channel is not crucial; in ei-
ther case we are trying to model a many-body, coupled-
channels, time-dependent phenomenon with a time-
independent, one-body Schrodinger equation). Some-
times these states are called "unstable" bound states,
sometimes Gamow or resonant states, ' ' sometimes
quasistationary states, and sometimes complex-energy
states. Regardless of the name, many of the usual
prescriptions regarding normalizations, orthogonality, ei-
genvalues, and Green's functions need reinterpretation
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for both the single channel, and for coupled-
channels ' cases.

While the possibility of directly observing narrow,
baryonium states is still raised, '" the signature is uncer-
tain; e.g. , they can also be interpreted as unusual,
meson-meson resonances. In contrast, protonium states
have a clear experimental signature, and the widths and
shifts (from pure Coulomb energies) of their levels are a
direct measure of the nuclear interaction —and possibly
of the existence of baryonium. We study both protoni-
um and baryonium with the view that a serious study of
the protonium states is required before baryonium states
can be predicted.

Recently, the group at Graz, Schweiger, Haidenbauer,
and Plessas (SHP), produced a semimicroscopic NN
potential. It is a multiterm, nonlocal, separable interac-
tion, appropriate to a Schrodinger equation with sepa-
rate coupled channels for pp, nn, and annihilation (more
details are given in the theory section). Insofar as the
Graz potential has a good theoretical pedigree, a realis-
tic description of channel coupling, and an excellent fit

to scattering data, it promises to have realistic and en-

gaging bound state properties; we study them and report
the results here. The nonlocality and channel coupling
of this potential require some nontraditional techniques
to solve for its combined Coulomb plus nuclear bound
states. These techniques are now available with the
momentum space codes BOPIT (Ref. 20) and
LpoTBs, ' ' and we make the first application of the
latter code (which can handle coupled channels) to an-
tiprotons.

The original motivation for our calculation was to test
these rather new theoretical tools on antiprotons and
compare the results obtained with the Graz potential to
those obtained by other researchers ""' using
different potentials and different calculational tech-
niques. (This approach was helpful in the analogous
K p problems ' ' where it led to improvements
the technique, ' suggested a reinterpretation of experi-
ments, and led to the development of the new KN po-
tential. ) In the course of our study, its timeliness was
heightened by the appearance of experimental results on
protonium. ' ' While the experimental results appear
to be converging there are still large uncertainties. See-
ing that the Graz potential is probably the best of the
potential models available, and it is still uncertain
whether a potential model can be successful, broad com-
parisons of this model with other models and all data are
given.

II. THEORY

I
NN, I =0&,

I
BB,I =0& .

With no interaction within the annihilation ( A) chan-
nels, T(BB~BB)= V(BB~BB)=0, the coupling to
these channels is equivalent to an energy-dependent po-
tential in the elastic channels:

Her e h p denotes the free Hamiltonian in the annihilation
channels, IL,L', JJ are angular-momentum labels, and
4m, „ is the annihilation-channel threshold energy
(chosen to be —300 MeV, i.e., mji =788 MeV, an aver-
age value for p and co).

To include the neutron-proton mass splitting and the
Coulomb force, SHP transform to the charge basis,

I
1 &=

I
pp&

V11 V22 T( V + V )& V12 V21

(3)

(4)

and fit all available elastic, charge exchange, and annihi-
lation cross section data below 150 MeV for (L &2,
J &3). Their final result is a nuclear potential contain-
ing strong and annihilation parts, each part fit to mul-
titerm separable potentials:

Vnucl, LL' ~ann, LL' + ~s, LL'

N

~s, LL' g I gLi &~ij &gI. 'j

V~,Ji= la&&JL&gi I

with each g„(p) the ratio of polynomials. In this nota-
tion, the NN pair is in a state with coupled, orbital an-
gular momenta (L',L)=(L,L ), and total angular
momentum J. The 88 pair into which NN annihilate is
spinless and so must have total (now equal to orbital) an-
gular momentum J; e.g. , the 'Sp fermions couple to the
'So bosons, yet the 5, fermions couple to 'Pi bosons (as
do D, fermions).

Inasmuch as SHP do not give directly calculable ex-
pressions for their potentials, we provide some details
here. We follow their notation except for a slight
difference in normalization: '

I r

&pl V Ip'&= f d rd r'
3,2&rl V lr'&

(2~) ~ (2m. )

oo

g (2L + 1)VI (p, p')PL (cose)2' L P

V „„LI. ——V~ Jl. (E —b m 1 g —h p J + i c ) Vg JI.
I If I ~ —1 I

(I =0, 1) . (2)

A. Evaluation of the Graz potential yGraz—
2

The Graz potential originates from the Paris,
meson-theoretic NN potential ' G parity transformed
to obtain the elastic (real) part of the NN potential. The
inner region (r &0.8 fm) is set to zero and annihilation
is included by coupling the nucleon (N) channels to two
boson (B) channels for each isospin:

IJ(E)= f dp p
gJ'(p)'

m~(E —b,mi~ —p /mii+ic)

An explicit evaluation of (2) yields:

V,„„IL,(k, k')= ,'mxJI vJI gl'. (k)g—L, (k')mjiIJ(E),

(10)
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Although it is possible to evaluate IJ(E) analytically
(presumably what SHP do), we use numerical integration
and check it against the analytic expression (we get
eight-place precision for 32 Gauss points). For real en-
ergy E

a( )2

IJ(E)= j dp p
kg —p +lc

gJ p'( )'

o (k„—p +iO)(k„~p)

where we have introduced kz, the on-shell momentum
in the annihilation channel:

kz ——++ms(E —hm &z ) =++ms(E +300 MeV) .

(12)

If E ~ Am &z, the annihilation channel is closed, there is
no zero possible in the denominator in (10), the i E

prescription can be ignored, and V,„„ is real. If
E &Am&z, the channel is open, we take the positive
square root for k„and separate IJ into delta function
and principal value parts:

energies with the following prescription for k ~: If
k~ &0, the annihilation channel is open and the two bo-
sons are in a resonancelike state; we therefore choose the
sign in (12) which gives kz a positive real part. If
kz & 0 (E & —300 MeV), the annihilation channel is
closed and the two bosons are in. a boundlike state; we
therefore choose the sign in (12) which gives kz a posi-
tive imaginary part. We thus exclude the possibilities of
the BB system being a negative energy virtual bound
state (Imk„&0), or a positive energy bound state
(Imk„~O); these poles of the T matrix are of less exper-
imental consequence.

Although (14) looks like the separation of the Green's
function into delta function and principal value parts,
that is true only for real E's. For complex E, the first
term is that obtained from Cauchy's theorem being ap-
plied to the pole of the Green's function (denominator)
in (10), while the subtraction in the second term (there to
implement the principal value subtraction for real ener-
gies) eliminates double counting the pole contribution.
The apparent imaginary part turns real as the annihila-
tion channel closes and kz ~+i K.

B. Complex energy states for coupled channels

We solve the Coulomb plus nuclear problem exactly
(in a numerical sense) for protonium and baryonium
states (be they Gamow, resonant, unstable bound, etc. )

by extending the momentum space code LpoTBs (Refs.
21 and 22) to permit searches in all four quadrants of the
complex momentum plane. This technique looks for
solutions of the Lippman-Schwinger equation (without
the homogeneous, or plane wave, solution)

T)] T)2 V))G) V)2G2 T)] T,2

(16)
T~) T22 V2) G ) V22G2 T2) T22

(13}

The annihilation channel manifestly produces a complex
and energy-dependent potential. The principal part in-
tegral is evaluated numerically with the Haftel-Tabakin
procedure:

IJ(E)= —,'i hark„gJ'(k„)—

[p gJ'(p} —k„gz(kw ) ]+ dp
0

(14) where G, is the free Green's function for channel i. The
requirement of a nontrivial solution to (16) reduces to a
search in the complex energy plane for the zeros of the
determinant:

To search for complex eigenenergy, baryonium states,
we must analytically continue the Graz potential to
complex energy. Whereas the potential (and the Green's
functions of subsection B) depend on momentum, we
must also continue into the complex momentum plane.
Given a complex momentum k~+iki it is easy to deter-
mine the complex energy as

det[1 —V(E)G(E)]=0 . (17)

This is the same condition as searching for the poles of
the coupled channels T matrix T =(1—VG) 'V, with
the poles arising from the denominator, not the numera-
tor. (The poles of the numerator V are the "potential"
or "fixed" poles and are of less appeal since they are sen-
sitive to details of the potential model and not particle
dynamics. )

The momentum space equivalent of choosing bound-
ary conditions in coordinate space is specifying Green's
functions and their singularities. For real energies, ' we
take the Green's function for channel i as:

Ez +iEI = (kR —ki +2ikz ki }/2m

[but note that the inverse, e.g. , (12), has ambiguities).
Seeing that normal bound states of negative, pure real
energy occur on the positive imaginary axis k0 =+i K,
we continue them into the second quadrant of the com-
plex k plane in order to produce decaying states with a
negative EI. Resonances, normally occurring right
below the real positive energy axis, continue into the
fourth quadrant of the complex k plane and are also de-
caying states.

The basic definition of IJ (10) can be evaluated direct-
ly (numerically) for complex energies —yet not for the
important case of E approaching the positive real axis
from above. We analytically continue (14) to complex

'(p
l

Gi
l p ~ = (E + b,M &, +i E —p /2p, ) (18a)

= P (E + AM „—p 2/2p, )

—i m5(E + b,M ),. —p 2/2p. , ), (18b)

with p, the reduced mass in channel i, and AM&; the

2 gJ pQ( )2

I~(E)= —,'i~k„gj'(k„) +P f dp p
k~ [E)' p'—
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difference in total mass from channel 1. If channel i is
open (i.e., we are at positive energies), the delta function
part of (18b) contributes an imaginary part to G, and the
"eigenenergies" satisfying (18) will be complex num-
bers —even if all potentials are real. As discussed in the
preceding section, the generalization of (17) for complex
energies will be of the same form, with the delta function
part continuing into the pole term contribution and the
principal part integral containing a subtraction of the
pole term.

The momentum-space Coulomb force is included with
the Kwon, Tabakin, and Lande procedure' ' ' in which
the Coulomb part of VI& contains an exact "correction
term" along the diagonal to remove the singularity at
k'=k. For example, when the integrals are replaced by
sums over X grid points p and weights 8', the nondi-
agonal potential is proportional to the second kind of
Legendre function (the one singular at k =k'):

Ze
V, L (k, k ) =—,QL (zkk ),

k' +k
kk' krk

(19)

The equation we actually solve is the matrix form of
(17),

The diagonal part of the Coulomb potential now con-
tains the "correction" to remove the contribution from
the p =p„singularity:

p')I0 L, zp p

c,I. pm &pnN V ( )

PL(z „)
(20)

I~ „+VL, '(p, p„)D, (p„)
det 2&

VL (p,p„)D&(p„)

VL (p,p„)D2(p )

& „+VL'(p, p„)D,(p„) (21)

where D; are weighted Green's functions.

III. RESULTS

A. Protonium states

Exact solutions for the complex-eigenenergies states of
protonium are given in Table I and Fig. 1 for angular
momentum +'I.J ='So, and in Table III for 'P, . The
results for principal quantum numbers n = 1,2, 3 are
presented as AE, the complex energy shift from the non-
relativistic, point Coulomb (Bohr) energies, and as the
conventional atomic shift and width (e, I ):

AE =(EJt +tEt) E-
EBohr ER

I = —2E = —26E

(22)

Use of a relativistic wave equation changes the pure
Coulomb energies by 1 eV or less, a number much small-
er than other theoretical and experimental uncertainties.
In contrast, use of a relativistic Schrodinger equation for
the combined Coulomb plus nuclear forces changes the
atomic shifts by several percent (10 eV) and the nuclear
levels by 10/o or more, yet we tabulate results only for
nonrelativistic calculations —to be consistent with the
Graz potential's derivation and to permit comparison
with the work of others. We also do not tabulate correc-
tions due to the finite size of the Coulomb potential—
which we estimate to be as large as 5 eV for the 1 S
state.

1. Comparison of calculations

Four potentials are compared in Tables I—III, and
Fig. 1: (1) the Graz potential, used by Schweiger et al.

4a
nR&

(23)

or more sophisticated versions in which Coulomb and
recoil effects are included. " (We have extended the
Scheiger et al. and Green and Wycech" results in or-

and the present work (heavy solid and dotted lines),
which is nonlocal, energy dependent, and couples several
channels in momentum space; (2) the Dover-Richard-1
(DR1) potential, ' used by Richard and Saino (dashed
line) which is local, single channel, complex, and also de-
rived in part from the Paris NN potential, (3) the Green
and Wycech" potential, which is separable with Gauss-
ian form factors (dot-dashed line); (4) the Bryan-Phillips
potential, modified by Alberg et al. ' to include short
range behavior and annihilation motivated by quark bag
models (solid line).

Considering that the detailed calculational methods
differ in all cases, a truly precise comparison of just the
different potentials may not be possible, yet a compar-
ison of the three "exact" methods should be valid. We
find that in spite of the diverse methods of calculation
and different models for annihilation, most of the pre-
dicted complex shifts are rather similar (within 13% for
E and 25% for I ); in particular the Graz (heavy solid
line) and DR1 (dashed line) potentials produce similar
results. In contrast, the Geo 8 potential of the
Washington group (solid curve) predicts a complex shift
significantly larger in magnitude (actually they published
some 16 diff'erent shifts, we present their lowest X fit).

Three calculational methods are compared in Tables I
and III: (1) The Trueman approximation' that the
complex energy shift of an atomic level with Coulomb
energy E„and Bohr radius R&, is proportional to the
complex, strong interaction scattering length "a":
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TABLE I. Complex energy shift of 'So protonium level calculated by Refs. 23 (Graz), 25 (Richard
and Siano, RS), 11 (Green and Wycech (GW), 15 (Wilets, W), and the present work (RHL). Potentials
from Refs. 23 (Graz) and 10 (DR1)~

Who

Graz
GW
RHL
RS
W

Method

AEea
AEaa

exact (p)
exact (r)
exact (r)

Potential

Graz
own
Graz
DR1
Geo8

aE„, (eV)

600—i 570
590—i 660
519—i 444
540 —i 510
842 —i867

aE„, (eV)

75 —i 71
74 —i 83
64 —i 57
68 —i66

aE„, (eV)

22 —i 21
22 —i 24
17—i 17
20 —

E 20

der to make Table I more complete. ) (2) The "exact (r)"
method of Refs. 25 and 15 is a solution of the single
channel, r-space Schrodinger equation for the eigenener-
gies of a local, complex potential. (3) The "exact (p)"
method described in Sec. II B is a search for the
complex-energy poles of a T matrix arising from the
Coulomb plus nonlocal, coupled channels, nuclear poten-
tial.

As indicated above, the similarity of our results with
those of Richard and Saino is at least a partial
confirmation of the recently developed "exact (p )"
method. As seen by comparing the dotted and heavy
solid lines in Fig. 1, the Trueman formula Eq. (23) is
found not to be good for quantitative study of this
strongly absorptive system in the n =1 'So state (the
= 15% error is comparable to that found for kaons,
yet much larger than for pions). Inasmuch as this is an
on-energy-shell approximation, its lack of accuracy is
consistent with there being off-shell sensitivity in these
states. We have found, however, that the interaction in
the n =2, 3 states is weak enough for the exact calcula-
tions to at least scale in accord with Eq. (23).

We have also investigated P states. Unfortunately,
our numerical error for the P state c is comparable to c
(we calculate an energy of the pp system of —3 keV, and
subtract the Coulomb energy to obtain a shift of only
—4 meV). However, since no subtraction is required for
the widths, there is no cancellation; we present results in
Table III for the n =2 and n =3 shell P& widths. The

agreement with Richard and Saino is surprisingly good
considering that we have used different models for the
annihilation and very different calculational techniques.
Apparently, the interaction is not strong enough in these
P states to drive the pp far off its energy shell. All cal-
culations agree with the experimental lower limit of
Gorringe et al.

2. Comparison with experiments

The results of experiments are given in Table II and
shown in Fig. 1. The experiments of Gorringe et al. ,
the gas and solid state counter measurements of Baker
et al. , and the ASTERIx collaboration all agree—
within the large error bars. Whereas large systematic
errors are a concern since only uncorrelated gamma rays
are observed, the overlap of the results supports the be-
lief that the 1S state has —at least —been observed.
Unfortunately, such large experimental uncertainties do
not provide a demanding test of theory.

The general trend evident in Fig. 1 is the agreement
among all models, methods, and experiments that the
n =1,2, 3 'So protonium levels are shifted upwards (i.e.,
less bound than pure Coulomb levels). Whereas the at-
tractive nuclear potential would normally be expected to
increase the binding of these atoms, the decrease may in-
dicate nuclear states at a lower energy, i.e., baryonium,
or very strong absorption —both effects studied in the
analogous KN problem s, 2&, z2

Although firm conclusions are dificult to draw with
the experiments and calculations in such early stages,
there does appear to be large, possibly systematic,
disagreement between the experimental points and the
exact calculations (dotted and solid lines). Seeing that
the potential models all reproduce the scattering data
(albeit to differing degrees), the differences with experi-
ment probably refiect the nuclear interaction in the
n = 1, 'So state being strong enough to force the pp sys-
tem significantly far off its energy shell. That is, while
the scattering experiments used to determine the poten-
tials probe only the asymptotic part of the pp wave func-

TABLE III. Width of the 'P, protonium level with princi-
pal quantum number 2,3 calculated by Ref. 25 (Richard and
Siano, RS) and the present work (RHL). Potentials from Refs.
23 (Graz) and 10 (DR1); experiment is Ref. 2.

TABLE II. Complex energy shift of the 'So protonium level
measured by Refs. 4 ( ), 2 (PLG), and 3 (PS174). Who Method Potential

—,'r (MeV)
n =2

~
I (MeV)

n =3

Experiment

PLG
PS174
PS174

Method

XDC
Si(Li)
GSPC
Si(Li)

AE„, (eV)

500+300
730—i425

800—i ( (475)
760—i 265

RHL
RS

Graz

PLG

exact (p)
exact (r)

AEaa

expt

Graz
DR1

Graz

Si(Li)

12
13

13

) 7

4.3(0.1)
4.4

3.9
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Shift
.less bound)

-2'00-

Width

- 1600

TABLE V. (Upper) Bound and resonant baryonium states of
the I =0 NN system. Lower: Bound and resonant baryonium
states of the I = 1 NN system.

E('Sp)
(Mev)

E('P, )

(Mev)
E ('Pp )

(Mev)
-600- - 800

-1000
Protonium

0

FIG. 1. Shift and width of the n =1 'Sp protonium level as
measured by Refs. 4 (star), 2 (box), and 3 (oval, solid state
detector; &&, gas detector). The ")&" point for I" is a lower
limit. The theoretical lines are as follows: heavy solid —Graz
potential, exact (p); dotted curve —Graz potential, Trueman
formula; dashed curve —Dover/Richard potential, exact (r),
Ref. 25; dot-dashed curve —Green/Wycech potential approxi-
mate, Ref. 11; and solid curve —Washington potential, exact
(r), Ref. 15.

tion (outside of the interaction region), these atomic ex-
periments apparently probe it at much shorter distances.
Alternatively, disagreement between theory and experi-
ment may mean that a potential model cannot provide
an accurate enough description of annihilation to pro-
duce agreement within the precision of atomic experi-
rnents.

B. Baryonium states

We identify solutions of Eq. (19) with Bohr-type ener-
gies as protonium. We identify solutions with much
larger energies as levels of baryonium. A somewhat
unique aspect of our study is its search for states of the
experimentally-accessible, pp system coupled to nn. As
seen in Tables IV and V and Fig. 2, we find bound and
resonant baryonium charge states and similar states in
one or both isospin channels. This is diFerent from our
study of the K p system, ' where the strong bound
states occur only in definite isospin channels.

A traditional technique for finding states coupled
strongly to absorption channels is to "turn oF" the ab-
sorptive parts of the potential, find the zero width states,
and then follow these states in the complex plane as the
absorption is gradually increased. A typical result of

—354—i0
37—i6
76—i 32

181—i 42
401 —i 64
729 —i67

—266 —i 16
31 —i1
79 —i12

166—i48

—302 —i0
34—i7
77 —i6

185—i 141
237 —13

—364—i 0
28 —i9
66—i 15

189—i 24
435 —i65

—205 —i 116
73 —123

343 —i 58
33—i1
83 —i2

182—i 2
367—i 1

800
I =0

800

this procedure for the So Graz potential is seen in Fig.
3; we see the V,„„=O bound states at —20 and —18
MeV develop widths, move to the continuum, and ter-
minate at (77, —i32) and (28, —i19) MeV. Additional
states in the continuum are found and are listed in Table
IV for the pp charge basis, and in Table V for the iso-
spin basis. Each charge-basis state is seen to have an
analogous isospin-basis state.

The particular allure in baryonium states is to find
some with narrow widths since these would have longer
lifetimes, be easier to observe, and may be of dynamical
significance. Indeed, we can see in Tables IV and V,
negative energy bound states with (nonzero) widths as
small as 16 MeV and as large as 115 MeV. These are
important results of this study since they may be experi-
mentally accessible.

A startling result of our search, evident in Tables III
and IV, is the existence of deeply bound (

~
E„~ )300

MeV) states with widths equal to 0 (within our numeri-
cal precision of 1:10 ). To understand these states, in
Fig. 4 we show Ez('So) as a function of the strength of
the annihilation potential. The movement of these poles
indicates that the deeply bound states are not "fixed" po-
tential singularities related to the particular potential
shape studied. The increasing binding energy and de-
creasing width found with increasing absorption is rem-

TABLE IV. Bound and resonant states of pp baryonium. 400- - 400
E('Sp)
(Mev)

—356—i0

E('Pl )

(MeV)

—266 —i 16
—205 —i 115

E( Pp)
(Mev)

—302 —i0
0

-400

0

-400
28 —i9
77 —132

181—i42
435 —i65

74—i 23
80—i 12

141—i 47
167—i48

185—i 141 Baryonium Levels
FIG. 2. Bound states and resonances of the Graz potential
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FIG. 4. Baryonium binding energy as a function of annihila-
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old energy and thus has zero width. The upper dotted (dashed)
curve corresponds to the dotted (solid) curves in Fig. 3.

iniscent of the Krell-Seki oscillations found in K nu-
cleus and KN (Ref. 21) studies of strongly absorptive
potentials. Yet these states are even more unusual in
that they disappear when the coupling is not large
enough to produce binding energy of at least 300 MeV,
the threshold energy Am &~ for the annihilation channel
in the Graz potential. That is, for energies 300 MeV
below the elastic threshold, the annihilation channel
closes and its contribution to the potential (9) and (10)
becomes pure real. These deep, stable states may be fas-
cinating, but are artifacts of this particular model: If the
threshold had been placed at 2m „rather than 2 (788
MeV), these states would acquire a width.

IV. SUMMARY AND CONCLUSIONS

We have applied momentum-space techniques to study
the bound and resonant states of protonium and baryoni-
um. By providing an exact solution of the Coulomb plus
nuclear-force problem, even for coupled channels, com-
parison among various theories as well as with experi-
ments can be made without questions regarding tech-
nique.

The input to our pp study is the modern and realistic,
Graz NN potential model. This potential fits most low
energy scattering and reaction data, has separate chan-
nels for nn, pp, and annihilation, originates from the
Paris meson-theoretic NN potential, and is nonlocal and
energy dependent.

Our calculation of the states of protonium appear con-
sistent with other published calculations yet does show
significant model dependence for the n =1 'So state. As
also found for antikaons, the Trueman formula is not

accurate enough for quantitative study; in the antikaon
case because of nearby open channels, in the present case
because of off-shell effects.

Even with the present early state of theory and experi-
ment, there may be large, possibly systematic, differences
among most calculations and the several recent protoni-
um measurements. ' Whether this reflects a hoped-for
sensitivity of the level shifts to the short range part of
the NN interaction (off-energy-shell effects), or a break-
down of the microscopic potential approach is now an
important, open question. Better theory and experiment
is called for, as are analogous studies of the p-nucleus
atoms which may be even more sensitive to off-shell
effects.

After analytically continuing our calculational tech-
niques and the Graz interaction model, we were able to
find bound and resonant states of baryonium in a num-
ber of charge and isospin channels. Some have widths as
large as 115 MeV, others have widths as narrow as 16
MeV —and may be observable. We have also found that
our extrapolation of the Graz potential to energies far
below the scattering region can yield very deeply bound
(

~
E„~ )300 MeV) baryonium states with zero width.

However, these states appear to be an artifact of the
model.
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