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The relation between the nucleon-nucleon interaction and exchange currents needed for current
conservation are derived for the Bethe-Salpeter formalism, and for the approach in which the
spectator particle is restricted to its mass shell. For both approaches, it is shown how to achieve
current conservation for a completely general isospin dependent, energy dependent interaction
with arbitrary phenomenological electromagnetic form factors for the nucleon and mesons, and

with strong form factors at the meson-nucleon vertices. Contrary to what has often been stated in

the literature, the development shows that current conservation places no restrictions on the use of
dift'erent electromagnetic form factors for mesons and nucleons, and that phenomenological
meson-nucleon form factors can be introduced in a way which is consistent with current conserva-
tion. The longitudinal part of the exchange current is uniquely determined by current conserva-
tion, and for the common case of an interaction that only depends on the invariant momentum
transfer variable an explicit expression for this longitudinal exchange current is given. The trans-
verse part, which contains all electromagnetic form factors, is unconstrained by current conserva-
tion.

I. INTRODUCTION

It is well known that non-nucleonic degrees of free-
dom may reveal themselves in the form of interaction
current contributions to nuclear electromagnetic observ-
ables even at low energies. ' When such interaction
currents contain longitudinal components they may be
determined by the nuclear interaction through current
conservation. Exchange currents that are associated in
this way with the interaction, and which have to be in-
cluded in consistent calculations of bound state matrix
elements, are usually referred to as model independent
exchange currents. Existing empirical indications are
that such model independent exchange currents are the
ones of main importance for the electromagnetic proper-
ties of the few-nucleon systems.

The model independent exchange currents are either
of relativistic origin and associated with intermediate an-
tinucleon states, due to the energy dependence of the
interaction, or finally due to the isospin dependence of
the interaction. ' It is the aim of this paper to elaborate
on this distinction by deriving the proper form of the
two-body interaction currents that have to be included
in relativistic calculations of matrix elements of the nu-
clear electromagnetic current operator.

The key to the development is the generalized Ward-
Takahashi (WT) identity for the divergence of the
current of an off-shell particle. One principal result of
this paper is that the electromagnetic interactions of any
two-body system described by a relativistic two-body
equation (such as the Bethe-Salpeter equation or an
equation in which one particle is restricted to its mass

shell) will always conserve current provided the follow-
ing three conditions are met: (l) the electromagnetic
currents for the interacting off-shell nucleons and
mesons satisfy the appropriate WT identity, (2) the in-
teracting incoming and outgoing two body system satisfy
the same two body relativistic equation (with the same
interaction kernel), and (3) the exchange (or interaction)
current is built up from the relativistic kernel by cou-
pling the virtual photon to all possible places in the ker-
nel. Conditions (l) and (2) are possible to satisfy provid-
ed calculations are done consistently and with care, but
condition (3) becomes cumbersome if the two body in-
teraction includes higher order kernels such as crossed
box diagrams.

A second principal result of this paper is that, con-
trary to results obtained by some previous investiga-
tors, ' current conservation places no constraint on the
use of electromagnetic form factors for the hadrons.
This means that we are free to use diferent phenomeno-
logical form factors for the nucleon and mesons (pion
and rho). We have the freedom to choose these form
factors to describe on-shell data (when it exists) and may
even allow the q dependence of these form factors to
vary with the virtual mass of the interacting nucleon or
meson. This freedom can only be constrained by fits to
experimental data, or by microscopic calculations of the
form factors based on the underlying quark structure of
the hadrons.

This result comes about because the WT identities
only constrain the longitudinal current and it is possible
to construct currents in which all of the electromagnetic
form factors occur in transverse terms only. Since the
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on-shell currents are purely transverse, this can be done
in a way which is consistent with the experimental re-
sults. For the case in which the interaction kernel de-
pends solely on the invariant four-momentum transfer
variable we give an explicit expression for the longitudi-
nal exchange current that is needed for current conser-
vation.

A third principal result of this paper is that phenome-
nological form factors can be introduced at the strong
meson-nucleon vertices without violating current conser-
vation. (We will sometimes refer to these as the
"strong" form factors to distinguish them from elec-
tromagnetic form factors. ) To accomplish this, the
strong form factors are reinterpreted as phenomenologi-
cal self-energies (which means that they must depend
only on the off'-shell mass of the hadron). This modifies
the propagator and, through the WT identity, leads to
modifications in the currents. If the currents are
modified as required, current conservation is unaffected.

This paper is divided into seven sections. In Sec. II
we discuss the two body current for point particles in
the framework of the Bethe-Salpeter equation' in the
one pion exchange ladder approximation. We show how
conditions (1)—(3) cooperate to ensure current conserva-
tion in this simple case, and derive the longitudinal ex-
change current for the case of an interaction that de-
pends only on momentum transfer. In Sec. III we ex-
tend the method for achieving current conservation to a
general interaction. In Sec. IV we discuss current con-
servation in the quasipotential framework developed by
one of us. ' In Sec. V we illustrate the results for the
cases of single pion and p-meson exchange interactions
with derivative couplings, and in Sec. VI we show how
both electromagnetic and strong hadronic form factors
may be introduced without violation of current conser-
vation. Section VII contains a concluding discussion.
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FIG. 1. Diagrammatic representation of the BS equation
(2.1) for the scattering amplitude, showing the notation used
for the various 4-momenta.

the irreducible kernel V depends only on p —k in addi-
tion to isospin.

We may project states of definite total angular
momentum, helicity, and parity from (2.1) by introduc-
ing a suitable projection operator. For our purposes it is
convenient to specialize the initial state so that both par-
ticles are on shell, in which ease in the center of mass of
the pair,

P =(W;0),
po=0
8'=2E(p'),

(2.3)

where E(p):—(M +p )'~ . In this case the projection
operator takes the general form

p., [F I
= f dQ, F(p')uIi"'(p')u2'( —p')0„, (p') . (2.4)

In this paper we will suppress all reference to the quan-
tum numbers of the initial state. Using the operator
(2.4) we introduce a relativistic BS scattering wave func-
tion according to

P(p, P) =P,~ [ (21r) 5 (p —p')

+iS, ( —,'P+p)S2( ,'P p)M(p, p';P—)j .—

(2.5)

II. THE BETHE-SALPETER THEORY
IN THE LADDER APPROXIMATION

We turn now to an explicit construction of the current
in the Bethe-Salpeter (BS) theory. We begin with a
treatment of the ladder approximation, and extend the
discussion in the next section to the most general case.

In the ladder approximation the scattering amplitude
M is assumed to satisfy the following equation:

M(p, p';P)= V(p,p';P)+i V(p, k;P)d k
(2m. )

Substituting (2.5) into (2.1) gives us the equation we seek:

S, '( —,'P +p)S2 '( —,'P p)g(p, P)—
=i f V(p, k;P)g(k, P) .

(21r )
(2.6)

M( 'P) —— ' ' +R ( 'P)pp 2 2 + pp
B

(2.7)

The equation for the bound state wave function is ob-
tained in a somewhat different way. The presence of a
bound state implies a pole in the M matrix, which for a
spin zero bound state takes the form

xS, ( ,'P +k)S2( ,'P —k)——
xM(k, p', P), (2.1)

where R is regular at P =Mii Substituting . (2.7) into
(2.1), and approaching the bound state pole gives the
homogeneous equation

S, '(p) =p.y, —M, (2.2)

M being the nucleon mass. In the ladder approximation,

where the notation is illustrated in Fig. 1; p, p, and k
are relative 4-momenta, P is the total 4-momentum
(which is constant), and V is the irreducible kernel. S is
the free "nucleon" propagator, defined as

d4I.
I (p, P) =i f V(p, k;P)S, ( —,'P+k)

(21r )

XS,( ,'P —k)r(k, P) . -

Defining the bound state wave function

@~(p,P) =iS, ( —,'P +p)S2( ,'P —p)I (p, P), —

(2.8)

(2.9)
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gives the same equation, (2.6), for $2t.
We now turn to the central question of specifying the

current operator which should be used with the relativis-
tic states which satisfy (2.6). The answer will depend on
the specific form of V. In this section we will discuss the
ladder sum for the case in which V has the simple form

P,

V(p, k; P) = g~,—~2y, y 2b, (p —k ), (2.10) P2

with the meson propagator

'(k) =k —
(M (2.1 1)

This interaction, which corresponds to exchange of sin-
gle pseudoscalar pions, will be sufficient to illustrate the
approach. Some other examples will be considered in
Sec. V, and the completely general result will be given in
Sec. III.

The general form for the matrix element of the elec-
tromagnetic current between two relativistic states de-
scribed by the wave functions P; and Pf is, in the BS
formalism,

d pd p(J")= f i' (p', D')J"(p'D', PD)tt;(P, D),
(2tr )

(2.12)

P1

Pq'

P1

(b)

P2

where the notation is given in Fig. 2. The general form
for the current operator is P2

(c)

P

J"(p'D',pD)= —t'(2~)'S2 '(p2)5'(p2 —p2)j~i(p»pi)

i (2tr) S—, '(p, )5 (p, —p', )j2(p2,p2)

+JP(p'D', PD) . (2.13)

FIG. 3. Diagrammatic representation of the three terms in
Eq. (2.13j for the BS equation in the ladder approximation.

Here the single nucleon current operator for pointlike
nucleons is

j;"(p p;)=r;" ,'[I+r—,'] (2.14) j '~" (k', k) = i (k'+—k)"e" (2.16)

X &(P i
—P, )&(P2 —P,' ),

where, for pointlike pions,

(2.15)

and JNl is an interaction or exchange current, the struc-
ture of which depends on the form of V. If V is given by
(2.10), which corresponds to the ladder sum, the ex-
change current is

JP(p'D' p»= JR(p'D' p»
rI 2r &2iJ (P i Pl P2 P2

In (2.16), i and j are the isospin indices of the outgoing
and incoming pions, respectively. The three terms in
(2.13) are illustrated diagrammatically in Fig. 3.

The form of the operator (2.13) follows naturally if
one imagines the photon coupling to all possible places
in the ladder sum, and uses the BS equation to collect all
contributions into the three distinct classes which occur.
This intuitive argument also shows that (2.13) should
conserve current. The remainder of this section will be
devoted to a proof of this result.

The WT identities are crucial to the proof, and will
also be the key to generalizing the results to include nu-
cleon and pion structure, which will be carried out in
Sec. VI. In our notation, these are

D'

P
'= -'o 'P'

p2'= 2o —p'

p = —P + p

p
1 P p

q„j";(p,p; ) = [&; '(p ) —&; '(p; ) ]—,
' [1+r,'],

q„j '~" (k', k) = i [b. '(k') —b'(k)]e'J—(2.17)

FIG. 2. Diagrammatic representation of the matrix element
(2.12) of the two body current in the BS formalism between ini-
tial (i) and final (f) relativistic two body states.

The proof depends only on the validity of (2.17) and the
BS equation (2.6).

Begin by using the nucleon WT identity on the first
two terms of the current operator (2.13) to obtain
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d4
q„(J",+z) = —i f 4 I gf(p+ —,'q, D')S2 '(p~)[S, '(p', ) —S, '(p, )]—,'[1+r, ]g, (p, D)

+If(p 'q—,D-')Si '(pi)[Sz (p2) —S2 '(p2)]-,'[1+~214;(p»)1. (2.18)

Using the BS equation (2.6) this reduces to

d4 d4 '

q&(J~~+q ) = —,
' f Igf( p', D' )[ V(p', p + —,'q;D')[1 +r&]—[1+r~&]V(p' ——,'q, p;D)

+ V(p', p ——,
' q;D')[1 +r2] —[1+&2]V(p'+ —,'q, p;D)]g;(p, D) I

(2.19)

Note that (2.19) would be zero if the potential were to depend only on momentum transfer and were independent of
isospin. For the ladder sum, the potential does depend only on momentum transfer, and hence current conservation
would be proved for isoscalar exchange, in which case the exchanged meson would be neutral and there would be no
meson exchange term in the current operator. In our case the isospin dependence of the pion spoils the cancellation,
giving

[r, .r~, r, ]=2i [a& X ~2]

and hence (2.19) reduces to
4 4

q„&J~l+2 & = —ig' f ff(p'»')[ri &«2]'r ir2[~(p' p ———,'q) —~(p' —p+ 'q)l4;(p-» .

(2.20)

(2.21)

The divergence of the meson exchange term is precisely what is necessary to cancel (2.21). Using the pion WT
identity on this term gives

d4 d4 '—
q (Jg)=+ig p~(p', D')[r, Xr2] y, y2[h(p2 —p2) —b(p', —p, )]tt', (p, D), (2.22)

which cancels (2.21).
Equation (2.22) suggests an alternative form for the

exchange current (2.15) which explicitly displays its role
in conserving current. Writing the interaction (2.10) in
the general form

same form as the nonrelativistic continuity equation ' in
a reference frame in which qp =0.

III. THE BETHE-SALPETER EQUATION
FOR THE GENERAL CASE

V=v(p k)r, r2, —

it can be readily shown that (2.15) can be written

Jp(p'D', pD) = i (~~ X 7 2)
3 (k'+k)"

(k' —k )

(2.23) We now consider the general case where V is a sum of
irreducible kernels, shown up to sixth order in Fig. 4.
We will show that the correct operator in this case has
the form of (2.13), where the interaction current JIl is
constructed from the irreducible kernels which make up

X [v (k ) —v (k )]+JPv (2.24)

where k'=p
&

—p& and k =p2 —p2 are the momenta of
the outgoing and incoming pions, respectively [see Fig.
3(c)], and Jgv is a purely transverse contribution which
in this case is zero.

We will show in Secs. V and VI below that the form
(2.24) holds for the longitudinal part of the exchange
current, even in the presence of contact terms generated
by derivative couplings, strong hadronic form factors at
the meson-nucleon vertices, and electromagnetic form
factors for the exchanged meson. In these more general
cases, the additional transverse terms, JP~, which cannot
be determined by current conservation, are not zero. It
is interesting to note that (2.24) reduces to exactly the

/
/

/
J(

/
/ 'IIL

/

/ /
/

x
/

FIG. 4. The irreducible kernel for the BS equation up to
sixth order, for the case when all ladders and crossed ladders
are summed.
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(a)

p) +q

2

(b)

P)

P)

(c)

'yP, '
P,

FIG. 5. The interaction current generated by the crossed
box diagram in the BS theory. The virtual photon is coupled
to all particles inside the diagram (as enclosed by the oval) but
is not coupled to the external nucleons.

FIG. 6. Illustration of the three terms given in Eq. (3.1)
which arise from the coupling of the virtual photon to all par-
ticles entering (or leaving) a single vertex [indicated with a
small circle in (a)] in the interior of a higher order diagram
(sixth order in this case).

V by inserting the virtual photon by minimal coupling at
all possible places inside the diagrams. Note that our re-
sult for the second order case (the ladder sum) satisfies
this rule. The diagrams generated in the fourth order by
the crossed box are shown in Fig. 5. In general, each ir-
reducible (2n)th order diagram involving the exchange of
n mesons will generate 3n —2 diagrams with couplings
to nucleons and mesons. In addition, there will be 2n di-
agrams with contact terms if these are generated by the
elementary meson-nucleon-nucleon interaction, as is the
case for pions with pseudovector (y y") coupling and p

I

mesons with tensor coupling (see Sec. V). For the mo-
ment we will assume that no contact terms are
present —they may be added easily once the general
proof has been outlined.

In developing the argument, it is convenient to first
focus on the three diagrams which have photon cou-
plings to the three lines entering any particular interior
vertex, as shown schematically in Fig. 6 for one of the
sixth order diagrams. Writing only the propagators and
couplings for the lines included in the oval shown on
each graph, we have

(JP) =I,S, (p', +q) [j",(p', +q p', )S(p', )y', r', +y', r'S(p, +q)j", (p, +q p, )

—iy, r, b(p', —p, +q)j „' (p', —p, +q,p', —p) IS (p, )h(p', —p, )I2, (3.1)

where I, and I2 represent the rest of the factors in each diagram, which are the same for all three. Applying the WT
identities to these three terms will generate six contributions. Keeping only those terms in which one of the internal
propagators [those in the curly braces in (3.1)] is annihilated, gives

q„(JP) =I,S, (p', +q)y, [
——,'(1+r, )r', +r', —,'(1+r, ) ir, e" j—S (p, )b(p', —p, )I2 ——0 . (3.2)

Hence the contributions from the three terms which annihilate internal propagators cancel. Furthermore, the three
terms which annihilate propagators external to the curly braces, which we have not yet considered, can be grouped
with terms from other diagrams to make new triplets of internal terms for surrounding, neighboring vertices, and
when considered together these terms also cancel in the way described above. This argument shows that a11 terms
cancel, except for the exceptional cases of vertices which are at one of the corners of the diagram. To complete the
internal cancellation for these exceptional vertices, precisely four terms are needed, which include V with one of the
external momenta shifted by q (or —q), as shown in Fig. 7. If we add these four terms to all of the others we obtain a

perfect cancellation, which can be written

q„JI',——,'(1+r&)V(p' ——'q, p;D) ——'(1+rz) V(p'+ ~

q,p;D)

+ V(p', p + —,'q;D') —,'(1+r&)+ V(p', p ——,'q;D') —,'(1+r2) =0 . (3.3)

Finally, using this relation together with the result ob-
tained from the single nucleon currents, (2.19), proves
that the operator (2.13), as defined at the beginning of
this section, satisfies current conservation in the general
case.

It is now clear how to generalize this result to apply

to all mesons and other forms of meson-nucleon cou-
plings, including those which generate contact terms.
As long as the elementary tree diagrams for meson elec-
troproduction from nucleons conserve current, as illus-
trated in Fig. 8, the WT identities (2.17) are satisfied (in-
cluding those for other mesons), and the BS equation
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1 I—Q + p

2 0 p

—Q+p+q

y —,'( i+T, ')

-Q-p1

2

I g—Q+p

—Q — p2

—Q+pi
M(p, p', P)= V(p, p', P)+ f V(p, k;P)d k M

(2m) E k2)

XS, ( —,'P+k)M(k, p';P),

2Q+p q

—Q-p'

-'Q+ p

—0-p

2o+P'

2()+7 ) y

Q'
p

—Q+pi

-Q-p1

(4.1)

where the mass shell condition means that in the center
of mass of the pair

FIG. 7. Diagrammatic representation of the last four terms
in Eq. (3.3). In each diagram, q enters at the location of the
black dot, and the momenta are labeled so that before (for the
top row) or after (for the bottom row) the 4-momenta of each
nucleon have the canonical values introduced in Fig. 2.

(2.6) applies to both the initial and final state wave func-
tions, the BS matrix elements (2.12) and (2.13) will satis-
fy current conservation.

po ———,
' )V E(p)—, (4.2)

and similarly for po and ko, and the mass shell condition
requires us to limit ourselves to the positive energy sub-
space of particle 2, so that the matrix elements

M(p, p', P)—:u 2(p2 )M (p p';P)u 2(p 2 ),
V(p p', P):—uz(p2) V(p, p';P)uz(p2)

(4.3}

are sufficient for our purposes (two component spin in-
dices of particle 2 will normally be suppressed). The nu-
cleon propagators are as defined in Sec. II.

The scattering wave function is defined by

IV. CURRENT CONSERVATION
WITH THE SPECTATOR NUCLEON ON SHELL W(p, P) =P' E(p)

M
(2ir) 5 (p —p')

In practical calculations of matrix elements of the nu-
clear em current operator it is often convenient to use a
relativistic formalism which has a smooth nonrelativistic
limit. For this purpose one can employ some three-
dimensional reduction of the BS equation that has the
Schrodinger equation as the nonrelativistic limit. The
most direct quasipotential framework, at least from the
point of the relativistic formulation, is the method
developed by one of us, ' in which the spectator particle
in the relativistic impulse approximation is taken to be
on its mass shell.

It will not be necessary in this section to start with the
ladder approximation; because the spectator formalism
can be so easily tied to Feynman diagrams, we will rely
on the general results obtained in Sec. III to discuss the
general case immediately.

The equation for the scattering amplitude when one
particle (No. 2} is restricted to its mass shell is

+
~X

+S, ( —,'P +p)M(p—,p';P) (4.4)

where the projection operator P,' is similar to that
defined in Eq. (2.4),

P,' IF] = f dQ-, F, (p')ii', "'(p')O„,(p') . (4.5)

Note that this is manifestly covariant.
Similarly, the bound state wave function can be

defined by

(p, P)=S, ( ,'P+p)u ( ,'P —p)rC——

Here the sum over the spin s of the initial particle 2 is
shown explicitly for clarity, but u2 is not needed in the
definition of P,' (as it was for P,~) because the uz ma-
trix element has been taken throughout [Eq. (4.3)]. Sub-
stituting (4.4) into (4.1) gives the equation for (t,

d kS, '( —,'P+p)P(p, P)= f V(p, k;P)P(k, P) .
(2m )

(4.6)

=S, ( ,'P+p)rC u,'(,'P —p)-, (4.7)

X

FICx. 8. The tree diagrams for electroproduction of mesons,
including a possible contact term. The small )&'s on the exter-
nal lines indicate that the particles are on their mass shell ~ If
these diagrams conserve current, then the interaction current
as constructed in the text will satisfy Eq. (3.3), and the full two
body current (2.13) will also conserve current. XJ "(p'D', pL))y;(p, D), (4.8)

where I was introduced in Sec. II, and the introduction
of C permits us to construct I from the usual bilinear
covariants. ' The bound state wave function (4.7) also
satisfies Eq. (4.6).

The general form for the relativistic current can now
be written in this formalism as

d3 d3 ' M
&J )=f, , p (p', ')

(2m. )' E(p, )E(p2)
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where the kinematic variables are as defined in Fig. 2,
except that pz ——pz ——M, and

and

J "(p 'D ',pD ) = u 2 (p 2 )J "(p 'D ',PD )u 2 (p 2 ), (4.9)

, E(p, )
&'(p2 —p 2 )j",(p '„p, ) (4.10a)

(a)

+j2(P2 P2 q)~2(P2 q) I'—(p'+-,'q, p;D)

(4.10b)

+ V(p' P ——,'q»')~2(P2+q)j2(P2+q P2)

(4.10c) V

+JP(p'D' pD» (4.10d)
(c)

where the j"; and JIl were defined in Sec. II. The four di-
agrams [(a)—(d)) which make up (4.10) are shown in Fig.
9. Diagrams (b) and (c) arise when the virtual photon is
coupled to particle 2. Since it is impossible for both the
initial and final nucleon to be on shell, two diagrams
must be included corresponding to the two terms which
arise when the integration contour over the relative en-
ergy is closed around the positive energy poles of parti-
cle 2. The way in which these terms originate is shown
schematically in Fig. 10.

There are special cases where it can be shown that the
two terms (b) and (c) in (4. 10) do not arise, or are not
necessary for current conservation. For example, if one
particIe is chargeless and does not couple to the photon
(even for q &0), we may choose this for the on-shell
particle, and terms (b) and (c) will not contribute. For
identical particles, there may also be methods of getting
along without these terms. In this case, it would seem
that it should be possible to eliminate these terms in
favor of counting the first term (4.10a) twice. The issue
is of practical importance, since each of these terms has
a singularity (which, however, cancels in the sum), and
they spoil some of the simplicity of the spectator nu-
cleon approach. A general discussion of the simplest
way to define the current operator in the spectator nu-
cleon approach wiH be taken up elsewhere. %"hat we
will show here is that the two terms (b) and (c) are
sufhcient to ensure current conservation in the general
case.

Before presenting the algebraic proof, it is useful to
see in general how current conservation works in this
formalism. First, note that the relation (3.3) still holds
because this is unaff'ected by whether or not any of the
external particles are on shell ~ Second, note that when a
particle is on shell, application of the operator S '(p)
which arises from the WT identity gives zero. This
means that when q„ is contracted into terms like those
of Figs. 9(b) and (c), only contributions from the off'-shell

FIG. 9. Diagrammatic representation of the four terms in
Eq. (4.10). The small &('s mean that the particle is on the mass
shell; the internal integrations are therefore over 3-momenta
only and propagations of mass-shell particles are replaced by
two component spin sums over matrix elements constructed
from mass-shell positive energy spinnors, as in (4.3).

propagation of particle 2 will survive, and these terms
are cancelled by two of the four terms which arise from
Eq. (3.3) [Fig. 9(d)]. The result is that only terms com-
ing from propagators connected directly to particle l
survive; the elimination of these terms will finally require
the use of the wave equation.

Algebraically, the last three terms of (4.10) give

FIG. 10. The figure shows the origin of the two terms (b)
and (c) in Eq. (4.10) and illustrated in Figs. 9(b) and (c).
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d3 d3 ' M2

(2~)' E (p )E (p' )

x [+[~p '(p2) —~p '(p2 q)1~2(p2 q)-,'[1+re]V(p'+-'q p»
+ V(p', p ——'q;D') —,'[1+re]S2(p2+q)[&2 '(pi+q) —~2 '(p2)1+q&JP]u2(»)~i(»

d d ' M
(2~)' E (p, )E (p,' )

X [+—,
' [1+v&]V(p' ——,'q, p;D}—V(p', p + —,'q;D') —,

' [1+x&]I uz(pi )P, (p, D)

d3 d3 ' M
f p', D' +—' 1+~& V p' ——'q, p;D —V p', p + —'q;D' —' 1+~~ p, D

(2~)' E(p2)E(p&)
(4.1 1)

where the result (3.3) was used to evaluate q„JI', in the general case; note that the [1+ran] terms cancel. Finally, the
first term in (4.10) simplifies using the wave equation (4.6),

d3
q„(J"&(.)=I, 0f(p'»')[~& '(pi+q) —~i '(p&)]2[1+r&]4;(p»

(2ir)' E p,
d3 d3 ' M

f p', D' V p', p +—'q;D' —' 1+v& ——' 1+~& V p' ——'q,p;D, p, D . 4.12
(2ir ) E (p, )E (p ', )

This term, when added to (4.11), gives zero, proving that
current is conserved.

We remind the reader that the algebraic proof of con-
servation first presented holds for an arbitrary interac-
tion, providing Eq. (3.3) holds for Jt,'. While we proved
this for irreducible kernels in the BS formalism, the irre-
ducible kernel in the one-particle on-shell formalism has
extra terms, which have been classified and discussed ex-
tensively elsewhere. ' It is straightforward to see that
these extra terms also satisfy (3.3); they differ only in
having some of the internal particles on shell, and the
use of the WT identities is not affected by this restriction
(any extra terms generated are zero). Hence the proof of
current conservation also holds for a general irreducible
kernel in this quasipotential method. It is not clear to
use whether the proof can be given as easily for other
quasipotential approaches. '

L =
2MWr y'a.y (5.1)

where f,g are the nucleon fields and P the isovector
pion field. By coupling the em field minimally through
the derivative in this Lagrangian one obtains the point
ym. NN coupling

L '=&
2M

0r"r' ,'[&' 4 &]4~-. (5.2a)

where A is the em field vector. This point coupling La-
grangian will generate a contact term of the form

I

tor coupling, which satisfies the condition of chiral in-
variance, and single p-meson exchange with tensor cou-
pling. Modifications required by hadronic structure will
be discussed in the next section.

The pseudovector m.NN coupling Lagrangian is

V. EXCHANGE CURRENTS WITH CONTACT TERMS

The general form for the exchange current operator in
the ladder approximation (2.24) applies even when the
interaction involves derivative couplings, and when there
is hadronic structure (form factors). Whenever there are
derivative couplings in the meson-nucleon interactions,
there will be additional purely transverse terms Jgv in
the exchange current operator which depend on the in-
teraction Lagrangian and which are not zero. While
these cannot be determined by the continuity equation, it
is nevertheless quite straightforward to construct them
from the contact (or seagull} current operators obtained
from minimal substitution of the em field operator in the
derivative terms in the Lagrangian. We shall illustrate
this by considering single pion exchange with pseudovec-

(5.2b)

The total exchange current operator will, in this case,
have the form (2.24) with the interaction having the
form

'2

U(k)= [(y k)y'], [(y k)y'], b,(k),
2M

(5.3)

Jp =i(rix~2)' K"q, gpv K.q
x [(k'.yy'), (y.y'), &(k')

+(k rr')2(y. r')i~«)] . (5.4)

with the additional transverse current operator [in the
notation of Fig. 3(c)]

2
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~t

As a final example we consider the p-meson exchange
interaction, taking the pNN coupling to be

Here the p-meson field tensor is defined as

FP~ —Q~pP ()Pp~ (5.9)

L NN= —g ti''y ~~.a. p„rq, (5.5) Minimal substitution in the pN coupling (5.5) yields the
contact pyNN coupling

where g is the vector and K the tensor coupling con-
stant and p„ is the isovector vector meson field. The
corresponding p-meson exchange interaction is, in the
notation of (2.23),

g K' =ie Po"A., ,' [r',—p„.r]g, (5.10)

and, in the free p-meson Lagrangian (5.8), the yp-
coupling interaction

v(k)= —g 6 (k) . y&.yz — yi kyz. k
1

P

L' =eA„e"'p', (8"p~ 8"p~—") . (5.1 1)

+l 2M(~"1 yz k- o—2"yl k )

In the notation of Fig. 3(c) with K =k +k' this leads to
the following point ypp vertex:

2

v", k cr2„Pk~ . .
4M

(5.6)

I',~ i'~(k, k) =+ie'~'r i'~(k, k),
r;i'~(k, k) =g.i'K~

(5.12)

Here the propagator is defined as

b," (k)=P" (k)b, (k),
with

(5.7a)

where i,a are isospin index and 4-vector spin index of
the outgoing p, and j,P are the corresponding quantities
for the incoming p. I satisfies the WT identity

q„I ~ "(k', k) R=~(k'} R~(k)—, (5.13)

'(k)=k —m (5 7b)
where

k "kP"'(k) =g""
2m

(5.7c) R ~(k)=[5 ~(k)] '=g ~(k —m ) —k k~ . (5.14)

with m being the mass of the p meson. Note that the
term proportional to m in the interaction vanishes for
on shell nucleons.

The electromagnetic couplings that are necessary for
the gauge invariant construction of the p-meson ex-
change current operator are obtained by minimal substi-
tution of the em field A„ in the derivative tensor cou-
pling term in (5.5) and in the free p-meson Lagrangian

I.
p
————,'F„.F" ——,'m pp" p„.

2

Jg, =i(,r Xr )z'
g,
' II;+ I~z+ I~3

2M 2M
(5.15}

where

With these defini. tions, it can be shown that the total
p-meson exchange current takes the form (2.24) with the
interaction (5.6) and an additional transverse term JP of
the form

' k
I", = —5 (k)b, (k') y", [yz k' —m (k k')yz k]+m k'"y, y~z(k'k& kk&) —.+(1~2 and k'~k),

Iz =+id. (k)P cr& q&
—o &" yz +id, (k)A (k')I cr& q k&[yz+mz k'"yz. k] icr", k~[yz q—+mz (q k'. )yz. k]E q

+i 6 (k)o~&~q&m (yz. k) I
—(1~2 and k'~k),

I~3 ——6 (k) o", o~~ qp—oz &kp b, (k)b, (k')c—r~&
k' cruz k&k„+(1~2 and k'~k) . (5.16)

We leave it to the reader to verify that q„I~=0.
Finally, we note that it is not difficult to relax the restrictions on the magnetic and quadrupole moments of the p

implied by (5.12). If two purely transverse terms are added to (5.12),

I" ~'"(k', k)=I ~&(k', k) (p* —1)[(g "q—~ qg"P)] — (Q*+—p,
*—1)[q q~K" ,'(K q)(q g"~+g "—q—~)],2

P

(5.17)
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it can be shown' that p" and Q' are related to the mag-
netic moment, p, and quadrupole moment Q of the

p +

p*=m p
(5.18)

f(k )

k

I
I
1 k
I

ff(k )]

(Note that p'=1 and Q'=0 is implied if these terms
are absent. ) Since these are purely transverse, they con-
tribute only to the transverse part of the current.

The relaxation of the conditions p'=1 and Q'=0 is
associated with internal structure of the p meson, and
consistent treatment of this structure requires the discus-
sion in the next section.

f(k )

(b)

FIG. 11. Two equivalent ways of viewing the strong form
factors at the meson-NN vertices. (a) Form factor f(k') at
each vertex with bare propagators, and (b) point interactions
with a phenomenological self energy.

VI. CURRENT CONSERVATION AND EXCHANGE
CURRENTS IN THE PRESENCE

OF HADRONIC STRUCTURE

Our discussion so far has been limited to the case
where the meson-nucleon and photon-hadron vertices
are all pointlike. In this section we will describe how
these results can be generalized to the case where elec-
tromagnetic form factors are inserted at the photon-
hadron vertices, and where strong form factors are used
at the meson-nucleon vertices. Our approach will be
very general, and we will show that (1) phenomenologi-
cal strong form factors can be inserted at the meson-
hadron vertices without spoiling the general results of
the previous sections, provided modifications dictated by
the WT identities in the off-shell current operators are
made and (2) empirical electromagnetic form factors ap-
propriate for each particle may be used in the current
operators. In particular, the latter result means that the
form factors used in pion exchange currents can be
different from those for the nucleon without violating
current conservation. This is important in practical cal-
culations of meson-exchange-current (MEC) effects.

The key to our approach is illustrated in Fig. 11.
Here the meson (pion in this example) exchange poten-
tial is regularized by a phenomenological form factor
f (k ), where k is the 4-momentum carried by the
meson, and f„(p )=1. In our treatment, we will regard
this form factor as a phenomenological self-energy
correction, as illustrated in Fig. 11(b), so that the meson
propagators used in the previous sections of the paper
are modified:

The current operators for the meson will then be
modified in two ways. First, we will introduce phenome-
nological electromagnetic form factor(s), and second, we
will require the WT identity to hold with the new propa-
gators b, given in Eq. (6.1). Using the pion as an exam-
ple of the general approach, we introduce structure into
the meson electromagnetic vertex,

jP(k', k)= iI "—( k', k)e' ~

and define a reduced vertex function I & by

I ~(k', k) =f f ' I "„(k',k),

(6.4a)

(6.4b)

P
r~„(k,k)= ~(q2, k 2, k2) It-~—

q

+8 (q, k', k )K", (6.5)

where, to avoid kinematic singularities, we require that
atq =0

A (O, k', k )=0, (6.6a)

where f =f (k ) and f ' =f„(k' ). It is the reduced
vertex function which satisfies the WT identity with the
modified propagator (6.1) as illustrated in Fig. 12. For
the pion, the most general form such a vertex can take is

f2(J 2)

, =[k' —~'+11(k')]-',
k —p

where H is introduced for convenience only, and

(6.1)

yk, j yk, j

11(k2)= f 2 (k2)
—1 (k —p). (6.2)

(a) (b)

II(~2)= 11(k')
Bk

=0,

so that 6 is suitably renormalized.

The normalization of f ensures that

(6.3)

FIG. 12. (a) The normal current operator with form factors
at the meson-NN vertices. (b) Reduced current operator with
phenomenological self energies and point meson-NN vertices.
The reduced current operator is de6ned so that both expres-
sions are identical.
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and to reproduce the empirical pion form factor,

A (q,p, p )+B(q,p, p )=F (q ) . (6.6b)

B can be uniquely determined from the WT identity
(2.17), and a simple calculation gives

which is finite at k' =k and satisfies

B (p', p') =1 .

Hence, from (6.6b)

A (q,p, p ) =F„(q ) —1,

(6.8)

(6.9)

which is consistent with (6.6a). Except for this condition
A is arbitrary and the most general form of A can be
written

B(~2 k'2 k2) B(k'2 k2) 1~ (67)k' —k

y(q, k', k )~B(k', k ), q ~oo . (6.1 lb)

A simple form which satisfied both of these conditions
(6.11) is

operators. The importance of MEC, and the possibility
that the underlying quark structure of mesons and nu-
cleons could well lead to modifications of the current
operators when the mesons are off shell, suggests that
this arbitrariness should be taken into account in future
studies, and that either data or quark calculations are
needed to fix the off-shell function y.

In order to parametrize y realistically, we note that it
is the combination of A +B which is seen in electron
scattering (since the q„ term is zero when contracted
into the conserved electron current) and since B does not
depend on q it must be cancelled if the total current
operator is to go to zero at large q . This requires that
y approach B at large q

A(q, k', k )=[F (q ) —1]y(q, k', k ), (6.10)

(6.11a)

where y is any function free of kinematic singularities
and is symmetric in k and k, which satisfies

1 —Fo(q )
y(q k', k )= B(k', k )

1 F(q—
1 —Fo(q )+1—
1 F( )— (6.12)

The fact that the transverse part of the current opera-
tor cannot be uniquely determined is not a surprise, but
it has been customary in MEC calculations to make the
simplest assumptions about the form of the current

I

where Fo approaches zero as q approaches infinity and
is normalized to unity at q =0, but is otherwise arbi-
trary. With this choice, I "~ becomes

1 "~(q,k', k )= F (q ) —Fo(q )+Fo(q ) k' —k
+[5 '(k') —b,

—'(k)]
q

(6.13)

Note that this form gives F (q ) when both mesons are on shell, and that, if k' =k,

I "z(q,k, k )= .F (q )+Fo(q ) —1 K"+q" . terms .
db, '(k)

(6.14)

However, with the strong form factors

dh '(k) —1(0, (6.15)

E qq"J(r = i (r, X~2) g y, y2 K"—
q

X [F (q ) Fo(q )]b,(k—)b,(k')

if k &p (which is the normal case in nuclei), and hence
Fo subtracts from F„, making the effective pion form
factor decrease more rapidly with q . This is what
would be expected if the pion were to become larger in
the nuclear medium. Note that in this model the size of
this effect depends on how far the pions are off mass
shell.

Using (6.13) we can cast our new pion MEC into the
form (2.24) with v (k) defined by Eqs. (2.10), (2.23), and
(6.1) and with the transverse term given by

( 2) 1] b(k) —b.(k')+ oq — kz k2
(6.16)

Note that the pion form factors occur only in the purely
transverse part of the exchange current, and hence are in
no way constrained by the requirements of current con-
servation.

Structure can also be included in the case of pseu-
dovector coupling. Here a new complication arises-
how should structure be included in the ymNN contact
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j'"„„,(k) =e"'rjf (k)I ",(q) (6.17)

where k is the 4-momentum of the incoming pion, q is
the 4-momentum of the incoming virtual photon, and

I",(q)= y"y'+ [F,(q') —1]y,

term? One way, which is probably not unique, is to gen-
eralize (5.2b) and introduce a reduced contact term

I ~~ "(k',k)=f f' I ~~'"(k', k), (6.19)

we find

I ~'"(k', k) = g ~K"B (k ', k)

[g —~k f'+k g»]C+(k, k)

energy, the longitudinal part of the ypp vertex will be
modified through the WT identity. Defining the reduced
ypp vertex,

y"— q" y . . (6 18)
q

When used with a conserved current, the q" term in
the transverse part vanishes, and if y, =1 as q ~ ao, the
entire term goes to zero as F, (q ), the arbitrary form
factor of the contact term. The first term will play the
same role as it did in the case without structure which
was treated in Sec. V; the second term will contribute an
additional transverse term to (6.16).

Next we turn to the p-meson exchange current. Here
the same techniques can be used, and the additional de-
grees of freedom associated with the spin 1 nature of the
p offer more choices for construction of the current
operators, suggesting that the p exchange current will be
less effectively constrained by current conservation.

If a single strong form factor is introduced at the
pNN vertex, f (k ), leading to a phenomenological self-

where

—[k' k'~+k k~]C (k',k), (6.20)E q

11,(k') —11,(k')
B (k'k)=1+

k' —k

C—(k', k)= — +1 1 1

P '
2 fr2 f2

(6.21)

Up to arbitrary purely transverse terms, this result seems
to be unique if terms with kinematic singularities are ex-
cluded.

Transverse terms which contain electromagnetic form
factors can now be added. One form, which satisfies all
of the restrictions discussed in the beginning of this sec-
tion, is

I ~ ~'"(k', k)= I ~~'"(k', k)+[Fi(q ) —1]yig ~ K"— q q"K q

—[F,(q') —1]y k g»+g "k'~+ (k k~ k' k'i')—
q

K"F, (q )(p*——1)[g "q~ qg»] —[F4—(q ) —1]y (k' k'~+k k~)
E q

2F, (q')
[q q~K" —,'(K.q)(q g»—+g "q~)),

m

qP

q

(6.22)

where y &
and y+ are arbitrary functions which are unity

on shell and which approach as q ~ oo

yi~&p

y~ —+C-+
(6.23)

2F3(q )

z
(g' * q)(g.q)K",

m
(6.24)

which is the correct form provided Fi(0) =Fz(0)=1 and
F3 (0)= Q *+p* —l.

The reduced p contact term, defined as for the pion in

If these conditions are satisfied, I z"~0 as q ~ oo, and
when both p's are on shell, it reduces to

4*1~,p'"kp= Fi(q'O''*. W'"

+V*F2(q') [(4' *.q)P —I' *"(k q) l

jP(p' p) —F yP+ j q F (6.26)

Eq. (6.17), can be taken to be

g K q q"
I ",(q)= 'cr'"+[F, (q ) —1] cr "—o.

q

(6.25)
where v and p are the p and y vector indices, respective-
ly.

We leave it to the reader to confirm (2.24) for this p
exchange current and to obtain the explicit form for the
transverse current.

We conclude this section by discussing the off-shell
nucleon current briefly. Clearly the method developed
above can be applied to this case also. The current
operator for a single nucleon with internal structure is
usually written in the form
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The isospin structure of the two form factors F, and F2
1s

F& 2 ——'[F—f 2(q)+F & 2(q) r3] . (6.27)

The current operator (6.26) does not satisfy the WT
identity (2.17). A simple generalization of (6.26) which
does satisfy the identity is

1+w3
+ y"— o."'q F2 .

2 2M
(6.28)

With this generalization the terms that involve the form
factors drop out from the current divergence (2.17) and
hence the continuity equation conditions derived for the
exchange current in Secs. II and III still apply. Further-
more, on shell (and even off shell when used with the
conserved electron current so that the q" term vanishes)
this reduces to the usual form (6.26).

VII. SUMMARY AND DISCUSSION

There are three principal results of this paper.
(1) A general method for constructing matrix elements

of the electromagnetic current of a relativistic two body
system, which ensures that the current is conserved, is
given. This method requires that:

(a) All relativistic one body current operators satisfy
the appropriate Wark-Takahashi identity,

(b) the initial and final interacting two body system
satisfy the same relativistic equation with the same in-
teraction kernel, which is assumed to be a known sum of
relativistic Feynman diagrams, and

(c) the current operator includes, in addition to the
one body current operators, interaction currents built up
from the interaction kernels by coupling the virtual pho-
ton to all possible nucleon and meson lines inside the
kernel.

We have demonstrated that this procedure works for the
Bethe-Salpeter formalism, where our principle results are
Eqs. (2.12), (2.13), and (3.3), and for the formalism where
the spectator is on shell, Eqs. (4.8) and (4.10).

(2) The method described above places no constraint
on the introduction of phenomenological electromagnet-
ic form factors for the hadrons. In particular, different
form factors can be used for the nucleon, pion, and p
meson, and arbitrary magnetic and quadrupole form fac-
tors can be used in p-meson exchange currents. The re-
sult, displayed in Eqs. (2.24), (6.16), and (6.22) comes
from the fact that one body currents can be constructed
in which all electromagnetic form factors occur in purely
transverse terms, which are unconstrained by current
conservation.

(3) The general method also permits the introduction

of strong hadronic form factors at all meson-NN ver-
tices. Such form factors require modification of the
current operators through constraints imposed by the
WT identities, but our discussion shows that this can be
done in all cases of interest.

The overall conclusion is that it is possible to carry
out consistent relativistic calculations of electromagnetic
interactions of two nucleon systems which conserve
current and which include necessary phenomenological
form factors due to the internal hadronic structure. We
have found a way to separate the problem of internal ha-
dronic structure from the problem of the dynamics of
relativistic meson theory. The hadronic structure can be
calculated from the underlying quark degrees of free-
dom, and the resulting form factors and coupling con-
stants inserted in a relativistic meson theory which con-
serves current. We make no claim that this procedure
will give correct answers, only that it can be carried out
consistently. This result is of importance to the program
planned for the Continuous Electron Beam Accelerator
Facility.

The role of WT identities in obtaining conserved
currents for relativistic two body systems has been previ-
ously pointed out by Bentz, ' who obtains two body
ward identities for the two body system directly from
field theory. This derivation, which is complementary to
our diagrammatic approach, leads to relations similar to
(2.19) and (3.3). [These are Eqs. (2.19b) and (2.29) in
Ref. 19.] Bentz also discusses PCAC, but does not dis-
cuss the introduction of hadronic structure. The pres-
ence of ambiguities in the definition of off shell currents
has been previously emphasized by deForest, who also
pointed out that, if one is not careful, kinematic singu-
larities can arise from any q" terms added to current
operators to preserve current conservation. In our work
we have been careful to eliminate these kinematic singu-
larities.

It should be possible, by taking the nonrelativistic lim-
it, to use the results of this paper to resolve the out-
standing issue as to whether Gz or F, is the correct
form factor to use in pion exchange calculations. We
have not done this, but we note that our results show
that different form factors are permitted for the pion and
nucleon, and y~NN contact term, so that the usual non-
relativistic pion exchange current, which is a sum of
these different pieces, is probably not correctly described
by a single form factor. Furthermore, the freedom to
adjust the off-shell form factors, as discussed in Sec. VI,
shows that a unique answer within the framework of rel-
ativistic meson theory (where hadronic structure is treat-
ed phenomenologically) is not possible. We are inclined
to think that the question of F, versus Gz is transcended
by the ambiguities and inconsistencies inherent in nonre-
lativistic calculations which treat the NN dynamics and
meson interaction currents as completely independent
quantities. What is needed is a fully relativistic calcula-
tion of both the NN interaction and the two nucleon
electromagnetic current which uses the same strong
meson-NN form factors and hadron electromagnetic
form factors consistently throughout. Such a program is
currently being developed.
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