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A quark compound bag model has been constructed to describe NN s-wave scattering up to 1

GeV. The model contains a vertex interaction HD NN for describing the excitation of a confined
six-quark bag state, and a meson-exchange interaction obtained from modifying the phenomeno-
logical core of the Paris potential ~ Explicit formalisms and numerical results are presented to re-
veal the role of the bag excitation mechanism in determining the relative wave function and the P
and S matrices of NN scattering. We explore the merit as well as the shortcomings of the quark
compound bag model developed by the Institute of Theoretical and Experimental Physics group.
It is shown that the parameters of the vertex interaction HD NN can be more rigorously deter-
mined from the data if the concept of the chiral/cloudy bag model is used to justify the presence
of the background meson-exchange interaction inside bag excitation region. The application of
the model to the study of quark degrees of freedom in nuclei is discussed.

I. INTRODUCTION

The development of quantum chromodynamics (QCD)
has motivated many theoretical investigations of quark
degrees of freedom in nuclei. In considering the simplest
two-nucleon system, the focus has been on the calcula-
tion of the short-range part of the nuclear force from
various QCD-motivated models of multiquark systems.
This has been reasonably successful in either the nonre-
lativistic quark potential model' or the relativistic bag
model. " For nuclear studies, we need to combine the
resulting short-range quark picture and the well-studied
meson-exchange mechanisms to construct a model which
can quantitatively describe the NN data. So far the
focus has been on the development of models for
describing low energy NN data. In this work we report
the progress we have made in extending this eff'ort to the
intermediate energy region.

Contrary to the situation in the low energy region
(below the pion production threshold), the meson-
exchange model of nuclear force has encountered
difficulties' ' in describing the data of intermediate en-
ergy NN and ~d reactions, particularly the data of po-
larization observables. The results reported in Ref. 22
have suggested that the problem could be due to the
conventional phenomenological parametrization of the
short-range part of the baryon-baryon (BB) interaction
in terms of meson —baryon-baryon form factors or a con-
venient local form in coordinate space. Motivated by
the success of the MIT bag model and the subsequent
application of the model in the P-matrix analysis of
NN scattering, Lee and Matsuyama ' suggested that a
possible way to resolve the problem is to describe a part,
but not all, of the short-range baryon-baryon dynamics
by a vertex interaction HD zz, where BB can be a NN,

NA, or AA state and D is identified as a six-quark MIT
bag state. They have also developed a unitary wNN
scattering theory which allows a systematic study of the
eKect of the bag excitation mechanism HD zB on all
NN and ~d reactions. To explore the dynamical conse-
quence of the vertex interaction HD NN, we will carry
out a detailed analysis of NN s-wave scattering up to 1

CseV. A simplification of this study results from the
small inelasticity in this NN channel, hence justifying
the neglect of 6 excitation and the associated pion pro-
duction. In this approximation it is straightforward to
see that the operator formulation presented in Sec. IV of
Ref. 28 [namely its Eqs. (4.12)] is completely equivalent
to the quark compound bag (QCB) model proposed ear-
lier by Simonov. We therefore proceed by first follow-
ing closely his coordinate-space formulation to explore,
in detail, the dynamical content of the QCB model. This
study then leads us to develop a new model which is
consistent with the general ~NN formulation of Ref. 28.

The essence of the QCB model is to postulate that
two colliding color singlet three-quark clusters can have
a direct transition to a color singlet six-quark Bag state
when the distance between two clusters is within a nar-
row range around a distance which roughly character-
izes the size of the bag. This notion is formulated by as-
suming that the bag excitation mechanism HD NN is lo-
calized at b [the simplest form is —6(r —b)], where D is
the considered bag state with a mass MD. As pointed
out by Simonov and as will be explicitly shown in this
paper, the resulting NN scattering P matrix has a pole at
E =MD and hence the theory is consistent with the in-
terpretation by JafFe and Low. This Hamiltonian for-
mulation of the P-matrix interpretation characterizes the
essential difference between the QCB model and the oth-
er approaches, which are also motivated by the bag
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II. THE QCB MODEL

We start with the assumption that the total wave
function of a six-quark system consists of two com-
ponents

I p~ & =
I
@z & +CD(E)

I

D & . (2.1)

The first component is of the following cluster form in
coordinate space:

model. In particular, the usual R-matrix separation of
the total wave function into a six-quark component
confined within a given radius ro and a two-hadron com-
ponent at r &ro is not assumed in the QCB model. in-
stead, the relative importance of these two components
is determined by the strength of the bag-excitation
mechanism HD NN relative to the background meson-
exchange interaction. It depends strongly on the col-
lision energy, particularly in the energy range where the
total collision energy is close to the bag mass. For NN
s-wave scattering, considered in this paper, this interest-
ing range is reached at about 600 MeV incident labora-
tory nucleon energy.

The QCB model has been actively pursued by the
ITEP (Institute of Theoretical and Experimental Phys-
ics) group ' ' in the last few years. However, as will
be demonstrated explicitly in Sec. IV, their fit to the NN
data requires a "second" QCB pole which cannot be re-
lated unambiguously to the parameters of the bag model
or the background meson-exchange mechanism. This
uncertainty has also been revealed in a detailed P-matrix
analysis of NN data by Bakker et al. For nuclear
studies it is necessary to introduce more dynamical con-
straints to resolve this problem. In the language of P-
matrix analysis, we need to develop a theory for
defining the background P matrix, which has been
parametrized in terms of "compensation" poles in Refs.
24 and 25, a constant plus an antibound state pole in
Ref. 29, a constant plus a distant pole in Ref. 27, and a
second QCB pole in Ref. 33. This is achieved in this
work.

In Sec. II we give a concise and self-contained presen-
tation of the QCB model. The basic assumptions of the
model will be simply stated without recalling their
justifications discussed in Ref. 29. We then derive, in
Sec. III, formalisms showing analytically how the NN
relative wave function and the P and S matrices behave
in the intermediate energy region where the total col-
lision energy can be equal to or larger than the bag
mass. In Sec. IV we present numerical results to reveal
the dynamical content of the QCB model, and show ex-
plicitly how the uncertainty arises in the ITEP approach
to fit the data. We then show that the parameters of the
bag-excitation mechanism HD NN can be more rigorous-
ly determined from the data if the concept of the chiral-
cloudy Bag model is used to allow the presence of the
meson-exchange mechanism inside the bag region. Sec-
tion V is devoted to the discussion of future develop-
ments and possible applications of the model in the
study of quark degrees of freedom in nuclei.

where

=(.IcE&
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To proceed, it is necessary to define all of the matrix
elements in Eqs. (2.5). We assume that the matrix ele-
ment of the left-hand side of Eq. (2.5a) is of the form of
the usual Schrodinger equation for NN potential
scattering,

(4,
I
(H —E)

I 4, &X~(r)

V + V(r, E)—E Xz(r),
2p

(2.6)

where p, is the reduced mass of two nucleons and V (r, E)
is an interaction potential between two clusters. The
success of the meson-exchange model of nuclear force
suggests that when the distance between two color sing-
let clusters is larger than a certain length scale d, the in-
teraction potential V(r, E) can be effectively described
by meson-exchange mechanisms despite the basic mecha-
nism known to be the QCD quark-gluon processes. We
assume that V(r, E) at r ~d can be taken from the Paris
potential (retaining its original energy dependence).
The short-range part of V(r, E) is expected to deviate
significantly from the phenomenological core of the
Paris potential because of the presence of the excitation
of a bag state D in QCB. For simplicity, we assume that

(O, r(d
(

(2.7)

It is important to note here that the length scale d is a
parameter determining the extent to which the basic

Here, r; denotes the position of each quark, P(R; ) is the
internal wave function of a color singlet three-quark sys-
tem centered at the position R;, and Xz(r) describes the
relative motion between two clusters.

The second component ID& of Eq. (2.1) describes a
confined six-quark bag state. By projecting the
Schrodinger equation onto the cluster component
and the six-quark bag component ID &, we have

&+, I(H —E)
I @,&&z(r)=CD(E)&@, I(E —H) ID&

(2.5a)
and
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quark dynamics can be effectively described by the ex-
change of mesons. In considering the Paris potential, it
is justified to set d to be as short as hc/m =0.5 fm in
order to account for all of the one- and two-pion ex-
change mechanisms deduced from the chiral ~N and ~m

dynamics. The choice of d turns out to be crucial in the
fit to the data. This will be discussed in detail later.

The matrix element between two six-quark bag states
is assumed to be

( D
~

(H E)
~

—D ) =MD E.— (2.8)

The mass MD is taken from the six-quark bag model cal-
culation in Refs. 37—39. Its value in the 'So channel is
predicted to be about 2200 MeV. It is easy to verify that
the uncertainties involved in the bag parameters allow a
variation of about +5%. We will use the value 2159
MeV extracted from the P-matrix analysis of Ref. 27,
which seems to give the best fit.

The matrix element of (H E) bet—ween a cluster state
~
4, ) and a confined bag state ~D) is certainly much

more difficult to define precisely. In the QCB formulat-
ed in Ref. 29, it is assumed to be energy dependent,

fp(r MD )= c6(r —b) (2.12b)

The energy-dependent term is assumed to be a volume-
coupling form

f, (r, MD) =x8(b —r)&2/b sin(mr/b) . (2.12c)

choice of the background potential characterized by the
length scale d in Eqs. (2.7).

(c) Following the interpretation by Jaffe and Low,
the resulting scattering P matrix must have a pole at
E =MD

Property (a) can be obtained by keeping only the lead-
ing energy-dependent term in the Taylor expansion of
the form factor fD(r, E) about the bag energy, MD,

fD(r, E)=fp(r, MD )+(E —MD )f &
(r, MD ) . (2.12a)

As was first pointed out by Simonov and as will be ex-
plicitly demonstrated later in this paper, properties (b)
and (c) can then be obtained by assuming that the energy
independent term fp in Eq. (2.12a) is localized at the dis-
tance b. To make contact with the ITEP model, we fol-
low their approach and take

(4,
~

H E~ D) =fD—(E,r),
(D

~

H E~ 4, ) =—fD(E, r),
with

(2.9)
The form Eq. (2.12c) is suggested in a resonant group
formulation by Simonov.

Equations (2.7) and (2.10)—(2.12) completely define the
QCB model. We now turn to develop a method of solv-
ing the NN scattering problem.

fD(E, r)=0, r &b

where the parameter b roughly characterizes the size of
the bag. Substituting Eqs. (2.6)—(2.9) into Eqs. (2.5) and
performing some straightforward algebra, we get

V + V(r, E) EX+ (r)—
2p

III. NN SCATTERING IN THE QCB MODEL

In the partial wave representation, the radial part of
the scattering equation (2.10) for an uncoupled NN
channel takes the following form (suppress all channel
quantum numbers except the relative orbital angular
momentum l),

fD(r, E) ffD(r', E)Xz(r')dr' (2.10)E —MD

for describing the relative motion of two nucleons. The
bag component can then be obtained from the scattering
wave function

d2

dT

l (1 +1)
2p V (r, E)+k u,—(kr)

2

rfD(r, E) JfD(r', E)ut(kr')r'dr', (3.1)
E —MD

CD(E)= J fD(E, r)X~(r)dr .
E —MD

(2. 1 1)

The transition form factor fD(E, r) has to be treated
phenomenologically since a clear picture of the QCD
confinement mechanism is still not available. In the
ITEP approach some effort has been made to relate
fD(E, r) to a resonanting group formulation of a six-
quark system. No similar attempt will be made here. It
is more useful to simply indicate that their model is
designed to generate the following physical properties:

(a) The nonlocal interaction on the right-hand side of
Eq. (2.10) should contain a term which has a linear ener-

gy dependence of the Paris potential, which defines, via
Eqs. (2.7), the background meson-exchange interaction.

(b) At E =MD the short-range dynamics must be de-
scribed only by the quark configuration and, hence, at
this energy the NN relative wave function XE(r) must be
completely excluded from the bag region r (b for any

where E =(I/2p)k, and u&(r) =rXt(r) is the usual radi-
al wave function. The most important feature of this
differential-integral equation is the appearance of an
energy-dependent nonlocal interaction, which becomes
infinite at E =MD. Clearly, at this energy there will be
an infinite potential and the incoming NN wave will be
completely refiected at the distance b. This means that
the short-range dynamics at E =MD is described only
by the bag configuration. As the collision energy starts
to differ from the bag mass MD, the incoming wave can
penetrate this nonlocal potential and, hence, the cluster
component can also exist inside the bag region. This in-
teresting energy dependence plays an important role in
describing NN scattering in the energy region where the
total collision energy in the c.m. frame can be larger
than the bag mass MD. For MD -2200 MeV in the 'So
channel, this interesting energy region is around 600
MeV incident nucleon energy in the laboratory frame.
We therefore argue that the QCB parameters can be sen-
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d2

dT

l(1+1) 2 V( E) k2P T, +

sibly determined only when the NN data up to 1 GeV
laboratory energy is fitted. The approach of Ref. 11,
which also makes use of the QCB model, only considers
NN data below 400 MeV.

Following the approach of Simonov, we solve Eq.
(3.1) by the Green's function method. The procedure is
to first construct a distorted Green's function from the
meson-exchange interaction V(r, E),

with

p;s, 4p—kiX( D(E)XI D(E)
SI(E)=e E —MD —XD(E)

Here we also define

XI,D(E) f kl '(kr)f D(r, E)r dr

(3.9)

(3.10)

Equation (3.9) shows explicitly that the coupling to a
bag state causes a pole in the S matrix. The position of
the pole in the complex energy plane is determined by
the following nonlinear equation:

&& G, (r, r', E)=o(r —r') . (3.2) Ep —MD —XD(Eq ) =0, Ep ER +i—EI . (3.1 1)

The solution of Eq. (3.2) is

G&(r, r', E)= 2pkg~ "(k—r )(& '(kr ), (3.3)

d —2p V (r, E)+k gI'(k) =0, (3.4)
dr 2 r2

with the boundary conditions

gi "(kr)~ .
T, T~0I+1

,'r [hII '—(kr)+e 'h~'+'(kr)], r ~ ao

(3.5a)

where gI" and gI
' are, respectively, the regular and ir-

regular solutions of the radial Schrodinger equation

Clearly, if the imaginary part EI of the pole position is
small, the coupling to the bag state then generates a
strong energy dependence in the S matrix and its corre-
sponding scattering observables. In this way the bag
state will correspond to the so-called dibaryon reso-
nance. If this is not the case, the role of the bag state is
merely to provide a microscopic picture of the short-
range mechanism.

Next, we want to show that the solution of Eq. (3.1}
exhibits the properties (b) and (c) mentioned in Sec. II.
To do this it is sufficient to consider Eq. (3.1) in the en-
ergy region near MD. Because of the singular nature of
I/(E —MD ), the contribution from the energy-
dependent part of the transition form factor fD(r, E)
[Eqs. (2.12)] to the right-hand side of Eq. (3.1) can be
neglected at the E ~MD limit. We then have

T, T~0—I
(2) (3.5b)

d2

dT

1(1+1)
2pV(r, E—)+k u((kr)2

i
c

i
b ui(kb)

=2p 5(r b), E~—MD . (3.12)E —MD

and

XI,D(E)= f kt" (kr)f D(r, E)» dr

XD(E)= ffD (r', E)G~(r', », E)fD(», E)r dr r'dr' .

(3.7)

(3.8)

The quantity XD is the self-energy of the bag state due to
its coupling to the NN channel. The S matrix is then
extracted by taking the limit r ~ oo of Eq. (3.6),

h,' '(kr) =g, (kr)+—in, (kr) .

Here, 5& is the phase shift due to the interaction V(r, E);
ji and nI are, respectively, the regular and irregular
modified spherical Bessel functions. By using the prop-
erty (3.2} and carrying out some algebraic derivations,
the scattering solution of Eq. (3.1) with only one bag
state can be written as (the corresponding formulation
with several bag states is straightforward)

fGI(r, r', E)fo(r', E)r'dr'
u((kr) =g("(k»)+ X, D(E),E —MD —XD(E)

(3.6)

In the kinematic region near E =MD, Eqs. (3.7) and
(3.8) become

X (E)= cbgi "(kb),—

XD(E)=
~

c
~

b GI(b, b, E),
where

GI(b, b, E)= 2pkgi—"(kb)gI '(kb) .

The wave function (3.6) also takes a simple form,

c b G(r, b, E)g("kb)
u~(kr) =/I''(kr)+ . (3.13)

E —MD cb G(b, b, E)—
Because of the T dependence of the Green's function
(3.3), the wave function inside the region defined by the
distance b becomes

c b '[ —2pkg'"(kr)g' '( k)b]g I( k)b
u( ~ g("(kr)+'

r(b E —MD cb GI(b, b)—
c b g'I "(kr)Gt(b, b, E)

E —MD cb Gi(b, b, E)—

—
u& ~ ,'[hi '(kr)+SI(E)hI'+—'(kr)],

T r~a
E —MD

E —MD —c b Gi(b, b, E)
(3.14)
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Hence, at E =MD, u~ ——0 in the entire region r ~ b. It is
necessary to stress here that this is true for any choice of
meson ex-change interaction V(r, E) and any form of the
Volume co-upling term f ( (r, MD ). This is the desired
property (b) listed in Sec. II. It means that the hadronic
and quark phases are separated completely only at the
energy E =MD. For E&MD, the cluster component in
QCB is also present in the bag region. This is a reason-
able physical picture since we should not expect that the
short-range quark dynamics at all energies can be de-
scribed satisfactorily by the excitation of one or a few
low-lying bag states.

To show that our Hamiltonian formulation can yield
the P-matrix interpretation of the bag solution, we again
consider the scattering in the energy region near the bag
energy E =MD. Integrating Eq. (3.12) over a small re-
gion 2@~0 around the point r =b and using the con-
tinuity of the wave function.

bh ( '(b) —[P((E)—l]h ( '(b)
&((E)= —

),
bh ((+'(b) —[P((E)—1]h (+'(b)

(3.20)

where h ((-( is the solution of the radial equation (3.4)
with the boundary condition

h ' (r) ~ h(' +((r)—=j ((kr)+in((kr) . (3.21)

P, (MD)=, E Mo2pb fc
/

F —MD

and, hence,

(3.22)

S((MD ) =—,E~MD
h ', +'(b)

At E~MD the background term P( of Eq. (3.18) can be
neglected and we then have

u((b +e) =u((b —e), e~0 (3.15a)
2i 6l (MD )=e (3.23)

we have

2p ic i
b u((b)

u((b +e) u('(b —e—) = , e~O, E~MD.E —MD

(3.15b)

6o(MD ) = —kDb

with

(3.24)

In the absence of any background meson-exchange in-
teraction V=O, we have, for I=0 s-wave scattering,

The P matrix is defined as MD ——2m +kD/m (3.25)

bu('(b +e)
P, (E)= e~O .

u, (b+e) '

By using Eq. (3.15), we have

2p ~c ~'b'
P((E)= +

u((b —e) E —MD

(3.16)

(3.17)

2b2
P((E)=P((E)+

D
(3.18)

where the background term P& is only determined by the
wave function calculated from the background meson-
exchange interaction through Eqs. (3.4) and (3.5),

b c(1) (b)
P((E)=

g(1((b)
(3.19)

We see that for any form of the background meson-
exchange interaction V(E, r), the P-matrix equation
(3.18) has a pole at E =MD. According to the interpre-
tation by Jaffe and Low, we can therefore use the bag
model calculation to define the mass MD of the six-
quark state D in our Hamiltonian formulation of the
problem. Equation (3.18) was first obtained by
Simonov. We want to point out that for an energy-
dependent form factor (2.12), Eq. (3.18) is only valid in
the energy region very close to the bag mass MD, where
the scattering equation takes the form of Eq. (3.12).

It is interesting to express the S matrix in terms of the
P matrix,

By using Eq. (3.14) to evaluate the first term of Eq.
(3.17), we obtain

Equation (3.24) shows an interesting feature of the QCB.
If the background meson-exchange interaction is weak in
the energy region near the bag mass MD, the phase-shift
data at E =MD is directly related to the bag parameters.
With Mz ——2159 MeV in the considered 'Sz channel, it
is found that b =1.4 fm. The effect due to the back-
ground interaction with d &0.6 fm [Eqs. (2.7)] does not
change this value too much. The value b=1.4 fm is not
too different from that used in all P-matrix analy-
ses. We therefore set b=1.4 fm in all of the calcu-
lations presented in this paper.

IV. RESULTS AND DISCUSSIONS

With the choice MD ——2159 MeV and b=1.4 fm, the
parameters of the QCB model defined in Sec. II are (i)
the cutoff parameter d in Eqs. (2.7) for defining the ex-
tent to which a chosen NN potential should be used to
describe the meson-exchange mechanism, and (ii) c and x
for defining the strength of the transition form factor,
Eqs. (2.12). Our task is to examine whether the NN 'Sa
phase shift up to 1 GeV laboratory energy can be fitted
by varying these three parameters in a X fit.

It is most desirable to have a model in which the
short-range dynamics is entirely described by the excita-
tion of a six-quark bag, and the meson-exchange interac-
tion is excluded completely from the bag region. In our
formulation this simplest model can be defined by setting
d =b = 1.4 fm in defining the background meson-
exchange interaction [Eqs. (2.7)]. This model will be
called the one-pole QCB, when only the lowest bag state
with MD ——2159 MeV is kept.
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The best fit by the one-pole QCB is the solid curve
shown in Fig. l. The resulting parameters are listed in
Table I. We see that while the data in the high energy
region can be fitted, the model cannot provide enough
attraction to fit the low energy data. In Fig. 1 we also
show the result (dashed curve) with the meson-exchange
interaction V turned off. Clearly the one-pion exchange
at r ~d=1.4 fm contained in V is an important source
of the attraction in the low energy region, but it is not
enough to fit the data.

To obtain a satisfactory description of the phase shift,
we need to include additional attractive mechanisms.
The approach taken by the ITEP group ' is to include
a coupling with a second bag state with a much higher
mass. The fit by this two-pole QCB is the solid curve
shown in Fig. 2. In Fig. 2 we also show the effects when
the coupling to the second bag state or the meson-
exchange interaction V is turned off. Clearly, the attrac-
tion provided by the second bag state is indispensable in
the fit to the data in the low energy region. However,
we find that the fit to the data does not uniquely deter-
mine the coupling to the higher mass second bag. In
Table II we list four sets of the parameters which give
about the same 7 value. The parameters c, and x, for
the coupling to the lowest bag state is very well con-
strained by the data, but the allowed parameters of the
higher mass second bag state are rather arbitrary (we set
the volume coupling to the higher bag state zero, xz ——0,
for simplicity). In addition, we also find that it is possi-
ble to get the same good fit to the data by having more
than one higher mass bag state, as far as their masses are
larger than about 3000 MeV. This makes the interpreta-
tion of those higher mass bag states rather uncertain
since we cannot identify them with the well-defined bag
model prediction. Its implication in the application
of the model in nuclear physics calculations, which will
be discussed in Sec. V, will be unclear. This uncertainty
probably suggests the limitation of the ITEP QCB mod-
el.

We now depart from the ITEP approach and propose
a model which is consistent with the suggestion of Ref.

M (Me V) d =b (fm) value

2159 1.4 174.06 1.1043 899

28. The model is simply to allow the meson-exchange
interaction V defined by the Paris potential to exist also
inside the bag region; i.e., setting the cutoff parameter d
of Eqs. (2.7) to be less than the distance b= 1.4 fm. Ad-
mittedly, this procedure makes the physical interpreta-
tion of the model less transparent. It remains to be
clarified in the future. Perhaps this model can be quali-
tatively justified by the following arguments. It is now
well recognized that the low energy data can be more
realistically described by extending the MIT bag model
to include the pion cloud. The resulting cloudy-chiral
bag model proves to be reasonably successful in
describing the properties of the nucleon and b, , as well as
the low energy mN scattering. It is therefore possible
that when two nucleons start to overlap there exists a re-
gion in which the transition from the hadronic phase to
quark-gluon phase is not complete and the interaction
can effectively be described by the exchange of pions be-

50
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-25

-50

50

25

8 0
0-25

-50

TABLE I. Parameters of the transition form factor, Eqs.
(2.12), in the one-pole QCB model; c is in units of MeV fm'~, x
is dimensionless, and MD is the mass of the bag state.
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FICx. 1. The solid curve is the best fit to the NN 'So phase
shift (Ref. 41) within the one-pole QCB model. The dashed
curve is obtained when the background meson-exchange in-
teraction V [Eq. (2.17)] is turned off'.
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FICJ. 2. The solid curve is the best fit to the NN 'So phase
shift (Ref. 41) within the tow-pole QCB model. The dashed
curves are obtained when either the background meson-
exchange interaction V [Eq. (2.17)] or the coupling to the
higher mass second bag state is set to zero.
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TABLE II. Same as Table I, except for the two-pole QCB model.

d =b (fm)

1.4

MD, (MeV)

2159
2159
2159
2159

Ci

167.43
167.62
167.74
167.82

1.1754
1.1723
1.1706
1.1695

MD

3376.512
3876.512
4376.512
4876.512

C2

151.18
174.50
195.06
213.66

1.97
2.05
2.10
2.13

tween two cloudy bags. It is our assumption that this
effect in the region r 0.6 fm is already included in the
Paris potential. To be more consistent with the Paris
potential, we retain its original linear energy dependence
in our model. As discussed in Sec. II, this is also the
reason why the form of transition form factor, Eqs.
(2.12), is chosen. Of course, the included intermediate
range meson-exchange interaction has to compete with
the bag excitation mechanism, which can happen at a
much larger distance, b=1.4 fm. This two-mechanism
picture is consistent with the ~NN formulation of Lee
and Matsuyama. At this point it is important to note
here that this extended QCB, called the cloudy QCB
from now on, still retains all of the properties discussed
in Sec. III. In particular, we see from Eq. (3.14) that the
clear cut separation of the bag and two-cluster
configurations still exists at E =MD, even when the
background meson-exchange interaction is now allowed
to exist inside the bag region.

To investigate the cloudy QCB, we allow the cutoff
parameter d of Eqs. (2.7) along with the bag excitation
parameters c and x to vary in our 7 fit to the 'S0 phase
shift data. We first find that the cloudy QCB cannot fit
the data well if the cutoff parameter d is larger than 0.8
fm. As shown in Table III, with d=0.8 fm the 7 is al-
ready very large. With d=0.65 fm we can obtain a fit
which is as good as the solid curve of Fig. 2. The result-
ing bag excitation parameters c and x are almost identi-
cal to the values of c& and x, of the two pole QCB mod-
el (see Table II). This further establishes the close rela-
tionship between the lowest bag state predicted by the
theory and the NN phase shift data within the QCB.

We now turn to analyze the dynamical content of the
cloudy QCB model in some detail. First, we shown in
Fig. 3 that the energy dependent part of the transition
form factor (2.12a) is essential in the fit. When x of Eq.
(2.12c) is set to zero, the phase shift behaves smoothly
only for a very large c) 550. In this strong 5-function
coupling limit the background interaction is completely
negligible and the phase shift is determined only by the
bag mass MD, and the radius b, as shown in Eq. (3.24).
By decreasing the value of c one can certainly reduce the

TABLE III. Same as Table I, except for the cloudy QCB
model.
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0
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attraction in the low-energy region and the repulsion in
the high-energy region. But the poles of the S matrix
[second term of Eq. (3.9)] is then shifted to a position
very close to the real axis, and hence the phase shift
starts to develop a strong energy dependence. Namely,
the model with x=0 will generate an unobserved "di-
baryon resonance" if we want to reduce the attraction in
the low energy region.

The importance of the energy dependent part of the
transition form factor is further illustrated in Fig. 4. We

2159
2159

0.80
0.65

1.4
1.4

MD (MeV) d (fm) b (fm)

170.86
166.14

1.0459
1.3064

26.37
3.13

FIG. 3. The dependence of the predicted NN 'Sa phase
shift on the strength c of the transition form factor [Eqs.
(2.12)]. In this fit to the data, the energy dependent term of
Eqs. (2.12) is set equal to zero (x=0).
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FIG. 5. The relative NN wave functions calculated from the
cloudy QCB model in the energy region near the bag mass
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see that if we decrease x from the fitted value x = 1.3 to
x=0.5 [Fig. 4(a)], the model gradually generates visible
"dibaryon resonance, " in contradiction with the data.
When x is increased to a larger value, the calculated
phase shifts become too repulsive [Fig. 4(b)]. It is obvi-
ous from Eq. (3.1) that the 5-function coupling generates
attraction for E &MD, and repulsion for E ~MD. The
energy dependent volume coupling f &

gives a repulsive
contribution at all energies. The fit is thus due to a deli-
cate balance between these two different bag excitation
mechanisms.

Finally, we want to examine how the bag excitation
dynamics determines the NN relative wave function.
We see in Fig. 5 that at E =MD (E, =300 MeV) the
wave function (solid curve) inside the bag region r (b is
completely suppressed, as expected from Eq. (3.14). In
other energy regions the short-range dynamics is de-
scribed by both the two-cluster and bag configurations
and hence is not excluded from the bag region. Needless
to say, our approach is radically different from the mod-
els of Kim and of Kisslinger et al. '

In Fig. 6 we compare the NN wave function of the
cloudy QCB at E =MD with the wave function calculat-
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FICs. 4. The dependence of the predicted NN 'So phase
shift on the strength x of the transition form factor [Eqs.
(2.12)].

FIG. 6. Comparison of the relative NN wave function
(solid) calculated at E =M& (Ei,b =600 MeV) from the QCB
with that from the wave function (dashed) calculated from the
usual potential scattering with the Paris potential.
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ed from the usual potential scattering equation with the
Paris potential. The suppression of QCB wave functions
in the region of r &b=1.4 fm is evident. It is clear that
these two models will have very different predictions of
any NN reactions which are mainly determined by
short-range mechanisms.

V. DISCUSSION

We have explored the dynamical content of the quark
compound bag (QCB) model in the intermediate energy
region. It has been shown both analytically and numeri-
cally that a large part of the short-range NN dynamics
can be related to the MIT bag state through a vertex in-
teraction HNN D pararneterized in the form of Eqs.
(2.12). However, a fit to the data cannot be achieved
without introducing an additional attractive mechanism.
We have verified explicitly that this needed attractive
force is generated in the QCB model of ITEP by intro-
ducing a second pole, which cannot be identified with
the bag model prediction. We have shown that this
problem can be resolved by simply allowing the existence
of meson-exchange mechanisms in the bag region. We
argue that this extension of the QCB model is consistent
with the chiral/cloudy bag model and the original con-
struction of the Paris potential. The resulting cloudy
QCB model proves to be very successful in describing
the data.

cloudy QCB model is consistent with the trNN
formulation of Ref. 28. To explore the extent to which
the difficulties encountered in the study of intermediate
energy NN and m.d reactions can be resolved, we need to
follow the unitary scattering theory developed in Ref. 28
to account for the 6 excitation and pion production. In
fact, we expect from the coefficients of fractional paren-
tage expansion of the bag wave function that the dom-

inant transition in the J =2, T= 1 channel is
D~~Nb, ( S2 )~~trNN.

To end this paper, we would like to point out that the
cloudy QCB model can perhaps be used to predict the
probability of finding an "off-shell" six-quark subsystem
in nuclei. In our approach this prediction is completely
determined in the fit to the NN data in the intermediate
energy region where this six-quark system is excited "on
shell. " Clearly our approach is radically different from
the model of Kim et al. and that of Kisslinger et al. '

The information of intermediate energy NN scattering is
never used to constraint the parameters of these models.
The second important implication of the work is that
our cloudy QCB model can be used to calculate the
one-pion exchange interaction between a six-quark sub-
system and a nucleon, since the pion coupling with a
six-quark bag can be calculated by using the method of
Mulder and Thomas. Specifically, we can calculate the
three-nucleon force through the excitation of an "off-
shell" six-quark bag state, a calculation never attempt
before. These two works are in progress and will be
published elsewhere. Of course, the extension of the
present work to include 6 excitation and pion produc-
tion is the major challenge in developing an accurate
~NN theory for a fundamental description of intermedi-
ate energy physics.
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