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An extended time-dependent Hartree-Fock theory which incorporates the effects of nucleon-
nucleon collisions into the mean field is presented and applied to head-on collisions of '°0 + 'O at
low incident energies. Particularly investigated is the influence of nucleon-nucleon collisions on the
low angular momentum limit for fusion which is predicted by time-dependent Hartree-Fock calcula-
tions. It is found that the threshold energy for the low angular momentum limit is dramatically in-

creased because of nucleon-nucleon collision effects.

I. INTRODUCTION

The time-dependent Hartree-Fock (TDHF) theory has
extensively been used to simulate low energy heavy-ion
collisions, e.g., deep-inelastic collisions and fusion reac-
tions.'? On the other hand, it has been pointed out that
TDHF theory has limitations inherent in the mean field
theory. Here we are interested in nucleon-nucleon (NN)
collision effects. At low incident energies the Pauli ex-
clusion principle is effective in suppressing NN collisions,
making TDHF theory a good description for the dynam-
ics of heavy-ion collisions. NN collisions are expected to
become increasingly important with increasing incident
energy. At intermediate energies where new data are be-
ing accumulated, they play as important a role in the dy-
namics of heavy-ion collisions as the mean field.

Although much work has been devoted to the deriva-
tion of the NN collision theory,’ its applications to realis-
tic nucleus-nucleus collisions are scarce except for numer-
ical simulations based on a semiclassical model.* The aim
of this paper is to apply the quantum theory of NN col-
lisions to nucleus-nucleus collisions. The theory used
here, which determines the time evolution of the one-body
density matrix, was derived in a previous paper> from the
Kadanoff-Baym equation for the one-body Green’s func-
tion.® Wong and Tang’ and Orland and Schaeffer® have
also used this equation in the derivation of a collision
term. In contrast to their works, however, our model
contains memory effects in the collision term and keeps
nondiagonal elements of the occupation matrix. In an ap-
plication of our model to one-dimensional systems,5 we
demonstrated that these ingredients of the theory are in-
dispensable for a correct description of dissipative phe-
nomena in finite systems.

In Sec. IT we describe our model and discuss conserva-
tion laws and the time reversal property of the theory. In
numerical applications we focus on low energy reactions,
where TDHF calculations predict a low angular momen-
tum (low-L) limit for fusion above a certain incident ener-
gy.'? Several experiments have been performed to ob-
serve directly this low-L limit. However, there has been
no experimental evidence that proves its existence.” We
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will demonstrate that the threshold energy for the low-L
limit is dramatically increased due to NN collision effects.
The same conclusion has been obtained in our previous
work!? based on a phenomenological model'! for NN col-
lision effects in which the one-body density matrix is as-
sumed to approach thermal equilibrium one.

Numerical calculations are performed for head-on col-
lisions of '®0O + '®0. Details of the calculations are ex-
plained in Sec. III. Results are presented in Sec. IV. Sec-
tion V is devoted to summary.

II. THE MODEL

A. Equation of motion for one-body density matrix

Since the derivation of a collision term was presented in
a previous paper,’ we briefly summarize the main result in
this subsection. [The theory is called the time-dependent
density matrix (TDDM) method hereafter.] We study the
time evolution of the one-body density matrix, which can
be expanded in terms of single-particle (s.p.) wave func-
tions ¢, and the occupation matrix n,,  as

plr, ;)= nan (Oalr, )Pi(r't) . (1)
A

The s.p. wave functions are chosen to satisfy the TDHF-
like equation

., 0
zﬁ—é?gbx(r,t)=h¢k(r,t)

=[—#V2/2M + Unp(p)lt(r,1) , 2)

where Uy is the self-consistent mean potential. Since p
includes NN collision effects through n,,:, Ung(p) in the
TDDM method becomes different from that in the TDHF
theory as NN collisions proceed. The above representa-
tion of the s.p. basis allows us to express the time deriva-
tive of n;,- in terms of the correlated part of the two-body
Green’s function,”® which is treated in the Born approxi-
mation. The two-body Green’s function in this approxi-
mation is given by products of four one-body Green’s
functions. Then the time derivative of n;,- is given as’
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g?nmf(t)z—(l/ﬁz)[FM'(t)+FXq(t)] ,

where

Fu(t)= 2 (7\8')0 |a,8) f: dt'(a’B’|u ]‘)/8),4 |t’{ [6aa'——naa'(t')][ﬁgg'—ngg'(t’)]ny}g(l')n55’([')

aa'BB'y88'

Here, v is the residual interaction and the subscript A4
means that the matrix element is antisymmetrized. In the
derivation of Egs. (3) and (4) the one-body Green’s func-
tions in the two-body Green’s function are parametrized
by ¥, and nj;) to close the equation motion for p. The
one-body Green’s functions thus parametrized satisfy the
same equation as for ¢, (see Ref. 5). This property of the
one-body Green’s function guarantees the total energy
conservation, as was discussed by Grangé et al.'? Equa-
tion (3) is similar to Eq. (B7) of Ref. 7, where a simple
time dependence of ¥, and n,;  was assumed and the time
integration was carried out.

There are two important memory effects in the ¢’ in-
tegration in Eq. (4). Single-particle wave functions in a
time-dependent mean field, in general, do not have a
sharp energy distribution. The spreading effect of the s.p.
spectra in the time-dependent mean field is included
correctly in the ¢’ integration, which makes the transition
of nucleons possible even if there is no crossing in the
mean values of the s.p. energies defined by €
=(A|h |L). The other memory effect is from the damp-
ing of s.p. states due to NN collisions which also makes
s.p. spectra broad. This effect is included through the de-
cay of nj, and 1—n,; in the integrand of the ¢’ integra-
tion.

As was studied in previous papers, the nondiagonal
elements of n,, are essential for a correct description of
available phase space for NN collisions when the time-
evolved TDHF-like states ¥, [see Eq. (2)] are used as a
basis. In fact, there is no additional damping when non-
diagonal elements of n;,  are ignored.>'°

In the following, we discuss conservation laws and
symmetry of Egs. (2)—(4).

5,10

B. Conservation of the total number of particles

Equations (3) and (4) conserve the total number of par-
ticles. The time derivative of the total number of parti-
cles, N =3, n, is identical to zero, which may be seen
as follows:

—naa(t et )8y —nya(t)][8ss —nss(t)]} . 4)

dN R 1
?=§nu=—*ﬁ;§(1’xx+l’h)

1
== 2 Fu—3Fu|=0. (5)
x *

C. Total energy conservation

The total energy E, is defined as the expectation value
of the total Hamiltonian which consists of the kinetic en-
ergy term and the two-body interaction term. The expec-
tation value of the latter is written in terms of the two-
body Green’s function. Since the two-body Green’s func-
tion is treated in the Hartree-Fock (HF) + Born approxi-
mation, E, consists of the HF energy Eyfr and the corre-
lation energy Ecor:’

Elot=EHF+Ecor > (6)
where
2
Enr= 3 <7&1 YV kz)hxzm
Ay
+3 X MMV Ake) amapnag, » (D
AMAghsh,

and E,, is given as
i
Ecor’—‘_ﬁgFﬂx . (8)

This originates from the Born term of the two-body
Green’s function. The force V in Eq. (7) is the effective
interaction used to construct the mean potential, which, in
general, is different from the residual interaction v. Since
the s.p. states satisfy Eq. (2), the time derivative of Eyp
can be expressed in terms of 7;,’,

dEyr
= A, 9)
ar PNGAA"AA

where €, is defined as e =(A|h |A'). The time
derivative of E ., consists of two terms: one has the time
derivative of the first matrix element on the right-hand
side of Eq. (4) and the other the time derivative of the ¢’
integral. The latter vanishes, as can be easily seen from
Eq. (4). The time derivative of the matrix element is
rewritten with the use of Eq. (2) as follows:

%(aﬁlv |v8)=(aB|v |y8)+(aB|v |y8)+(aB|v |y8)+(aB|v |¥6)

=é2[ea;\<kﬂ[u |¥8) +em{Br|v |¥8) —(aB|v |A8)er, —(aB|v | YA)es] -
A

[((ha)B|v | ¥8) +{a(hB)|v |¥y8) —(aB|v | (hy)8) —{aB|v | y(h8))]



Using this relation and Egs. (3) and (4), we can show that
dE . /dt becomes
dEyF

— 2 e =— 2t

AL

Thus the total energy is conserved. However, the relation
(10) holds true only if a complete set of the s.p. basis is
used. Truncation of s.p. basis leads to a small violation of
the total energy conservation, as will be discussed in Sec.
Iv.

D. Total momentum conservation
The conservation of the total momentum can be proved

in a similar way if the interaction has Galilean invariance.
The total momentum is defined as

P=E(k|p|7n’>nm . (11)
AN

The time derivative of P is given as
|

S A p| AV =—(1/%) 3

AN raa'BB'y 68

The first matrix element in the above equation becomes
(A8 | [p,v] | aB)=—i#i{A8' |V (r—1) |aB) , (15)

where we assume that the residual interaction depends
only on the relative coordinate. In the sum of Eq. (14)
the matrix element appears in the following combinations:

(A8 | Vw(r—r) |aB) +{8A|Vw(r—r)|Ba) (16)
or
(M| Vw(r—1)|aa) . (17

These combinations of the matrix elements are identical to
zero because the interaction depends only on |r—r’|.
Thus the total momentum is also conserved.

E. Time reversal property

We discuss a time reversal property of the equation of
motion. We show that the time reversal of the density
matrix p(r,r’;¢) defined as

(18)

satisfies the same equation of motion as p(r,r’;z). Since
the complex conjugate of Eq. (2) is

pr(r,r';t)=p(r,r'; —1)*

—H Y (5 0=h (" (50 (19)
the time reversal of the s.p. wave function, ¥7(r,t)

=9*(r, —1), satisfies the same equation of motion as Eq.
(2):

iﬁ%tpr(r,t)=h (privrin,o) . (20)
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where Eq. (2) is used for the time derivative of the s.p.
states. For simplicity, we neglect the exchange term in
Uyr and assume that the effective interaction is a func-
tional of |r—r’'|. Then, Uyg is given by Ugyr
= [dr'V(r—r')p(r'). The first term on the right-hand
side of Eq. (12) becomes

éz (A | [A,p]| A I nan
Ar'
=— [ drdrp([V.V (r—1)p(r')=0, (13)

where we use p= —i#V.
The second term on the right-hand side of Eq. (12) is
rewritten with the use of Eq. (4),

dt'{a'B'|v |v8) 4| r

X { [8aa—Naa(t')][6p8 —npp(t)In (¢t )nss(t')

—naar(t')ngg(t’)[SM—~n,k(t’)][Sw—ngg(t’)]] . (14)

The time reversal of n;,- is defined in the same way as pr,

nh()=nkv(—1 . 21

Using the equation of motion for n,,:, we can show that
the time derivative of n [;:(z) is given as

%n{x(r): — (1 /) G (D, n 5o (1))

+ G (W), n (], (22)

where G, is the same functional as F;,- of ¥, and n;,,
except for the interval of the ¢’ integration. The ¢’ in-
tegration in Gj)- is from « to t. Equation (22) is ap-
parently different from the equation of motion for n;,,
Eq. (3). However, the starting time of the ¢’ integration
does not have special meaning; if we start the ¢’ integra-
tion from 0, the equation of motion for n };- is the same as
that for nj, . In this sense the equation of motion for p is
time reversal invariant.

III. CALCULATIONAL DETAILS

We apply the model to head-on collisions of %0 + '°0.
The TDHF code with axial symmetry'® is used. The
mean potential is obtained from the Bonche-Koonin-
Negele force'* with the Coulomb interaction. The s.p.
states are taken up to the 2s-1d shell. Each state can be
occupied by four nucleons due to spin-isospin degeneracy.
The 1s and 1p states are assumed to be initially complete-
ly occupied and the 2s-1d states totally empty. The s.p.
states are labeled by absolute azimuthal quantum number
|m | and z parity since the system is axially symmetric
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along the z direction (beam direction) and has reflection
symmetry with respect to the plane perpendicular to the
beam. The nondiagonal elements of n,, between s.p.
states with different | m | and z parity vanishes.

We use a residual interaction of the & function form
v =v08%(r —r'), with vg=—300 MeV fm>. The residual
interaction gives the NN cross section of about 40 mb in
the Born approximation. In the evaluation of the ¢’ in-
tegration in Eq. (4), we assume that the residual interac-
tion vanishes as t'—>— « and neglect the ground-state
correlation effect on n,;  before the two nuclei interact.
For simplicity we neglect the exchange part of the matrix
element of the right-hand side of Eq. (4).

The mesh size is 0.4 fm both in the beam direction and
in the perpendicular direction. The time step AT is
0.25x 1073 s. The time derivative of n;;, is evaluated at
the midpoint between T and T + AT, and the predictor-
corrector method is used to get nu (T +AT) from
nn(T) as is used for ¥, in TDHF. The computation
time for one time step in the TDDM method is a factor of
70 larger than that in TDHF theory.

IV. RESULTS

We show the results for E,, =100 MeV. At this ener-
gy the low-L window is already open in TDHF theory.
The fusion threshold in TDHF theory is Ej;, =54 MeV
for the force of Ref. 14. In Fig. 1 the time evolution of
the diagonal elements of n,,  as well as that of the s.p. en-
ergies are shown for four states near the initial Fermi lev-

1.2

T T T T T T

T
160+ 160

E,;,=100MeV

1.0 Pm=1,—

Time (107%%sec)

FIG. 1. Time evolution of the diagonal elements of the occu-
pation matrix (upper part) and that of the s.p. energies (lower
part) defined by e€x={A|h |A) in the head-on collision of
160 4+ %0 at Ejp =100 MeV. The s.p. states are labeled by the
asymptotic quantum numbers, i.e., orbital angular momentum,
azimuthal quantum number, and z parity.

el. The occupation probabilities of these states change
most significantly during the collision. The s.p. energies
€, are shown in the lower part of Fig. 1. There is no
crossing in the s.p. energies. Nevertheless, the relaxation
of nj, starts after the significant change in the s.p. ener-
gies. This is due to the spreading of the s.p. spectrum
during the collision, which is taken into account by the ¢’
integration in Eq. (4).

It may be useful to see the equilibration process with
the entropy given by the eigenvalues n, of n;y,

S/kp=—=3 [ngInng+(1—ny)In(l—n,)], (23)

where kp is the Boltzmann constant. The entropy is
shown in Fig. 2 as a function of time. The entropy in-
creases rapidly in the early stage of the collision and
seems to saturate in the later stage. The time during
which the entropy approaches its saturated value is about
2% 1072 5. (See Fig. 2.) This is near the value estimated
by Toepffer and Wong'® in the Fermi gas model. The en-
tropy oscillates in the later stage and is, therefore, not an
increasing function. In general, the entropy defined by
Eq. (23) does not always increase for the quantum system
consisting of a small number of particles such as that con-
sidered here.'®

In the following we discuss the energy conservation.
Although the theory conserves the total energy, the nu-
merical calculation shows a small deviation of the total
energy as indicated in Fig. 3, where the time evolution of
the total energy E,, the Hartree-Fock energy Eyg, and
the correlation energy E ., are shown. The total energy is
increased by about 20 MeV during the collision. The ori-
gin of the violation of the total energy conservation was
studied in a previous paper for one-dimensional systems.’
It was found that the violation is due not to numerical
inaccuracy of the calculation, but to the truncation of the
s.p. basis. As was discussed in Sec. II, the time derivative
of E.o [Eq. (8)] is equal to that of Egr unless the s.p.
basis is truncated.

The distance between the center of mass of the right-
hand fragment and that of the left-hand fragment is
shown in Fig. 4 as a function of time. The solid curve is

30 T T T T T T T
1%0+'%0  Ej,=100MeV
25+ 8
o 20
~~
~
z
2 15-
b=
=
10}
sw
1 B 1 Il 1
0 2 4 6 8

Time (loizzsec)

FIG. 2. Time evolution of the entropy in the head-on col-
lision of '*O + 'O at Ej., = 100 MeV.
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FIG. 3. Time evolution of the total energy E,o, the Hartree-

Fock energy Enr, and the correlation energy E., in the head-on
collision of 'O + O at E},p, = 100 MeV.

the TDDM result and the dashed curve the TDHF result.
In the TDDM model the system survives the first separa-
tion phase. This event can be regarded as fusion, accord-
ing to the criterion of fusion given in Ref. 17.

The effects of NN collisions on the dissipation of the ki-
netic energy of the relative motion is very small at this in-
cident energy, as might be understood from the time evo-
lution of the occupation numbers in Fig. 1. In fact, about
75% of the kinetic energy of the relative motion is dissi-
pated in TDHF theory. However, NN collisions play a
crucial role in determining whether the system fuses or
not. This is because the final kinetic energy of the relative
motion in TDHF theory is only several MeV above the
Coulomb barrier.

In order to determine the threshold energy for the
opening of inelastic scatterings, we performed calculations
at higher energies and found the threshold to lie between
140 and 150 MeV. (Since the numerical calculation was
time consuming, we did not try to find a more accurate
value of the threshold energy.) The threshold will become
even higher if we use more s.p. states in the calculation.

V. SUMMARY

We presented a model for the extended TDHF theory
which incorporates the nucleon-nucleon collision effects

15 T T T T T T T
%0+1%0  E,,=100MeV
£
10
=
g
=
a
L3
=
S5
<
[~
0 1 1 1 I 1 1 1

Time (1072*sec)

FIG. 4. Time evolution of the relative distance between the
right-hand fragment and the left-hand fragment in the head-on
collision of '*O 4 'O at E,,=100 MeV. The solid curve
denotes the TDDM result and the dashed curve the TDHF one.

into the mean field in a quantum mechanical way. It was
shown that the model conserves particle number, total
momentum, and total energy. The time reversal property
of the equation of motion was also discussed. The model
was applied to head-on collisions of %0 + 'O to study
the controversial problem of the low-L limit for fusion
which is predicted by TDHF calculations. It was found
that the threshold energy for the low-L limit is increased
from Ej,=54 MeV to E;,~145 MeV by nucleon-
nucleon collisions effects. This is consistent with experi-
ments.

The nucleon-nucleon collision is not a unique effect
which increases the threshold energy for the low-L limit.
There is an attempt to resolve the problem of the low-L
window by improving the TDHF calculations. Umar
et al.'® included within the framework of TDHF theory
the spin-orbit force, which has so far been neglected in
TDHEF calculations, and found that the threshold energy
above which the low-L window opens is increased by a
factor of 2.
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