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The dispersion relation approach is used to extrapolate towards negative energy the average po-
tential felt by neutrons in yttrium, using as input empirical values of the optical-model potential.
At positive energy the absolute value of the volume integral of the potential decreases approxi-
mately linearly with energy, but it sharply increases with energy in the vicinity of the Fermi ener-
gy, i.e., in the domain which corresponds to the valence bound neutron shells. This Fermi-surface
anomaly is quite similar to that which has recently been investigated in the case of neutrons in
28py. It mainly reflects the energy dependence of the potential radius, although the energy depen-
dence of the potential depth also has a characteristic nonmonotonic behavior and plays a
significant role. The energy and radial dependence of the effective mass is exhibited.

I. INTRODUCTION

Optical-model analyses of scattering cross sections
show that, at positive energy, the average nucleon-
nucleus potential depends upon energy. In contrast, the
experimental single-particle energies of the valence
shells, which are negative, can be reproduced with an
average potential which is independent of energy. This
modification of the energy dependence of the average po-
tential as the energy changes sign is often called “the
Fermi-surface anomaly.”

Its existence! as well as its physical origin? were point-
ed out long ago, but is is only recently that the detailed
nature of the energy dependence of the average potential
near the Fermi energy has been exhibited;’ is was found
to be quite similar in “*Ca as in 2°*Pb. The theory,
furthermore, makes one expect that it should also be ap-
proximately the same for the other medium-weight and
heavy nuclei.

This expectation appears to be at variance with a re-
cent analysis* from which it is concluded that “the neu-
tron interaction with %Y does not display a Fermi-
surface anomaly of the nature reported in the %*Pb re-
gion” in Ref. 3. The main purpose of the present work
is to perform an improved analysis of the n-*’Y system
in the framework of the dispersion relation approach
outlined in Ref. 5 and discussed in detail in Refs. 6 and
7. This will lead us to the conclusion that the Fermi-
surface anomaly is quite similar in the n-%Y as in the n-
208pb system. In particular, the potential radius in-
creases and the potential depth decreases with energy in
the vicinity of the Fermi surface, while at positive ener-
gy the potential radius and the potential depth both de-
crease with energy. These main features are expected to
be shared by all nuclei.

Our presentation scheme is the following: In Sec. II
we first briefly recall the dispersion relation approach of
Refs. 5 and 6 and we specify the inputs of our analysis,
namely the real and imaginary parts of empirical
optical-model potentials for the n-**Y system and the ex-
perimental single-particle energies. The Woods-Saxon
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parametrization of the real part of the average potential
in the energy domain —20 < E <40 MeV is calculated in
Sec. III; we consider, in particular, the potential depth
and radius, the volume integral per nucleon, the root
mean square radius, and the effective mass. The main
difference between the present analysis and the one car-
ried out in Ref. 4 is discussed in Sec. IV. Our con-
clusions are presented in Sec. V.

II. EMPIRICAL INPUT

Let M(r;E)=V(r;E)+iW(r;E) denote the nucleon-
nucleus mean field. Our aim is to determine the radial
and energy dependence of V(r;E) at negative as well as
at positive energy. We assume that V(r;E) has a
Woods-Saxon shape:

V(r;E)==Upf(xy),
f(Xp)={1+exp[(r—Ry)/a,]}".

(2.1a)
(2.1b)

The problem then amounts to finding the energy depen-
dence of three parameters, namely U, (E), R, (E), and
ay(E). Equivalently, it is sufficient to determine three
different radial moments

P E=2T [ = virEvar . (2.2)
This is possible in the framework of the dispersion rela-
tion approach of Refs. 5 and 6, which is briefly recalled
in Sec. II A. The inputs of the calculation are the empir-
ical values of the radial moments of the imaginary and
real parts of the optical-model potential and the single-
particle energies. These inputs are specified in Sec. II B.

A. Dispersion relation approach

In this approach V(r;E) is written as the sum of the
Hartree-Fock— (HF-) type component Vyg(r;E) and of
a dispersive contribution AV (r;E):

V(r;E)=Vyug(r;E)+AV(r;E) , (2.3)
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[Fr9)(E)=[r9]up(E)+ 9]0 (E) . (2.4)

We shall determine [77],,(E) from the following
dispersion relation,
w [PIwW(E")
[rq]AV(E)zg fﬁw %dE' ; (2.5)
P denotes a principal value. It is plausible to assume
that [79],,(E’) is symmetric with respect to the Fermi
energy Ep since this amounts to assuming that for a
given excitation energy | E’'—Ep | the absorptive poten-
tial is approximately the same in the (A4 +1) as in the
(A —1) nucleus.>*° Equation (2.5) can then be written
in the form

w [rq]W(E'+EF)d
(E—Ep)P*—E?

’

[r¥]ap(E)=

S

(Ep—E)P fo

(2.6)

The moments [r?],,(E) can thus be determined from
the empirical energy dependence of [r9]y, (E) as derived
from phenomenological optical-model potentials; alge-
braic parametrizations of [r?],,(E) will be constructed in
Sec. II B.

The problem then amounts to determine the radial
moments of the Hartree-Fock—type component. These
are expected to be smooth monotonic functions of ener-
gy. We shall approximate them by linear expressions

[r9]ap(E)=A4,+B,E . 2.7
The coefficients A,,B, will be determined by least
squares fits to the empirical values [#?],(E, ) of the real
parts of empirical optical-model potential; E, denotes an
energy at which an optical-model analysis has been per-
formed. The values of [r9], (E, ) will be specified in Sec.
IIC.

Once this is performed the values of [r?],(E) are
known over the entire range of energies in which the ap-
proximations are justified. Here we shall mostly limit
ourselves to the domain —20 < E <40 MeV. From three
different values of [r?],(E), for instance>® from
[r*8],(E), [r*],(E), and [r*],(E), one can determine
the three Woods-Saxon parameters Uy, (E), R, (E), and
ay(E). These will be considered zeroth order approxi-
mations and will be improved by iteration, as we now
outline.

The accuracy of the approach can be checked by cal-
culating the energies of the bound single-particle states
and comparing them with the experimental values E,;
some typical spin-orbit potential must, of course, be in-
troduced. The resulting agreement is fair. It can be im-
proved as follows.>® One considers the radial moments
determined as above as zeroth order approximations, say
[7919XE). With the corresponding geometrical parame-
ters R{,O)(E,,,j ) a;,O)(E,,,j ), and some typical spin-orbit po-
tential, we determine the depths U{/”(E,,,j) which repro-
duce the experimental single-particle energies E,; <O.
The set {R}’(E,;), a)’(E,;), U/ (E,;)} enables one to
determine first order approximations, say [rq]<;/l)(E,,,j ), to

the radial moments. By least squares fits to the empiri-
cal values {-[r"]'yl)(E,,,j ), [#9]y(E, )}, one determines new
values, say 4,'",B,", of the coefficients of the linear ap-
proximation to [7?]yg(E). Note that the fits now take
into account the radial moments [r?]y'(E,;) at the neg-
ative energies E,;;. The procedure can be repeated until
the coefficients A,,B, remain unchanged under itera-
tion. In practice, one or at most two iterations are
sufficient.

As discussed in Ref. 6, the calculated values of a, are
quite sensitive to small changes of the input empirical
values [r9],(E,). It is therefore not possible to deter-
mine reliably the energy dependence of a,. Hence we
use here a simplified version® of the dispersion relation
approach in which one keeps a, fixed at an average
empirical value. We take*

ay=0.70 fm . (2.8)

Only two Woods-Saxon parameters, namely U,,R,,
then remain to be determined. We shall calculate them
by applying the dispersion relation approach to the radi-
al moments [#%%], and [r%],. As a check of the con-
sistency of the calculation, we shall compare the calcu-
lated [r*],(E) with the empirical values. Correspond-
ingly, we shall compare with empirical evidence the cal-
culated values of the mean square radius [7*], /[r?],.

In the present work we adopt, in part, the same
empirical inputs as in Ref. 4, with important additions
that we discuss in Sec. IV. In particular, we take the
same spin-orbit coupling as Lawson et al.,* namely

Vy=Uyr "“Lrx o,

2.9
ar (2.92a)
with

U,=11.5 MeV, r,=1.025fm, a;,=0.40fm . (2.9b)

B. Empirical optical-model potentials
and single-particle energies

Accurate measurements of differential-elastic n-*Y
cross sections between 4 and 10 MeV are reported in
Ref. 4. Very good optical-model fits were obtained, tak-
ing for W(r;E) a surface-peaked form:

Wd(r;E)=4W;°)<E)ad%f(Xd> , (2.10)
with (4.5 <E <10 MeV)

a,;=(0.1661+0.0284E) fm , (2.11a)

ry=1(1.5336—0.0255E) fm . (2.11b)

The values of the volume integral per nucleon [r2]y
plotted in Fig. 2 of Ref. 4 determine the corresponding
strength W{®(E,). In addition, that figure also provides
the value of Wéo) at 2.75 MeV, as determined from
fitting simultaneously several differential cross sections
for energies between 1.5 and 4.0 MeV, at approximately
50 keV intervals. This enables one to determine the
values of [r*%],(E) and [r?]y(E) represented by the
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crosses located at 2.75, 4.5, 5.0, 5.5, 5.9, 6.5, 7.1, 7.5,
8.03, 8.40, 9.05, 9.5, and 10.0 MeV in Fig. 1.

For energies larger than 10 MeV, we follow the au-
thors of Ref. 4 and adopt the optical-model potential of
Walter and Guss,'® with the following important
difference. Walter and Guss!® write the absorptive po-
tential as the sum of a Woods-Saxon shape and of a
surface-peaked contribution,

W(r;E)=W,(r;E)+W,(r;E) , (2.12)

where W, (r;E) is different from zero. In their analysis,
Lawson et al.* omit the volume absorption W, (r;E) and
only retain W,(r;E). As discussed in Sec. IV, this is not
justified. Here we retain both W, (r;E) and W, (r;E);
we calculate the corresponding values of [r%#], (E) and
[721w(E). They are represented by the crosses located
at 15, 20, 25, 30, 35, and 40 MeV in Fig. 1.

The solid curves in Fig. 1 represent least squares fits
to the empirical values (crosses) with the following para-
metric form proposed by Brown and Rho (Br),!!

(E—Ep)

—p,——t (2.13)
(E—Ep)+r}

[P E)=
The Fermi energy E lies halfway between the occupied

and unoccupied valence shells. We adopt the same value
as in Ref. 4, namely
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FIG. 1. Energy dependence of the radial moments

[7°2]w,[r*1w of the imaginary part of the mean field for the
n-%%Y system. The crosses are empirical values (Sec. II B) and
the curves represent least squares fits with the Brown-Rho pa-
rametrization, Eq. (2.13).
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TABLE I. Parameters of the least squares fits to [77], and
[r]v.

q b

r A B

q q q q
(MeVfmi+!)  (MeV)  (MeVfm?*!)  (fm7+))
0.8 15.4 15.9 —79.54 0.50
2 93.6 9.78 —415 2.64
Ep=—9.1 MeV . (2.14)

The values of the parameters b, and r, are listed in
Table I. The Brown-Rho parametrization presents the
interest of yielding an algebraic expression for the radial
moments of the dispersive contribution, viz. (rq >0),

E—E,
r, ———— .
qq(E_EF)2+qu

[r98%(E)=—b (2.15)

| |
-20 0 20 40
(MeV)

FIG. 2. Energy dependence of the radial moments of the
real part of the mean field for the n-*Y system. The crosses
are obtained from empirical optical-model potentials, as
specified in Sec. IIB. The squares are located at the experi-
mental single-particle energies and are calculated from
Woods-Saxon potentials with diffuseness @, =0.70 fm and with
a radius represented by the solid curve in the middle of Fig. 3.
The solid curves for [#*8], and [#2], are least squares fits per-
formed in the framework of the dispersion relation approach
(Sec. IT A). In the case of [r*],(E) the solid curve is predicted
from the Woods-Saxon parameters represented by the solid
curves in Fig. 3. The dashed curves represent the linear energy
dependence of the Hartree-Fock —type contribution.
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We now turn to the radial moments of the real parts
of the empirical optical-model potentials. For E, <10
MeV we compute them from the potentials obtained in
Ref. 4. There, R, =r, A '/ was assumed to be constant
(ry=1.24 fm), while the values of a,(E;) and of the
volume integral per nucleon [r?],(E,) are plotted in
Fig. 1 of Ref. 4. This information is sufficient to obtain
Uy, and, thereby, the values of [r9],(E; ). The resulting
values of the radial moments are represented by the
crosses located at E; =2.75, 4.5, 5.0, 5.5, 5.9, 6.5, 7.1,
7.5, 8.03, 8.40, 9.05, 9.5, and 10.0 MeV in Fig. 2. The
crosses located at 15, 20, 25, 30, 35, and 40 MeV are ob-
tained from the global empirical optical-model potential
of Walter and Guss. !’

The last input needed for applying the dispersion rela-
tion approach is a set of experimental single-particle en-
ergies; for these we adopted the same values as Lawson
et al.* They were deduced from the energies of single-
particle states (1f5,5, 2p3,2, 2P1 2> 1892, 2ds,2, 351,25
2d,,,, and 1g;,,) in ®Sr, with corrections due to the
difference of radius and neutron excess between 5°Y and
8Sr. In view of these corrections, the accuracy of these
single-particle energies is probably not better than a few
hundreds of keV.

III. EXTRAPOLATION OF THE WOODS-SAXON
PARAMETRIZATION OF V(r;E)

A. Woods-Saxon parameters

We now carry out the dispersion relation analysis of
the radial moments [r®®],,[r2], as outlined in Sec.
ITI A. Only two radial moments are involved since we set
the diffuseness equal to 0.70 fm; this only leaves two un-
knowns in the Woods-Saxon parametrization, namely
the depth U, and the radius parameter r, =R, 4 ~'/>.
As in the case n-28Pb,® only two iterations are sufficient
to ensure convergence. The resulting values of
[7O8],(E) and [r?],(E) are represented by the solid
curves in the upper part of Fig. 2, while the Woods-
Saxon parameters are plotted in Fig. 3.

The solid curves closely follow the energy dependence
delineated by the empirical crosses and squares. This
agreement is satisfactory, especially if one takes into ac-
count the fact that the open squares are related to
single-particle energies extrapolated from ®Sr, and that
any mean field model can only describe the average ener-
gy dependence since it does not explicitly include the
coupling to specific core excitations. An additional
check of the reliability of our approach is provided by
the moment [r*],. From the values of U,(E), r, (E),
and a, plotted in Fig. 3, one can indeed predict the
value of [r*],(E); it is represented by the solid curve at
the bottom of Fig. 2. The good agreement between this
prediction and the empirical points confirms the accura-
cy of our method.

The straight dashed curves in the upper drawings of
Fig. 2 represent the Hartree-Fock—type contribution to
the radial moments [#%%], and [r?],, Eq. (2.7). If one
makes the assumption that Vygp(r;E) has a Woods-
Saxon shape with diffuseness apr=0.70 fm, [r%®]ye(E)
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and [r2]ye(E) yield the Woods-Saxon parameters
represented by the dashed lines in Fig. 3. In turn, these
yield the moment [r*]ye(E) plotted at the bottom of
Fig. 2; it is approximately a straight line, which confirms
the consistency of our assumptions.

Our results are quite similar to those recently found in
the case of neutrons in 2°%Pb,>%12 in particular the fol-
lowing:

(i) In the vicinity of the Fermi energy, the potential
depth is approximately the same for the full potential as
for its Hartree-Fock —type component.

(ii) For E —Eg >20 MeV the depth of the full poten-
tial is approximately 5 MeV larger than that of its
Hartree-Fock component, but it has approximately the
same energy derivative.

(iii) The potential depth is approximately independent
of energy for 0 < E <10 MeV.

(iv) The potential radius sharply increases with energy

Uy (MeV)

ry (fm)

ay (fm)

0.65 1 | |
0
E (MeV)

FIG. 3. Energy dependence of the Woods-Saxon parame-
ters. The solid curves represent the depth U, (E) and the ra-
dius parameter ry(E) deduced from the radial moments
[r°8],(E),[r*],(E) plotted in Fig. 2; the diffuseness a, has
been set equal to 0.70 fm. The crosses are empirical values as-
sociated with the optical-model potentials of Ref. 4 (for
2.75<E, <10 MeV) and Ref. 10 (for E, >15 MeV). The
squares are located at the experimental single-particle energies;
by construction they lie on the solid curves in the case of the
geometrical parameters r,,ay; the associated depths are calcu-
lated in such a way that the Woods-Saxon potential has a
bound state at the corresponding single-particle energy, using
the spin-orbit potential specified by Eqgs. (2.9a) and (2.9b).
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in the vicinity of the Fermi energy ( | E —Ep | <5 MeV),
but decreases with energy for E —E X 10 MeV.

(v) The increase of [r?],(E) for E close to Ep is due
to the increase of the potential radius.

(vi) At the Fermi energy, the radius parameter r, is
equal to 1.24 fm. This is the same value as that deter-
mined for the n->®Pb system in Ref. 12, where a, was
taken equal to 0.68 fm; in Ref. 6 the calculated value of
ry(Eg) for n-2®Pb is approximately equal to 1.27 fm (for
a;=0.70 fm), but is somewhat inaccurate because of the
poor knowledge of the empirical optical-model potentials
for energies larger than 25 MeV.

B. Dispersive contribution

From the Woods-Saxon parameters plotted in Fig. 3
one can obtain the potential V(r;E), its Hartree-Fock
contribution Vue(r;E), and their  difference
AV(r;E)=V(r;E)—Vyge(r;E). These quantities are
represented in Fig. 4, at the energies E —Ep=5 and 10
MeV. We recall that AV (r;E) vanishes at E =E.

At E —E;=5 MeV, i.e, at E=—4.1 MeV, AV(r;E)
has a surface-peaked shape, with diffuseness 0.70 fm.
This is expected from the difference between two
Woods-Saxon potentials with approximately the same
depth and slightly different radii. The physical origin of
this surface peaking is the same as that of the surface
peaking of W(r;E’) for small E’, namely the fact that at
small energy the single-particle degree of freedom is
mainly coupled to surface excitations of the core. We
note that at E —E;=10 MeV (E =0.9 MeV) the disper-
sive contribution AV (r;E) has a sizable volume com-
ponent, although at that energy W(r;E) is located at the
surface, Eq. (2.10). This reflects the fact that AV (r;E)
is expressed as a principal value integral which involves
W (r;E’) for all E’. We return to this point in Sec. IV.

(MeV)

r (fm)

FIG. 4. Radial dependence of the full potential (solid curve),
of its Hartree-Fock—type component (dashed curve), and of the
dispersive contribution (multiplied by 10, dashed-dotted line),
for E —Er=5 MeV (top) and 10 MeV (bottom).

C. Ratios of radial moments

In the phenomenological analysis of Ref. 4 the radius
parameter r;, was assumed to be constant in the energy
domain 2.75 < E <10 MeV, while the diffuseness a;, was
adjusted at each energy. In the present analysis, we
have instead set a;, equal to a constant and have calcu-
lated an energy-dependent radius parameter; our motiva-
tion for doing so is that r, is expected to be energy
dependent on rather general grounds.>>!? In view of
this difference between the values of r,,a, adopted here
and in Ref. 4, it is useful to characterize the range of the
potential by its root mean square radius. We use the no-
tation'?

(r2)/UE)=T,,(E), (3.1)
where
T,/0={1r'1p(E)/[r? ] (E)}!/4=9) (3.2)

Note that if any of the quantity T, - depends on energy,
this implies that the radial shape of the potential varies
with energy."

The quantities T,,,g and T,,, are plotted in Fig. 5.

Ty/08 (fm)

Tyyp tfm)

|
0

-20 20 40

E (MeV)

FIG. 5. Energy dependence of the moment ratios T, 4 s and
T,,,, Eq. (3.2). The crosses are empirical values derived from
phenomenological optical-model potentials (Refs. 4 and 10).
The solid curves are predictions of our dispersion relation ap-
proach; the dashed curves correspond to the Hartree-
Fock-type contribution. The squares are located at the
single-particle energies and lie on the solid curves, by construc-
tion.
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The radial shape of the Hartree-Fock component is very
approximately independent of energy. In contrast, the
calculated moment ratios strongly increase with energy
in the domain of the bound valence shells, while they de-
crease with energy at positive energy. The latter predic-
tion is seen to be in close agreement with the empirical
behavior. Empirical evidence for a decrease of T,,, and
T, o g with increasing incident energy exists in other nu-
clei as well.!

D. Effective mass

The Fermi-surface anomaly consists of a nonmonoton-
ic energy dependence of the potential parameters as the
nucleon energy approaches E. Hence it has first been
formulated' in terms of the derivative of the potential
with respect to energy, which is conveniently character-
ized by the effective mass m *. In a nucleus, the latter is
defined by the relation

m*(r;E) d )
m =1 JE Vr;E) .
It depends on the radial distance and energy.

If the dispersive contribution is neglected, the effective
mass reduces to the Hartree-Fock—type contribution,
namely

(3.3)

mﬁp(r;E)/mzlvszﬁVHF(r;E) . (3.4)
This quantity is practically independent of energy. Its
radial dependence at E =FE  is represented by the
dashed line in Fig. 6. It approximately has a Woods-
Saxon shape, with myp(r =0;Er)/m =0.73. In con-
trast, the full effective mass m *(r;Eg)/m at the Fermi
energy has a strong peak near the nuclear surface. This
peak reflects the energy dependence of the radius param-
eter r(E) for E close to Ep. It rapidly disappears as E
becomes different from Ef.

The upper part of Fig. 7 represents the energy depen-
dence of the surface value of the effective mass, namely
of m*(r =5.54 fm;E). This quantity has a sharp max-

2.0 T T T T
n—89Y
E
o 1.5 m*/m ]
w
x
€ 1.0 e
_________ L mHF/m
I | ! ! |

0 2 4 6 8 10 12

r (fm)

FIG. 6. Radial dependence of the effective mass
m*(r;Er)/m (solid curve) and of its Hartree-Fock—type com-
ponent m jir(r; Er)/m (dashed curve ) at the Fermi energy.

m*(r;E)/m

E (MeV)

FIG. 7. Energy dependence of the effective mass (solid
curves) and of its Hartree-Fock—type approximation (dashed
lines) at the potential surface (r=5.54 fm, upper part) and at
the nuclear center (r =0 fm, lower part).

imum centered at the Fermi energy, with a full width at
half maximum approximately equal to 10 MeV. The
lower part of Fig. 7 shows the energy dependence of the
central value of the effective mass, namely of
m*(r =0;E)/m. This quantity has maxima on both
sides of Ep, namely at | E—Eg | =10 MeV.

IV. COMPARISON WITH A PREVIOUS
ANALYSIS

All the properties found in Sec. III are very similar to
those obtained in the case of neutrons on 2°Pb.”!? This
indicates that the Fermi-surface anomaly is of the same
nature in ¥Y as in 2°Pb. This conclusion differs from
that drawn from a recent analysis of the n-%Y system.*
In this section we discuss the main differences between
that analysis and the present one.

The dispersion relation (2.5) between the radial mo-
ments [r9],,(E) and [r?],(E’) is an integral form of
the radial-dependent relation

©

P (r;E) ..,
AV(rE)=— [" =22 tdE @.1)

The following two main approximations have been made
in Ref. 4:

(1) When applying the dispersion relation (2.5), the au-
thors set [72],(E’) equal to zero for E' < —18.2 MeV.
This amounts to assuming that the single-particle excita-
tions of 38Y have an infinite lifetime for excitation ener-
gies larger than 6.5 MeV. It is physically much more
plausible to assume that the radial moment [r9], (E’) is
approximately symmetric with respect to Ep, as we do
here and as recently adopted by Lawson et al.'* in an
analysis of the n-*’Bi system. This symmetry is sup-
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100 T T T T T T

-[rZ]W (MeV fm3)

E’(MeV)

FIG. 8. Dependence on E’ of the volume integral per nu-
cleon of the imaginary part of the mean field, [r?], (E’), which
appears in the integrand of the dispersion relation (2.5) for
g =2. The solid curve represents the input used here and
specified in Sec. II B. The dashed line shows the values adopt-
ed in Ref. 4.

ported by microscopic calculations, as shown by, e.g.,
Fig. 4.45¢ of Ref. 8, as well as by empirical evidence
(Fig. 4.6 of Ref. 8). It amounts to the property that
single-particle excitations have approximately the same
lifetime in %Y as in °°Y for the same excitation energy
(the fact that these two nuclei are unstable is irrelevant).
The difference between the volume integrals [72], (E’)
used in the present work and in Ref. 4 is illustrated in
Fig. 8. The difference between the solid and the dashed
curve in the domain E’>20 MeV is due to the fact that
the authors of Ref. 4 omitted the contribution of the
volume absorption in the global optical-model potential
of Walter and Guss.!°

(ii) The dispersive contribution AV (r;E) has been as-
sumed to be entirely located at the nuclear surface;
furthermore, its radial shape has been assumed to be the
same as that of the absorptive potential W(r;E) at the
same energy E. This is not justified because AV(r;E) in-
volves W(r;E’) for all E’. In particular, the value
AV (r =0;E) of the dispersive contribution at the nuclear
centre is quite different from zero even in the energy
domain O < E <10 MeV, in which the absorptive poten-
tial W(r;E) is entirely located at the nuclear surface.
The fact that assumption (ii) is unjustified is illustrated
by, e.g., Fig. 16 of Ref. 3, which shows that the disper-
sion relation (4.1) predicts a sizable central value
AV (r =0;E) even at energies for which W (r =0;E)=0;
this is confirmed in Ref. 12. The explicit applications of
the radial-dependent dispersion relation (4.1) made in

Refs. 3 and 12 yield a dispersive contribution which is
quite similar to that obtained in the framework of the
present radial moment method; this confirms its reliabili-

ty.
V. SUMMARY

The dispersion relation approach of Ref. 5 has been
used to determine the energy dependence of the real part
of the average n-*Y potential. The inputs of the calcu-
lation are empirical values of the optical-model potential
and of the single-particle energies. We choose the same
input values as in Ref. 4 with two important differences,
namely the following (Fig. 8): (i) We assume that the
imaginary part of the potential is symmetric about the
Fermi energy, in keeping with empirical as well as
theoretical evidence; (ii) we include the effect of volume
as well as of surface absorption.

We find that the modulus of the volume integral per
nucleon of the real part of the average potential in-
creases with energy in the close vicinity of the Fermi en-
ergy (Fig. 2), and that this is due to the increase of the
potential radius (Fig. 3). At positive energy the modulus
of the volume integral decreases with energy; this mainly
reflects the decrease of the potential depth. The root
mean square radius of the potential increases with ener-
gy in the vicinity of the Fermi energy, but decreases at
small positive energy (Fig. 5). These features constitute
the Fermi-surface anomaly.

In the dispersion relation approach the real part of the
average potential is written as the sum of a Hartree-
Fock—-type component and of a dispersive contribution.
The Hartree-Fock—type contribution is found to approx-
imately have a Woods-Saxon radial shape with an
energy-independent geometry and with a depth that de-
creases linearly with increasing energy (Fig. 2). The
Fermi-surface anomaly is due to the dispersive contribu-
tion, which is surface-peaked near the Fermi energy but
acquires a sizable central value already at small positive
energy. The latter property is at variance with basic as-
sumptions made in Ref. 4.

In conclusion, we have shown that the Fermi-surface
anomaly is quite similar for the n-%Y as for the n-2%Pb
system. In both cases the anomaly is very difficult to
detect from the analysis of neutron scattering data alone.
Indeed, the volume integral of the average neutron-
nucleus potential approximately has a linear energy
dependence at positive energy, where the remnant anom-
aly reduces to a decrease of the potential root mean
square radius with increasing energy. The anomaly be-
comes quite apparent when one simultaneously analyzes
the bound single-particle energies and the scattering
data; it consists of a characteristic modification of the
energy dependence of both the volume integral and the
root mean square radius as the neutron energy changes
sign.
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