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Neutron-deuteron scattering calculations with W-matrix representation of the two-body input
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Employing the 8'-matrix representation of the partial-wave T matrix introduced by Bartnik,
Haberzettl, and Sandhas, we show for the example of the MalAiet-Tjon potentials I and III that
the single-term separable part of the 8'-matrix representation, when used as input in three-nucleon
neutron-deuteron scattering calculations, is fully capable of reproducing the exact results obtained

by Kloet and Tjon. This approximate two-body input not only satisfies the two-body off-shell uni-

tarity relation but, moreover, it also contains a parameter which may be used in optimizing the
three-body data. We present numerical evidence that there exists a variational (minimum) princi-

ple for the determination of the three-body binding energy which allows one to choose this param-
eter also in the absence of an exact reference calculation. Our results for neutron-deuteron
scattering show that it is precisely this choice of the parameter which provides optimal scattering
data. We conclude that the 8'-matrix approach, despite its simplicity, is a remarkably eScient
tool for high-quality three-nucleon calculations.

I. INTRODUCTION

The use of separable expansions for the two-body T
matrix is one of the most successful approaches to
render the three-body scattering problem practically
manageable (for a recent review of existing methods to
obtain such expansions, see Ref. 1). Their usefulness
stems from the fact that they allow one to write the par-
tial wave decomposed three-body equations as a coupled
system of one-dimensional integral equations instead of
the numerically much more demanding usual two-
dimensional equations. Mostly, these approaches rely on
expanding the two-body T matrix in some suitably
chosen complete set of functions and, usually, one needs
a number of terms in the separable expansion in order to
achieve a result which is reasonably close to the corre-
sponding exact result. The more expansion terms one
needs the more the degree of coupling of the resulting
system of equations increases; this is the price one has to
pay for the reduced dimensionality of the integral equa-
tions. Generally, one can say, therefore, that the less ex-
pansion functions are required for any particular appli-
cation, the better suited the used set of expansion func-
tions is.

It was shown by Bartnik, Haberzettl, and Sandhas
that one can exactly represent the two-body partial wave
T matrix by one single separable term plus a remainder
which is real and which vanishes half on shell. This was
achieved by a momentum space formulation of the two-
body problem entirely in terms of only one nonsingular
inhomogeneous integral equation which is applicable to
the scattering as well as the bound state problem and
thus provides a unified description of these problems; the
solution of this integral equation is referred to as the 8
matrix. Also in Ref. 2, the hope was expressed that the
single separable term, when used as input in three-body
scattering equations, may perhaps be sufhcient to pro-

vide reasonable three-body data and that the remainder
of the two-body T-matrix representation can be neglect-
ed. It is the purpose of the present paper to investigate
whether this approximate treatment of the two-body in-
put in three-body calculations leads to acceptable results.
From the investigations of Ref. 2 it is clear that neglect-
ing the remainder introduces an additional free parame-
ter into the three-body equations which concerns the
definition of the 8 matrix at negative two-body energies.
In the exact 8'-matrix representation of the T matrix the
interplay of the separable part and the remainder is such
that the dependence on this definition cancels, i.e. , it has
no bearing on the full representation. Neglecting the
remainder, however, makes this dependence manifest.
The corresponding free parameter may be used, there-
fore, to optimize the results.

The specific problem we treat here is the scattering of
neutrons oft deuterons. As a benchmark, we use the re-
sults of Kloet and Tjon, which were obtained by solving
the Faddeev equations with the local MalAiet-Tjon po-
tentials. Employing the single-term separable 8'-matrix
representation in the three-body equations by Alt,
Grassberger, and Sandhas (AGS), we find that, if we ful-
ly exploit the aforementioned freedom in defining the 8'
matrix at negative two-body energies, we can reproduce
all of the results of Kloet and Tjon to within the numeri-
cal errors of their calculation.

This paper is organized as follows. In Sec. II we first
present a short recapitulation of the 8'-matrix approach
by Bartnik, Haberzettl, and Sandhas. The three-body
AGS equations for neutron-deuteron scattering result-
ing from the separable part of the 8-matrix representa-
tion of the two-body T matrix are given in the remainder
of that section. The numerical results are summarized
in Sec. III. We first deal with the bound state case and
show that we can reproduce the exact triton binding en-
ergy for the MalAiet- Tjon potentials. Moreover, we
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demonstrate that the freedom in defining a 8' matrix at
negative two-body energies leads to a behavior of the
three-body binding energy which is very similar to what
one expects from variational approaches, namely that
the exact value of the bound state energy is a lower
bound on the approximate results. In the second part of
Sec. III we present our scattering data: scattering
lengths, phase shifts, inelasticities, and differential cross
sections. We find that the only partial wave which
shows any sensitivity on varying the negative-energy 8'
matrix is the total-spin doublet channel S wave. All oth-
er partial waves exhibit no sensitivity and agree with the
exact values quoted by Kloet and Tjon. Varying the
8'-matrix input, it develops that we can also reproduce
the exact doublet S-wave data if we choose exactly the
same parameters which provided the exact triton bind-
ing energy. This remarkable finding is very important
from a practical point of view because it constitutes a
rule for choosing the parameters in the absence of an ex-
act reference calculation. We conclude this section by
giving a summarizing assessment of our investigation.

Throughout this paper we use natural units, with the
nucleon mass being equal to unity. The conversion to
the usual energy units is achieved by 41.47 MeV fm =1.

II. FORMALISM

In the three-body equations ' one needs ihe off-shell
two-body T matrix for all real momenta and for all ener-
gies ranging from a given three-body center-of-mass en-
ergy all the way down to —ac. As explained already in
the Introduction, in the present paper we want to
demonstrate the usefulness of the 8'-matrix approach of
Ref. 2 for this purpose. To this end, we first briefly re-
capitulate this method here.

Rki(p, p';E) = Wki(p, p', E)

Wki(p, k;E) W«(k, p';E)
W«(k, k;E) p

and

b, «(E +i 0)=
W«( k, k; E)F«(E +i 0)

with

, Wkl (q, k; E )
Fkl(E+iO)=1 —f dq q'q'

0 E+iO —q
(4)

We shall refer to the ubiquitous function Wki(p, p';E) in

It was shown in Ref. 2 that the off-shell two-body T
matrix in the partial wave 1 at the energy E, T~(p,p';
E +iO), may be represented exactly by

Ti(p, p'&E +iO) = W«(p, k;E)b«(E +iO) W«(p', k;E)

+Rki{p p'E»
where

&q Wki(q p

and the parameter k is subject to the constraints

k =E for E)0,
k arbitrary for E &0 .

The function U&(p, q) is defined by

(6)

(7)

where VI(p, q) is the partial wave momentum space ma-
trix element of the potential V; the factor q

' in the
definition (7) ensures that the q' behavior of V&(p, q) for
vanishing q is compensated and U~(p, q), therefore, does
not vanish identically for q=O.

Clearly, for scattering energies E )0 the integral equa-
tion (5) is nonsingular, because the denominator singu-
larity at E =q is cancelled by the zero of the difference
U~(p, q) —U~{p,k) due to the choice (6) of k, and its solu-
tions are real. The W-matrix equation (6) thus is a much
simpler equation to work with than the usual
Lippmann-Schwinger (LS) equation for the T matrix,

TI(p,p';E+i0)= V(pi, p') +f dq q E+i0—q

)& TI(q,p', E+iO) . (8)

Moreover, it was proved in Ref. 2 that, at negative ener-
gies E = —a, for those solutions W«(q, k; —a ) which
satisfy

)W«(qk; —a ) =1
0 —cx —q

(9)

the associated energy —a is equal to one of the binding
energies —a„,i.e., —o,'= —a„,and the corresponding
momentum space bound state wave function g„i(p) is
given by

W«(p, k; —a„)
nI—cx„—p

(10)

where C„& is an arbitrary normalization constant. In
other words, the inhomogeneous integral equation (5) not
only solves the scattering problem but also the bound
state problem. For the latter problem, it replaces the
usually employed horn. ogeneous version of the LS equa-
tion (8).

For a more detailed account of the 8'-matrix ap-
proach, we refer to Ref. 2, where also references to relat-
ed approaches may be found. Here we only want to
stress those features of the representation (1) that are im-
portant for the three-body applications we have in mind
here. First and foremost, we note that the first term on
the right-hand side of Eq. (1) is separable in the momen-
ta p and p' and it contains a/l the scattering cut informa-

this representation as the 8' matrix; it satisfies the in-
tegral equation

2 Ui(p, q) —U&{p,k)
Wkl {pp';E) = UI(p p')+ dq q

0 E —q
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tion via FkI(E+i0) of Eq. (4). The latter entity was
shown in Ref. 2 to be a generalization of the well-known
Jost function, the decisive difference being the treatment
of the negative energy domain [if the constraint (6) for
E & 0 were the same as for positive energies, the function
(4) would be a representation of the usual Jost function
for the entire energy range from —co to + co]. This
generalization is constructed such that it has no left-
hand cut but the same one-to-one correspondence be-
tween the zeros of (4) and the bound state energies as the
true Jost function [cf. Eq. (9)]: As is obvious from (1),
the zeros of (4) provide the bound state poles of the T
matrix, with the residual functions of these poles being
related to the bound state wave functions according to
(10). Second, the remaining term Rq~(p, p', E) on the
right-hand side of (1) is real for all energies and it is easi-
ly seen to vanish if p, or p', is equal to the parameter
momentum k, which means, in particular, that
Rt r(p, p';E) vanishes half on shell for scattering energies
E)0.

As explained in the Introduction, we want to investi-
gate here whether the single separable term in the repre-
sentation (1) suffices to reproduce acceptable results in
three-body calculations. As the underlying two-body in-
teractions we use here the S-wave projections of the
Malfiiet-Tjon (MT) I and III potentials. The exact solu-
tions for this input for the scattering of neutrons off
deuterons were obtained by Kloet and Tjon employing a
Pade technique for the multiple scattering series result-
ing from iterating the three-body Faddeev equations.
We shall use these theoretical data as a benchmark to as-
sess the usefulness of replacing the full off-shell two-body
T matrix T(p,p';E +iO) resulting from the MT I and
III potentials by

T (p,p', E +i 0)~T'(p, p', E + iO)

Xb, '(E —
—,
'q" +iO)

X TL"(q",q', E+iO) .

(12)

Here, the energy E is now the three-body center-of-mass
energy and the left index 2 on the partial wave matrix
elements T and V denotes the total-spin doublet channel.
The summation runs over the two possible two-body
subsystem configurations, the two-body spin triplet (de-
scribed by the MT III potential; denoted by v=d) and
the spin singlet (MT I; Ir=s) states. Since we are only
interested in physically observable reactions, we need to
consider only the coupled set of equations with a deute-
ron in the entrance channel, i.e., v=d. In the total-spin
quartet (S =—', ) channel we have a single, uncoupled
equation with the only possible two-body subsystem be-
ing a deuteron:

TL (q, q';E+iO)= VL (q, q';E+iO)

+ f dq "q" Vt (q, q";E+iO)

X6 (E —,'q" +iO)—

X TL (q",q';E+iO) . (13)

The effective potentials 'VL" in these equations are given
by

the three nucleons by L, the AGS equations for the
total-spin doublet (S = —,

'
) channel are given by

Tg (q, q';E+iO)= Vg (q, q';E+iO)

+. g J dq "q" Vg"(q, q";E+iO)

= W(p, k;E)A(E +i0) W(p', k;E), (11) 'Vt "(q,q';E +i0)='A,„VP(q,q';E +i 0), (14)

where the index s stands for "separable. " Since, for this
separable part of the representation (1), we need only the
half-on-shell solutions of (5), we have omitted the redun-
dant index k here on the W matrices, because it is
specified already by the argument k. Moreover, since
the MT I and MT III potentials act only in l=0, we
have suppressed the partial wave index l.

The separable approximation (11) will be used as input
in the three-body equations by AGS. In this context, it
should be noted that the approximation (11) satisfies the
full two body off' shell u-nitarity; the neglected remainder
(2) does not contribute to the unitarity relation
because —as emphasized already —it is real and it van-
ishes half on shell.

where the 'A „are the usual spin-isospin recoupling
coefficients,

2 2 l 2 2 3 4
+dd +ss 4 ~ +ds +sd 4 ~ ~dd

and

VP(q, q', E+i0)

+1 W (x, k;E ——,'q )W"(y, k', E —
—,
'q' )=J dgPL (g)—1 E q q' qq—'(+i—0—

Here, Pt (g) is a Legendre polynomial of the first kind
and x and y are abbreviations defined by

B. Three-body AGS equations x = —,'q +q' +qq'g and y = —,'q' +q +qq'g . (16)

We shall not give any details of the formalism behind
the AGS equations; for these, we refer to Ref. 6. Here,
we only give the final effective two-body equations for
neutron-deuteron scattering which result from a single-
term separable approximation of the two-body T matrix
as in Eq. (11). Denoting the total angular momentum of

To simplify the notation in Eqs. (12) and (13), we have
not explicitly expressed the dependence of the effective
potential VL" and the two-body propagator 6 on the
parameter momenta k or k'. We want to make it quite
clear, however, that according to (6) the solutions of the
three-body equations (12) and (13) will depend on our
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choice for these parameters at negative two-body ener-
gies, i.e., when E ——,'q &0 (similarly for q' and q").
This dependence originates from the approximation (11),
of course; had we taken into account the full T-matrix
representation (1) no such dependence would occur. In
our approximate treatment of the two-body input for
three-body equations we thus have an additional free pa-
rameter to optimize the results.

III. NUMERICAL RESULTS AND DISCUSSION

haL f

, k;k2)

—0

—10—

0.

—-10
7

0. 0 0

FIG. 1. Two-dimensional plot of the half-on-shell 8'matrix
at positive energies.

The various methods for the numerical solution of
three-body integral equations have become standard by
now. We, therefore, will only make a few remarks here.
We have solved the integral equations (12) and (13) on
the real axis by expanding the solutions in cubic B
splines and solving a system of linear equations for the
unknown expansion coefficients. The technically most
difficult part of such a procedure concerns the treatment
of the logarithmic singularities of the effective potentials
arising from the partial wave integration in Eq. (15).'

We have tackled this problem by explicitly extracting
the singularity through a subtraction procedure and sub-
sequent employment of a special quadrature routine for
the resulting integral containing the singular loga-
rithm. " (A detailed account of these technical points
may be found in Ref. 12.)

In contrast to most separable approximations of the
two-body T matrix, ' the representation (11) works with
energy dependent functions W(p, k;E). This, however,
introduces only slight difficulties for the numerical solu-
tions of the three-body equations because these functions
are real and very well behaved. As can be seen from
Fig. 1, the dependence of the half-on-shell 8' matrix on
the energy is very smooth. We have found that it is
sufficient to solve the W matrix equation (5) for
W(p, k;E) once on a grid of 48 mesh points for the
momentum p and 50 energies ranging from a given
three-body c.m. energy down to —oo, the necessary ma-
trix elements in (15) and (3) at intermediate values of p

and E are then very easily —and very accurately—
obtained by a two-dimensional spline interpolation.
From the computational point of view, the energy
dependence of W(p, k;E), therefore, results in only a
slight increase in computing time as compared to an
energy-independent single-term separable approximation
(i.e., spline interpolation versus simple function evalua-
tion), but it requires a somewhat larger memory space to
store the grid for the W matrix. However, storage capa-
city is usually no problem in modern computing facili-
ties.

How does one choose the parameter k in (5) at nega-
tive energies? We, at first, made the simplest possible
choice which provides for a smooth transition from the
positive to the negative energy domain; namely, we took
k=O for all negative (two-body) energies. Clearly, any
continuous functional dependence k =f (E) with f(0)=0
will yield a 8'matrix which is continuous at all energies.
However, for the physically relevant three-nucleon
scattering solutions to be continuous functions of the en-

ergy, the function f (E) only needs to be piecewise con
tinuous, i.e., it may have finite discontinuities.

A. Bound state results

We first calculated the triton binding energy E, . This
was done in the standard fashion by determining the
zero of the Fredholm determinant of the homogeneous
version of the doublet equation (12). Our result obtained
with the choice k=O at negative energies in (5) is
E, = —7.88 MeV. This value has to be compared with
the result of Kloet and Tjon (KT). They quote
E, = —8.3 MeV; however, the numerical error of their
result is rather large. In a later, more accurate calcula-
tion, ' it was found that the MT I and MT III potentials
yield a triton binding energy of E, = —8.58 MeV, the er-
ror being roughly +0.1 MeV. In view of this, our re-
sult, which is off by 0.7 MeV, seems rather disappoint-
ing.

It must be noted, however, that the choice of the pa-
rarneter k is of decisive importance in three-body bind-
ing energy calculations because only 8' matrices at nega-
tI, Ue two-body energies appear in the homogeneous bound
state version of (12). In order to assess the dependence
of E, on k, we have varied k. Rather than assuming
some wild functional forms for k, we always chose k to
be constant, but different from zero; the resulting func-
tion E, =E,(k) is plotted in Fig. 2. We find that E,(k)
has a minimum at k, =0.655 fm '. It is remarkable that
the corresponding minimal energy E,(k, )= —8.595 MeV
is equal to the exact binding energy. The fact that for all
possible values of k the energy is always bounded below
by the exact value is very reminiscent of variational
methods for the determination of binding energies. '" We
conjecture, therefore, that there exists an underlying
variational principle which actually explains our finding.
We have not been able to prove this conjecture, howev-
er. In the absence of any proof, we can only emphasize
once again that we have not found any choice of k
which yielded any energy below the exact value.
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FIG. 2. Variation of the triton binding energy E, with the
negative-energy W-matrix parameter k [cf. Eqs. (5) and (6)].

FIG. 3. Variation of the doublet scattering length 'a with
the negative-energy W-matrix parameter k [cf. Eqs. (5) and (6)].

B. Scattering results 'f'
1. Nd 'Tg—— (17)

The quartet and doublet scattering lengths given by
KT (Ref. 3) are a=6.35 fm and a=0.9 fm, respective-
ly. Our values are

a =6.39 fm and a =1.56 fm for k =0
and

a =6.41 fm and a =0.86 fm

for k =k, =0.655 fm

As can be seen, the values for the quartet scattering
length a are not very sensitive to the variation of the
negative-energy W-matrix parameter k. Moreover,
within the numerical errors of their calculation, our re-
sults agree with those of KT. The situation is very
much different for the doublet scattering length. In Fig.
3 we have plotted a as a function of k, similar to the
binding energy plot in Fig. 2. As in the latter case, we
find that a (k) exhibits a minimum at a position
k, =0.755 fm, which is larger than the minimum posi-
tion k, of the triton binding energy; the corresponding
scattering length is a(k, )=0.82 fm. However, in view
of the conjectured underlying variational principle for
the binding energy calculation, we feel that in order to
be consistent we have to choose the same value of k
which minimizes the energy, i.e., k =k, .

In order to be able to relate the solutions 'TL of Eqs.
(12) and (13) for elastic neutron-deuteron scattering to
the physical data, they have to be normalized according
to

'gL, (E)—1

(4mq/3)Re'Tl (q, q;E+iO)
(19)

where the inelasticities gL are given by

'ql. (E)=
2 2

~

'f'I (q, q;E+iO)
~

+ Im'T Idd(q, q;E +iO)+1
1/2

(20)

For the spin-averaged differential cross section it then
follows that

where Nd is the residue of the deuteron propagator at
the deuteron pole,

W (p, k;Ed)
Nd ——Resb, (Ed) = f dp p

0 Ed —P
(18)

This is (not surprisingly) just the normalization of the
deuteron wave function; cf. Eq. (10). [Ed = —2.272 MeV
is the deuteon binding energy of the MT III potential; it
was determined by searching for the zero of Pki, cf. Eqs.
(4) and (9).] With these renormalized amplitudes, the
elastic neutron-deuteron phase shifts are obtained
through [q = 4(E Ed)]-

Im'f' I (q, q; E + i 0)
tan'5L (E)= Re'f' L (q, q;E +i0)

dc'
dA

r

g (2L +1)PL (cos8)[ qi exp(2i 5L ) —1] + —g (2L +1)P (co1s9)[ gl exp(2i 5L ) —1]
4q L

(21)

(Although these formulas may be found also in the
literature, we have given them here in order to make the
present paper self-contained. )

In Fig. 4 we present our results for the quartet phase

I

shifts for the S and P waves. The crosses are some
representative values taken from Ref. 3. As can be seen,
our data are in complete agreement with these reference
solutions (according to Tjon the numerical errors of the



36 TERIN(j'r CALCULATION ITH P-MATRIX. . .NEUTRON-DEUTERON SCATTER 1683

1.0

150

D)
Q)

100

50

0.5—

!

!

!-bt eakup thr e sho Ld
!

20
0

0 10 20 30 40 50
0.0

0 10 30 4-0 50

E (MeV)lab

ave hase shifts; crosses areFIG. . ~u~ 4. ~ artet S- and P-wave p ase s
from Ref. 3.

of a fewlation of KT are in the range o
d

'
h hme uality in repro u

'

d hih 1f. 3) is also foun a
h b othiomitted plotting t esewaves; we have omi
Furthermore, varyingnew can be learnned from them. ur

er k roduces on yly changes whichhe 8'-matrix parameter p
of our calcula-of the numerical errors o ou

1 1 d f h htimate to be be owtion (which we es
'

find the same kind ofA
f 11 i 1

oublet case, we n
the data of KT or a pagreement with e

h the finding for thecept the S wave. ~ Consistent wit
len th, the latter p asehase shift turns outdoublet scattering eng
ve on the negative-ene- nergy 8' matrix.q o

- d bl h ~ hf
0

lotted the S-wave ou
k= ( hdli )of k namely, for

=O.655 fm (solid ltne .
1 fthat the latter cho ice leads to a mos p

f KT. As a typica re1 representative of
how well the higher partial waves are rep

150

CD

100

50

E (MeV)
lab

t and uartet S-wave inelasticities, crosses
The solid-line doublet ine as ic

edh th dk =k, =0655 m, wthe optimized choice
to k =0 (see text).line corresponds to

h iso drawn the doubletroach, we ave athe 8'-matnx app
the inelasticity parame-Our results or t e ine

SFi . 6. Again, t e qua
11 od d hil hand very we reprois insensitive to a

hat k be chosen as
'

1

values require t at
~ ~ ~

f T 'nd """u'ntl
here higher partia wav

guishable from the results of
have not been plotted.

f the utility of theive a complete picture o
ddit'o i

' Fied here, we, in a i i
1 b

'
1 cross sections at a ora

d . , pec y.ectively. ome c
retin here the agreement wip g

suits of KT, because the crosses in igs.
n b KT, as was thefrom numbers given y

hase shifts and ine as
' ' '

p
rom the figures p o e

d8 th i 1g s for Figs. 7 an, e

h fi .) N th 1

lculation of KT were o e,
ind we feel safe in assessing

rs in reading their gures.

g
we choose the 8'--matrix parameter a

k =k . Comparing thetriton binding ene gyer results as
r that the influencees one sees, moreover, a

~ ~ ~h'f d
'

1ve hase s i s ap
which ex i iteh b' d the strongest influence o
considerably less at higher energies.

C. Conclusions

10 20 30 50

E (MeV)lab

S- and P-wave phase shifts; crosses are
h h'ft h b b-

k=k =0655 f ' h
lid-line S-wave phase s i

the o timized choice k =p
the dashed line corresponds to

wn here for the example of elastic
h 8- t'

B 'k Hb 1

scattering that t e
-bod T matrix y ar n'tation of the two- o y

f 1 method for simplify-and Sandhas is aan extremely use u me
ing the two-body inpin ut for three- o y-b d calculations. Em-

-bod ASS equations at' and using as in-ploying the three- o y
le-term separablex re resentation's srng e-put the 8'-matrix rep

f ct agreement withbtained almost per ecpart only, we o ai



1684 E. A. BARTNIK et al. 36

500 y s a i t & i s e
~

s r r s 10 s s s s s 1 I 1 I I I I I ( I l

Ol

6 400—
CI

El b
2.45 MVlab

Kloet/Tjon 19

C'

EI b
46. 3 MIV

K lac t/T J oa 1973

30g
~D

0
4l

lf)

O
~A

0
0

Ul

200

(J

cj
~A

C 100—
Ol

~A
Cl

10O

50 100 150

8, tn(deg)

0 I I I 10 $ I I I I I I 1 I I I I 1 I

0 50 100
8 (deg)

150

FIG. 7. Differential cross section at E~,b ——2.45 MeV; crosses
are from Ref. 3 (see text). The solid line corresponds to the
optimized choice k =k, =0.655 fm ', whereas the dashed line
corresponds to k=0 (see text).

FIG. 8. Differential cross section at E~,b ——46.3 MeV. Nota-
tion as in Fig. 7.

the results of the exact calculation by Kloet and Tjon
obtained for the semirealistic MalAiet-Tjon potentials I
and III.

In our opinion, one of the most important findings
from a practical point of view is the fact that the free
parameter k of the negative-energy 8' matrix [cf. Eqs.
(5) and (6)] may be determined by minimizing the three-
body binding energy. This feature of the 8'-matrix ap-
proach reminds one of variational procedures for bind-
ing energy calculations and, as already mentioned above,
although we could not prove it, we actually conjecture
that there exists an underlying variational principle in
the present case also. (The finding that here the minimal
three-nucleon binding energy turned out to be just the
exact binding energy of the problem may be just an ac-
cident, but nevertheless makes a proof of our conjecture
all the more desirable. ) This feature allows one to
choose a parameter k also in the absence of an exact
reference solution and is therefore of extreme practical
importance. It is remarkable that the value of k deter-

mined in this way proved to be just the right value to
yield the correct scattering data.

The test calculations were performed here for the
semirealistic S-wave Malfliet- Tjon potentials, because
these are relatively easy to handle and, moreover, be-
cause there exists an exact reference calculation by Kloet
and Tjon. We are convinced, however, that the 8'-
matrix representation of the two-body T matrix will also
be helpful in simplifying three-body calculations with
more realistic potentials; the corresponding investiga-
tions are in progress.

Summarizing, the single-term separable 8'-matrix rep-
resentation of the two-body T matrix is an extremely
powerful method for drastically reducing the inherent
complexity of three-body calculations. We conclude that
it is not only superior to any other single-term separable
approximation known to us but actually reaches the
quality usually achieved only with expansions of high
rank. Our investigations show that the 8-matrix ap-
proach, despite its simplicity, is a remarkably eKcient
tool for high-quality three-nucleon calculations.
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