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The perturbative vacuum for models in which fermions are coupled to scalar bosons and con-
tain no derivative coupling for the scalar is shown to be unstable at the one-loop level. The insta-
bility is due to fluctuations at a sufficiently short-distance scale and is caused by the fermion loop
contributions. Possible instabilities in models, which couple fermions to vector bosons only, are

also discussed.

It is believed that quantum chromodynamics (QCD) is
the correct theory to describe strong-interaction physics.
Because QCD is difficult to study at small momentum
transfers, a variety of model field theories has been intro-
duced for the study of the properties of nuclear matter
and finite nuclei,! and for the study of the properties of
nucleons and other baryons. 2-6 These models, it is hoped,
capture the essential aspects of QCD which are relevant
for the particular kind of physics being studied. It is not
completely clear how these model field theories should be
interpreted. They can be thought of as either approximate
effective Lagrangians for QCD or as approximate
equivalent Lagrangians. Effective Lagrangians are
designed to be used at some level of approximation (e.g.,
the mean-field level) and should, when studied at this lev-
el, reproduce the results of the underlying field theory ex-
actly as calculated. In contrast, equivalent Lagrangians
are designed to agree with the exact results of the underly-
ing theory when one calculates to all orders in the
equivalent field theory. In this note we will restrict our at-
tention to the equivalent Lagrangian interpretation of
these model theories.

Traditionally, the quark based models used to study
baryons have been interpreted as effective theories.?™% In
contrast, the nucleon based models used to study nuclear
properties are often treated as candidates for (approxi-
mate) equivalent theories. Thus, these nuclear field
theories are constrained to be renormalizable and it is sug-
gested that this renormalizability constraint makes the
models insensitive to the details of the high momentum
behavior (i.e., no ad hoc cutoff prescriptions are needed). !

All of these model field theories couple fermions (either
nucleons! or quarks?) to scalar bosons. In addition, the
fermions may be coupled to pseudoscalars or vectors and
there may be interaction terms between the various sca-
lars, pseudoscalars, and vectors of the theory. However,
these models contain no derivative couplings of the scalar
boson. We will prove the following theorem: the pertur-
bative vacuum for any theory of this type is unstable
against quantum fluctuations at the one-loop level and
that this instability occurs for all values of the coupling.
This theorem is a generalization of a remarkable result
derived recently by Soni,” and Ripka and Kahana® who
showed that for the sigma model the vacuum is unstable
against fluctuations with a sufficiently small distance scale
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at the one-fermion-loop level. The field configurations,
which lead to the instability in Refs. 7 and 8, had a non-
trivial topological winding number. We will show that the
mechanism causing vacuum instability for the sigma mod-
el is general. It applies to all renormalizable models in
which scalar or vector bosons are coupled to fermions.
This instability is not related to any topological properties
of the field configuration. We also show that in theories
with scalar bosons coupled to fermions and without
derivative couplings, the one-boson-loop contribution to
the energy cannot stabilize the vacuum. The role of the
boson loop in theories with only vector bosons coupled to
fermions will be discussed at the end of this Communica-
tion. A somewhat different perspective on the problem
has been provided by Perry who shows the relationship of
this vacuum instability to the existence of tachyon poles
and to the lack of asymptotic freedom.’

We consider a typical renormalizable Lagrangian
which contains fermions, a scalar boson, and perhaps
some additional scalars, pseudoscalars, and vectors:
L=Ly,+ L' where L,y is

Loy=1%08"68,6—U(c)+yid—m+goly ,
0

U(o) =co+ + Mo?+c303+caot

and L' is the Lagrangian for any vectors, pseudoscalars
and additional scalars, and for the coupling for these addi-
tional fields to o and y. We shall begin by ignoring £’
and will show at the end that the inclusion of .£' will not
affect our results so long as .£' contains no derivative cou-
plings of the scalar. The proof of vacuum instability fol-
lows closely the proof in Ref. 7 for the nonlinear sigma
model. First, one integrates out formally the fermion field
from .L,, and obtains an equivalent Lagrangian. One can
Wick rotate and express the equivalent Lagrangian in a
Euclidean metric,

LB=—%98,00,0—U(o)
+ L Trin[— 8%+ (m — go) 2 +igdol
— L Trin[—8%2+m?—CT, )

where CT stands for counter terms and the trace is over
four-momentum, Dirac indices, and any internal coordi-
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nates. The two trace In’s may be combined to yield
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— L Trinl1+GVI=— 1 TrlGV — £ (GV)2+ L (GV)3 — L (GV)*+-- -], 3)

where G =1/(—98%+m?) and V = —2gmo+g2c? +ig(#5). The GV and GVGV terms are divergent. A subtraction of
counter terms of the form — ¥ TrlGV — £ GGVV] renders the expression finite. This subtraction is equivalent to a
wave-function renormalization for o and a renormalization of the potential U. Thus, the renormalized L& is

oy

L3y=—78,00,6—U(c) + + Trl— $ (GVGV —GGVV)+ + (GV)? — L (GV)*+---1. @)

It will be shown that for o fluctuations on a sufficiently
small scale, the vacuum is unstable. We mean by this that
the energy of a o field configuration, which has fluctua-
tions at this scale, is less than the energy of the perturba-
tive vacuum. Consider a static field distribution o
=f(x/r), where f is some arbitrary functional form. R,
the distance scale, will serve as a variational parameter. V
consists of two parts, —2gmo+g2o?, which does not
scale with R, and ig(§o), which goes like (1/R). For
sufficiently small R, GV scales like R, and we expect the
expansion of the In in Egs. (3) and (4) to converge and to

be dominated by the low order terms. We note that the
|

I

expansion is related to the well-known derivative expan-
sion. The applicability of this expansion for small R was
noted by Soni.” To demonstrate a vacuum instability at
the one-fermion-loop level, it is sufficient to show that the
leading R behavior in the expansion (ie., the
GVGV —G*V'? piece) leads to a negative energy. In cal-
culating the energy it is permissible to drop the
—2gmo+g2c? terms in V since these contributions are
higher order in R. It is straightforward to derive an ex-
pression for the energy in this approximation, and one ob-
tains an expression similar to that of Ripka and Kahana:?

341 2
E-gZRN/(lsnz)f—(‘;—%Ud&’f(x')exp(iq’-x') q"%A4(q'/R)+Eyn , ()
T

where NV is the number of internal degrees of freedom
(flavors, colors, etc.), Eypn is the kinetic energy,
Ewin=R[d’x'[V'f(x')]% V' is the gradient with respect
to the dimensionless variable x' =x/R, and A(q) is given
by

(g2+4m?)\2—4
For small R, the energy becomes

E=RIn(mR)X+RY 6)

with
30 2
X=g2N/(8n2)f—(12—%3 fd3x'f(x‘)cxp(iq'-x')| q7?,
n

=f(—‘;—;%l—3-lfd3x'f(x')exp(iq'~ x') |2

xq”?[1+g2Nln(e2q'~2)/(1622)] .

Note that the coefficient multiplying RIn(mR) is mani-
festly positive and thus the energy of such a configuration
will be negative for sufficiently small R. Such a negative-
energy configuration will occur for any value of the cou-
pling constant. Minimizing the energy with respect to R
gives R=m ~'exp(—a —167%/g2N), where a is a con-
stant of order unity which depends on the shape of the
field configuration.

Let us now show that the one-sigma-loop contribution
to the energy for such a field configuration will not stabi-
lize the vacuum. The o loop will also have a structure of
Trin(1+GV). In this case G=1/(—9%+M2) and
V=02U/dc*—~ M2 Note that V for the o loop does not

|scale with R, while V in the fermion loop goes like (1/R)
for small R. Since the leading contribution to the energy
comes from a term quadratic in ¥, one sees that the o loop
contribution to the energy will go like R3InR for small R,
i.e., it will be two powers of R suppressed compared to the
fermion loop. Thus, for sufficiently small R the o loop is
negligible and cannot stabilize the vacuum. It is clear
that the value of R, which actually minimizes the energy,
need not be small enough so that the o loop may be nu-
merically ignored. However, it is also clear that the
R3In(R) behavior of the o loop implies that there must
exist some value of R which leads to a negative energy.

Next let us consider whether .£', the coupling to other
scalars, pseudoscalars, and vectors can stabilize the vacu-
um. Let @ denote the various fields in £' (excluding o
and y) and ®,,. as their expectation values in the pertur-
bative vacuum. The division of £ into L, and L' can al-
ways be accomplished in such a way that

8L’ 6L’
‘SW L-ovuc 60. L-ovlc 0 . (7)

Since, to demonstrate vacuum instability, it is sufficient to
show that some field configuration exists with negative en-
ergy, one can restrict one’s attention to those con-
figurations with ®=,,.. If these configurations lead
negative energies then instability has been established.
Equation (7) implies that one-fermion-loop and one-o-
loop contributions to the energy will be unchanged. Of
course, there can be contributions due to the one ® loop.
Such contributions, like the one o loop, will go as
R31n(R) and thus cannot stabilize the vacuum. If £’ had
contained derivative coupling of the scalar, a term which



RAPID COMMUNICATIONS

36 VACUUM INSTABILITY FOR MODEL FIELD THEORIES 1655

goes like — RIn(R) would have emerged. Such a term
may stabilize the vacuum. However, for renormalization
theories, such as those being considered here, one cannot
include a scalar derivative coupling.

We have shown that there exist field configurations
which at the one-loop level have an energy less than ener-
gy of the field of configuration associated with the pertur-
bative vacuum. It is worth asking whether the existence
of such configurations really demonstrates that the pertur-
bative vacuum is unstable. To show that the perturbative
vacuum is unstable, it is necessary to show that there ex-
ists a quantum state which has a lower energy. At this
point all we have shown is that the classical energy of a
field configuration for an effective Lagrangian, which in-
cludes one-loop effects, is negative. It is easy to show that
this implies the existence of a negative energy quantum
state at the one-loop level. Denote the Hamiltonian for
the system described by the Lagrangian in Eq. (1) as H.
The energy of a quantum state compared to the perturba-
tive vacuum is (¢ |:H:|¢), where the normal ordering is
with respect to the perturbative vacuum. Next, consider
as a quantum state a coherent state '° of the form

|f(x))=./Vexp[—ifd3xf(x)7r(x)] | vac) , (€))

where f is an arbitrary field configuration for the sigma
field, = is the quantum operator conjugate to o, | vac) is
the perturbative vacuum, and W is a normalization con-
stant. Coherent states have the property that

(f|:4(0,08,0,m):| /) =A(f,0,1,0)

for an arbitrary functional 4. The expectation value of a
coherent state for a normal ordered operator is equal to
the classical value of the functional for a time-
independent configuration f. The expectation value of the
normal ordered Hamiltonian at the one-loop level for a
coherent state is therefore equal to the classical energy
computed for the one-loop effective Lagrangian. There-
fore, the existence of a negative-energy field configuration
at the one-loop level implies the existence of a quantum-
state with negative energy and hence an unstable vacuum.

The perturbative vacuum is unstable at the one-loop
level for the class of models given in Eq. (1). It becomes a
question of some importance to see whether this instability
survives higher-order calculations. In one sense, to answer
this question one must do more complete calculations.

The instability of the vacuum at the one-loop level is a
very general result. Indeed, the instability due to the fer-
mion loop also occurs for systems without scalar bosons,
i.e., for systems of fermions coupled only to vectors. The
proof is of the same form given above for coupling to sca-
lars. However, in such a case, interactions among the vec-
tor bosons (in particular a three-boson interaction with
derivative coupling) can give rise to RIn(R) terms and

might stabilize the vacuum. It should be noted that QED
is a theory of fermions interacting via vector bosons
without any vector-vector interaction. Thus, the QED
perturbative vacuum is unstable at the one-loop level. We
wish to observe that the scale of fluctuations at which the
instability occurs is mexp(1/a). This is the same scale as
the well-known Landau singularity in the renormalization
group.!! It is unclear whether the vacuum instability (or
the Landau singularity) is real or whether it is a conse-
quence of the one-loop approximation. Of course, if it is
real, it violates the axioms of quantum field theory. In
any event, it is not physically relevant because at the
scales of the instability, QED by itself is not the appropri-
ate theory. One must consider unified theories.

The formal properties of this vacuum instability may be
related to the renormalization group as shown by Perry.®
His arguments show that the vacuum instability will occur
for all nonasymptotically free theories. Theories with sca-
lar bosons coupled to fermions, and which have no deriva-
tive couplings, exhibit the vacuum instability at the one-
loop level and are, of course, not asymptotically free.
Theories with fermions coupled to vector bosons may or
may not exhibit the vacuum instability depending on the
nature and strength of the boson-boson coupling terms.
Since it is precisely these coupling terms which can lead to
asymptotic freedom, it is not surprising that the question
of vacuum stability and asymptotic freedom are related.

Finally, we will make a few comments about the
relevance of the instability of the perturbative vacuum at
the one-loop level to the interpretation of the various phe-
nomenological field theories used in the study of nuclei
and nucleons. One possibility, of course, is that the insta-
bility will not generally survive higher-order corrections,
in which case it might be argued that the one-loop insta-
bility is of no fundamental concern. The results are still
disturbing as they suggest a limitation of the loop expan-
sion. If, however, the instability is not an artifact of the
one-loop calculation, it will probably not be useful to in-
terpret these model field theories as approximate
equivalent theories to the underlying QCD. Instead, it is
probably more useful to interpret the theories as some sort
of effective theory useful for a restricted class of calcula-
tions, such as mean-field calculations or perhaps in calcu-
lations with finite cutoffs. We wish to observe that the
vacuum instability problem occurs at high momentum
transfer in renormalizable field theories. Thus, the as-
sumption that the renormalizable nature of the nucleon
based models will make these theories insensitive to the
treatment of high momentum processes should be viewed
with considerable caution.
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