
PHYSICAL REVIE%' C VOLUME 36, NUMBER 4 OCTOBER 1987

Pion production, pion absorption, and nucleon properties in dense nuclear matter:
Relativistic Dirac-Brueckner approach at intermediate and high energies
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Within the relativistic Dirac-Brueckner approach we discuss the properties of highly-energetic
nucleons and deltas in dense nuclear matter. The e6'ective NN and NA interactions are construct-
ed in a fully self-consistent way and reproduce all known properties of nuclear matter. We calcu-
late the nucleon self-energy and the density-dependent e6'ective NN and Nh cross sections in a nu-

clear medium. Results show a sizable reduction of the 6 (pion) production cross section and im-

portant changes in the 6 absorption cross sections.

I. INTRODUCTION

Whether the pion can be taken as a useful tool for the
study of relativistic heavy-ion collision processes has
been the subject of extensive investigation over the last
years. ' The idea has been raised that the measured pion
yield is strongly related to the equation of state of nu-
clear matter at the highest densities reached in this type
of collision. First calculations showed that the pion
data could be explained by assuming a stiff equation of
state of nuclear matter. More recently, it has been real-
ized, however, that these calculations lack several impor-
tant microscopic ingredients. First, the equation of state
was expressed in terms of a momentum-independent
mean field. However, it is well known from the optical
model and several microscopic calculations ' that the
single-particle "potential" or mean field exhibits a strong
momentum dependence. As a result of this dependence,
already at much lower densities than was thought, the
nuclear medium behaves in a "stiff" fashion. Very re-
cently, calculations with the Vlasov-Uhlenbeck-Uehling
(VUU) approach indeed show a crucial influence of the
momentum dependence of the mean field on the result-
ing equation of state. Secondly, in all calculations per-
formed so far the intrinsic medium (and density) depen-
dence of the pion production and absorption mechanism
has been ignored, for the simple reason that very little is
known about this dependence. There are clear indica-
tions that the nucleon mean free path, or related to this,
the elastic nucleon cross section in a nuclear medium, is
density dependent. It is therefore very plausible that
also in the inelastic nucleon cross section, and thus in
the pion production cross section, a similar medium
dependence should be accounted for. It is our aim here
to calculate the microscopic properties of highly energet-
ic nucleons and pions in a dense nuclear medium. Incor-
poration of these results, for the mean field on one hand
and for the density dependent "cross sections" on the
other, calls into question the basic concepts of the kinet-
ic equations that have been applied so far in the descrip-
tion of nucleus-nucleus collisions. This problem has
been studied elsewhere, resulting in the so-called
Brueckner-Boltzmann equation, which consistently in-

corporates all the medium effects that a microscopic
theory like the Brueckner one yields.

Knowledge of the properties of energetic nucleons and
pions in the nuclear medium has a wider range of appli-
cability than only in the calculation of relativistic
nucleus-nucleus reactions. Within the framework of a
local-density approximation, they apply as well to the
field of proton-nucleus and pion-nucleus reactions. It is
generally assumed that the b, ( —', , —', ) resonance plays a ma-

jor role in the description of the interaction of a pion
with a nuclear medium. We shall use this knowledge
and shall focus on the behavior of the 5 inside nuclear
matter more than on the pion itself. With respect to
elastic proton-nucleus scattering, it has been demonstrat-
ed recently that all observables are nicely reproduced
within a relativistic Dirac approach, yielding a single-
particle interaction which consists of large Lorentz sca-
lar and vector fields. These foregoing arguments support
the approach that we present here, the relativistic
Dirac-Brueckner (DB) approach for nucleons and deltas.

The starting point of our DB approach is given by a
coupled set of t-matrix equations, by which the vacuum
nucleon-nucleon (NN) and nucleon-delta (Nb, ) interac-
tions are calculated on the basis of relativistic one-
boson-exchange (OBE) potentials. In this coupled-
channel approach all elastic and inelastic NN observ-
ables can be reproduced reasonably well up to a (labora-
tory) energy of about 800 MeV. The next step in the ap-
proach is the transformation of the t-matrix equations,
in accordance with Brueckner nuclear matter theory, to
incorporate many-body effects on the effective NN and
NA interactions. In a fully-self-consistent approach,
both for the nucleon and the delta, we have been able to
reproduce rather accurately the empirically known satu-
ration properties of nuclear matter. In fact, the model
predicts nucleon (and delta) properties for momenta
below as well as above the nuclear Fermi level. The
properties above the Fermi sea can be expressed in terms
of an optical potential, and it turns out that agreement
can be obtained with empirical values for nucleon ener-
gies below 300 Me V. All these results have been
presented elsewhere. '

Here we shall focus on the properties of highly-
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energetic nucleons and deltas in dense nuclear matter.
We calculate the density-dependent effective NN and
NA interactions in the same energy region as we did for
free spacing scattering, i.e., nucleon energies below 1

GeV. For the nucleonic single-particle interaction we
observe strong Lorentz scalar and vector components, in
agreement with recent calculations for proton-nucleus
scattering below a laboratory energy of 1 GeV. The
two-body properties will be expressed by means of
effective cross sections. While the vacuum cross sections
are determined by the absolute square of t-matrix ele-
ments, their counterparts, the effective cross sections, are
determined by the Dirac-Brueckner "G-matrix" ele-
ments. The legitimacy of this concept has been proven
in the derivation of the above mentioned Brueckner-
Boltzmann kinetic equation, where the Boltzmann col-
lision terms indeed depend on the G matrix. By this
concept of effective cross sections we can demonstrate
rather easily the density dependence of the different in-
teractions. It will turn out, for example, that the
NN~NA interaction is very seriously quenched at high
densities. Since pion production is assumed to occur by
means of this interaction, followed by the decay of the
delta, this indicates a strong density dependence of pion
production. Similar observations are made for the
Nh~NN and NANNA reactions, which may give new
insight into pion absorption (for which the theoretical
situation is still very unclear" ), and elastic pion scatter-
ing reactions.

In Sec. II we shall briefly explain our Dirac-Brueckner
model. For a more extensive description, we refer to
Ref. 10. In Sec. III, results on highly-energetic nucleons
will be presented, while Sec. IV does the same for the
nucleon-delta interactions. Conclusions are drawn in
Sec. V.

r„=v„+ r„g*,v„+ r,~,*v„,
r„=v„+ r„g*, v„+ r,~,*v„,
r„=v„+ r„g*, v„+ r ~,*v„,
r„=v„+ r„g', v„+ r,~,'v„,

(2.1)

(2.2)

(2.3)

(2.4)

GN(k) =GN(k)+ GN(k)XN(k)G N(k), (2.5)

where GN(k) can be written as (k' —mN) '. The formal
solution of Eq. (2.5) is

where 1 (2) stands for the NN (Nh) channel. The
effective interactions (or relativistic G matrices) are
represented by I;». We choose V;, to be of a one-boson-
exchange form, including vertex form factors. The
"dressed" two-particle propagators are represented by
g,*. Equations (2.1)—(2.4) are solved in a three-
dimensional reduced form of the fully covariant ladder
Bethe-Salpeter equation, including only positive-energy
particles. One notices that in this set of equations the
intermediate Ah channel is ignored. The main reason
for this is simplicity. Furthermore, because of the exist-
ing uncertainty in the meson coupling to the AA vertex,
already reflected in V22,

' we do not expect that an
ad hoc inclusion of the intermediate AA channel would
significantly improve the accuracy of our results. All the
OBE parameters are fitted to elastic and inelastic NN
observables for energies below 1 GeV, and are given in
Ref. 10. For the NA~Nh interaction, V22, we included
here only the "exchange" contribution, for which only
the meson couplings to the NA vertex are important.
The "dressed" two-particle propagators, g, are related
to the single-particle propagators GN and Gz. Most
characteristic of the DB approach is the treatment of the
dressed nucleon propagator, G N. This propagator is
determined by solving the Dyson equation:

II. THE RELATIVISTIC DIRAC-BRUECKNER
APPROACH FOR NUCLEONS AND DELTAS GN = [k —mN —&N(k)] ' = (It'* —m *) (2.6)

The DB approach is the outcome of work that was
started by Walecka and co-workers' for schematic NN
interactions. It has been extended to the case of realistic
interactions by Shakin et al. ' and Machleidt and Brock-
mann. ' In Ref. 10 we incorporated delta degrees of
freedom in the model. There are a couple of reasons for
doing so. In the first place it was well known that the
5-intermediate states are responsible for part of the at-
traction in the NN force (represented by exchange of an
effective scalar meson) and, furthermore, for pseudoreso-
nance structure in several phase shifts above 300 MeV. '

Thus, for correctly describing the NN interaction, 5 de-
grees of freedom are necessary. This is particularly the
case for nuclear matter calculations, since intermediate
6 states will behave differently from intermediate nu-
cleon states inside nuclear matter. This might cause
serious differences in the effective NN interaction. Be-
sides, the behavior of a 6 inside nuclear matter is an in-
teresting subject on its own.

At the heart of our calculation of the effective interac-
tions in the (N, b, ) system lies a set of four coupled "G-
matrix" equations:

where we used a Lorentz expansion of the nucleon self-
energy XN(k):

XN(k) =X,(k) —y Xo(k)+y. kX, (k), (2.7)

from which the definitions of m * and k„* trivially follow:

m*=mN+X, (k),
ko =ko+ro(k)

k*=k[1+X„(k)].

(2.8)

This nucleon self-energy in the Brueckner model is
determined by the effective interaction I » [Eq. (2.1)],
according to

XN(k)= i f [tr(G—NI „)—GNI &&] . (2.9)

The inclusion of 6 degrees of freedom does not change
the essential features of the DB model, and full details
can be found in Ref. 10. For reasons of completeness we
sketch some of the ingredients involved.

For unstable particles like the 6, the propagator be-
comes a complex quantity, on account of the virtual cou-
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pling of the b to its decay channel(s). This "dressed"
propagator is found by solving a Dyson equation, which
for the b, case is (see Fig. 1)

Gpv (GO )pv+(GO )ppya Gwv (2.10)

where Gz and G~ denote the dressed and bare 6 propa-
gator and X gives the irreducible 6 self-energy contri-
bution. As indicated in Fig. 1, we have restricted the
self-energy term, X, to the N~ "bubble" and the Np
"bubble. " The formal solution of Eq. (2.10) is

(2.11)

N

H, P

FIG. 2. Diagrammatic representation of the 6 self-energy
contributions. The first diagram shows the coupling of the 6
to the pN and mN "bubble, " the second shows the Brueckner
self-energy contribution.

Xm+ Xd (2.12)

The magnitude of the decay self-energy, X, in nuclear
matter differs significantly from its vacuum value for two
reasons: the fact that in the medium the 6 couples to a
virtual dressed nucleon (instead of a "bare" nucleon),
and, furthermore, the explicit effect of Pauli blocking.

The decay self-energy, X", contains a strong off-shell
dependence; however, in the Brueckner scheme that we
apply here, the medium self-energies are calculated for

FIG. 1. Diagrammatic representation of the Dyson equation
for the "dressed" 6 propagator.

where we have omitted all the indices.
The self-energy has usually negative real and imagi-

nary components. The negative real part leads to a
"physical" mass of the particle that is lower than the
"bare" mass, which would be the mass of the particle in
the absence of any decay channel. The imaginary part is
directly connected to the physical decay width. Com-
rnonly, the unstable nature of a particle is treated in the
quasiparticle formalism, in which the physical mass of
the particle is taken as the relevant mass parameter, ex-
cept in the particle propagator, where the full complex
energy expression is used, either by including the self-
energy as specified above, or in an approximate form, by
the use of a complex mass: p~ ——mz —iI /2, where both
mz and I are the physical quantities.

The bare 6 mass mo is unknown and enters the self-
energy calculations as a parameter that is adjusted in a
comparison of the full dressed propagator with experi-
mental data, specifieally with the P33 ~N scattering am-
plitudes. We fitted the P33 phase shift in combination
with all the NN-seattering data. mo is not used as an in-
put parameter, but is fixed such that the P33 phase shift
has the correct resonance position: m q

——1.23 GeV/c .
The self-energy of the 6 in nuclear matter consists

now of two parts: X", the decay 6 self-energy which
arises from virtual coupling of the bare 6 state with its
decay channel, and X, the proper medium 6 self-energy
that is the consequence of the coupling of the 4 to the
nucleonic Fermi sea. These contributions are diagram-
rnatically displayed in Fig. 2. The dressed 6 propagator
Ga is given by Eq (2.10), .with the definition

on-shel1 dressed particles. Therefore we calculate X in
a similar way as the nucleon self-energy [Eq. (2.9)],

X (Eg, k)= g (kk'
~

I qq ~

kk') .
k &kF

(2.13)

The solution for Gq is complicated by the fact that the
Lorentz structure of G& is more complex than its nu-
cleon counterpart. Therefore, we cannot write
equivalent expressions, as in Eqs. (2.6)—(2.8). So far, we
have left the full solution for Ga(k) for the future, and
opted for a more conventional approach, in which
X&——X"+X is approximated by a purely scalar quanti-
ty.

In an iterative procedure, where I;~ depends on XN
and X~, and vice versa, the model is made fully self-
consistent, both with respect to nucleon and delta de-
grees of freedom. One should notice that, within the DB
approach, the dependence of I;~ on XN, in particular,
goes further than in conventional Brueckner calcula-
tions. The reason for this is the following. The dressed
on-shell nucleons can be represented by Dirac plane
waves:

u *(p,s) =
' 1/2

X, , (2.14)2m* E +m

where E' has been defined by, E'=(k'~+m "~)'~~.
Since m' attains much lower values than the vacuum
value, m N, and (approximately) k* equals k, one sees
that the lower components of this Dirac spinor are
enhanced compared to the vacuum spinor. This has im-
mediate consequences for the OBE interactions, V~-, and
thus also for I;J. The fact that the DB approach yields
better saturation properties than conventional Brueckner
calculations is a result of this phenomenon. In particu-
lar, in V» the scalar meson exchange is reduced by the
enhanced lower Dirac components, which results in a
lower attraction, while the vector meson exchange is en-
larged, resulting in greater repulsion. Similar observa-
tions can be made for the other interactions VJ. For ex-
ample, the m.NE vertex is also reduced by enhanced
lower Dirac components of the nucleon.

As a result a self-consistent model is presented here
based on a coupled set of equations of all effective t ma-
trices (I », I iz, I z&, and I ~z) supplemented by equations
defining the self-energy of the nucleon and of the h. The
QBE interactions between nucleons and deltas are deter-
rnined from vacuum calculations and their parameters
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are given in Ref. 10. Hence this approach to nuclear
matter does not contain any additional free parameters.

matter the single-particle energy is given by

E, p
——[k (1+X,) +(mN+X, ) ]' —Xo —mN, (3.1)

III. NUCLEON-NUCLEON INTERACTIONS
ABOVE THE FERMI SURFACE

A. Medium properties of highly-energetic nucleons and deltas

500—

-500—
I

800
I I 1 I I I I

200 000 600

E~,b
(MeV)

FIG. 3. Nucleon self-energy contributions X, and Xo vs lab-
oratory energy. Solid lines give our Dirac-Brueckner results.
The crosses represent calculations by Tjon and Wallace (Ref.
17).

The full DB model, including 6 degrees of freedom,
presented in Sec. II, enables us to perform calculations
for high nucleon momenta. As a first result, the scalar
and vector parts of the nucleon self-energy, X, and Xo,
are shown at normal density, for a broad momentum
range, in Fig. 3. The values obtained are comparable to
those obtained theoretically or empirically from high-
energy proton-nucleus collisions. ' ' In this figure, our
DB results (solid lines) are compared to sophisticated
field-theoretic calculations in the relativistic impulse ap-
proximation by Tjon and Wallace. ' The equivalence is
very remarkable. Both calculations are based on a one-
boson-exchange interaction that has been fitted to free
NN observables for energies below 1 GeV. Our calcula-
tion incorporates, self-consistently, medium effects in the
t matrix for dressed positive-energy nucleons only. The
calculation of Tjon and Wallace is not self-consistent but
incorporates "bare" negative-energy states of the nu-
cleon. Although these physical concepts are very
different, the calculations are somehow related in the
sense that "dressed" positive-energy states can be ex-
panded in "bare" positive-energy and negative-energy
states. It might be clear from the magnitude of the self-
energy components that self-consistency is an important
requirement and we calculated that it may change the
values of X, and Xo by about 70—100 MeV. This may
indicate that the intriguing question about the influence
of negative-energy nucleon states has not been settled as
yet and needs more investigation.

A rather complete survey of our results on the nu-
cleon self-energy is given in Table I. Here, for several
densities, all complex self-energy components are
presented, together with values for the "mean-field" U,
and the resulting single-particle energy. In nuclear

where only the real part of X(k) is included.
The difference between E, ~ and Ef„„ the latter

defined by

Ef„,——(k +mN )' —mN (3.2)

B. Eft'ective cross sections for nucleon-nucleon
elastic and inelastic scattering: Pion production

In this section nucleon energies below and above the
pion threshold ( —300 MeV) will be considered. When
discussing two-body properties in nuclear matter, we

gives the real part of the "mean-field" U(k). One clear-
ly sees that U has a strong dependence on both the nu-
clear matter density, as well as on the nucleon momen-
tum. These properties of U have been described more
extensively elsewhere.

Also, the 5 is dressed dynamically, i.e., it has a vacu-
um self-energy, which is such that the vacuum-dressed 5
corresponds to the "observed" properties of the
(ER ——1232 MeV and the width I =110 MeV). In a nu-
clear environment this vacuum dressing, X, is attenuat-
ed because the virtua1 coupling to bare nucleons becomes
a coupling to dressed nucleons with Pauli blocking and,
moreover, there is an additional self-energy contribution,
X, which is specific for the nuclear medium (see Sec.
II).

We show results for each contribution separately. In
Fig. 4 the values X are displayed at normal and twice
normal nuclear density and are compared with the vacu-
um results (solid line). One observes a reduced width of
the b (I /2=1mX) which is mainly affected by the Pauli
blocking on the virtual nN state. The medium 6 self-
energy, X, is presented in Fig. 5 as a function of kF. It
is seen that X is much smaller in magnitude than the
nucleonic values, X' and X . Also, the imaginary part is
very small. The resulting "effective" 6 mass can be ob-
tained by looking at the poles of the corresponding
dressed 6 Green's function. These are indicated by ar-
rows in Fig. 4. The combined effect of X and X on the
5 effective mass does not change very much from the
vacuum case (mz ——1230 MeV). At the density p=po,
we have an effective 6 mass, mz ——1200 MeV, and at
p=2po, rn~ ——1250 MeV. On the other hand, the imagi-
nary part of the effective mass, I, is very sensitive to the
density, so that at larger densities the b, (at rest) becomes
a very stable particle. (The decay channel b, ~vr+N is
fully quenched by the Pauli blocking. ) The small effect
of density on the 5 mass might be surprising compared
to the large density dependence of the nucleon effective
mass m'. This is, however, not a correct comparison.
Instead one should compare sz, which is the 6 effective
energy, to the nucleon single-particle energy. For a nu-
cleon at rest this yields E, ~ (k =0)=mN+X —Xp. At.
normal density the resulting shift is only about 70 MeV
downwards and at p = 3po there is even an upwards shift
of E, ~ compared to the nucleon vacuum mass of abo»t
30 MeV.
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P1ab

TABLE I. The nucleon self-energy at high momenta.

U

(GeVy~)
Re

(aeV)
Im Re

(GeV)
Im Im

(MeV)
Im

(MeV)

0.45
0.65
0.85
1.05
1.25
1.45
1.65

—0.204
—0.180
—0.166
—0.156
—0.151
—0.146
—0.142

0.004
0.009
0.013
0.018
0.019
0.022
0.026

p= —po [ICF =0.21
—0.157
—0.131
—0.113
—0.100
—0.092
—0.086
—0.082

0.013
0.018
0.021
0.024
0.026
0.028
0.030

—0.011
—0.005
—0.003
—0.002
—0.002
—0.002
—0.001

(GeV/c), m =0.720 (GeV/c ')]
0.003
0.003
0.003
0.003
0.002
0.002
0.001

—25
—15
—7

0
4
9

14

—9
—11
—15
—18
—25
—31
—37

77
188
320
469
628
797
973

0.45
0.65
0.85
1.05
1.25
1.45
1.65

0.45
0.65
0.85
1.05
1.25
1.45
1.65

0.45
0.65
0.85
1.05
1.25
1.45
1.65

—0.325
—0.300
—0.278
—0.264
—0.254
—0.245
—0.239

—0.515
—0.477
—0.446
—0.427
—0.413
—0.400
—0.391

—0.649
—0.574
—0.547
—0.526
—0.506
—0.489
—0.473

0.015
0.019
0.025
0.030
0.035
0.041
0.046

0.014
0.040
0.049
0.057
0.063
0.070
0.076

0.008
0.031
0.054
0.067
0.080
0.084
0.088

P=Po
—0.253
—0.220
—0.191
—0.171
—0.158
—0.150
—0.144

p =2po
—0.445
—0.387
—0.337
—0.307
—0.289
—0.279
—0.269

p=3po
—0.662
—0.545
—0.492
—0.453
—0.430
—0.426
—0.415

(kp ——0.26,
0.023
0.031
0.038
0.044
0.048
0.053
0.056

(k~ =0.33,
0.019
0.055
0.071
0.088
0.100
0.109
0.115

(kp ——0.38,
0.013
0.064
0.113
0.125
0.153
0.158
0.177

m =0.605)
—0.023
—0.013
—0.007
—0.005
—0.004
—0.003
—0.002

m =0.428)
—0.068
—0.038
—0.019
—0.012
—0.008
—0.007
—0.005

m *=0.309)
—0.121
—0.080
—0.043
—0.025
—0.017
—0.017
—0.018

0.007
0.006
0.006
0.006
0.006
0.004
0.003

0.003
0.007
0.011
0.014
0.014
0.014
0.013

0
0.019
0.023
0.020
0.027
0.026
0.026

—33
—17
—5

7
16
26
35

0
22
38
55
72
89

101

111
103
128
150
169
192
202

—9
—16
—26
—36
—47
—61
—73

—6
—26
—50
—77

—108
—139
—168

—5
—36
—86

—118
—176
—214
—273

69
186
322
476
640
814
994

102
225
365
524
696
877

1060

213
306
455
618
793
980

1161

shall use the concept of e+ectiue cross sections. In the
following discussion, four different cross section values
are distinguished. The free NN cross section, which in
our approach is related to the vacuum t matrix T&&, will
be called cr4. In some kinetic equations, like the VUU
equation, this cross section is corrected for Pauli block-
ing in the outgoing channel. We shall call this value o 3.
Calculating the effective cross section from the effective
Dirac-Brueckner interaction, I », we obtain a& and cr2.
Here, cr2 is not corrected for Pauli blocking in the out-
going channel (but Pauli-blocking in the intermediate
NN channels is included); o.

&
is the effective cross sec-

tion that contains all medium corrections. The incoming
NN channel is the same for all four cross sections. Par-
ticle 1 has a certain fixed momentum compared to the
surrounding nuclear medium. For particle 2, all the
available Fermi sea momenta are taken into account and
averaged afterwards. In summary,

3 "r
3 —,m" (A'c)

oi(k, )=, , J d'k, Q(P, s',p)
4m-2kF' 2(2m. ) s'

(3.3)
where P=k&+kz, s" =(Ef +E2 ) —P, and P
=—,

' (s "
)
'~ —4m ', and g „represents the summation

(average) of outgoing (incoming) spin and isospin chan-
nels. The kinematic factor is relate/ to our choice of the
Dirac-spinor normalization: u(k*)u(k')= l. The func-
tion Q gives the angle-averaged Pauli-blocking operator
and kF denotes the Fermi momentum. It will be clear
from above how the other values cr;(k& ) can be obtained.
The value for o.2, for example, can be calculated from
Eq. (3.3) by ignoring the Q operator. Results are
presented in Table II for p= —,'po, po, and 2po, where po is
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FIG. 5. The Brueckner contribution to the self-energy of the
b, vs nuclear matter density, expressed by kF. The real and
imaginary components are displayed separately.

FIG. 4. The medium dependence of the decay self-energy of
the A. The solid curve gives the vacuum results. The dashed
line represents the self-energy at normal nuclear density. The
dashed-dotted line represents the results at twice normal nu-
clear density. The arrows indicate the pole positions of the 5
propagator and correspond to the 4 e6'ective mass. As a refer-
ence mo indicates the bare vacuum mass.

the calculated (and empirical) saturation density. For
completeness, not only the momentum of partic1e 1 is
given, but also the energy. It is seen from this table
that, especially at low energies, the effective cross sec-
tions are dramatically reduced by the combination of the
two effects that we distinguish here, i.e., the use of the
effective interaction, 1» (instead of the free r matrix),
and the Pauli blocking in the two-particle exit channel.
The importance of the first of these effects is also demon-
strated in Fig. 6. Here the dashed line represents o.3, in
which only the Pauli blocking is incorporated, and the
solid line represents o. &. One sees that for the low ener-
gies and low densities, which mainly is the domain of or-
dinary nuclear physics, the Pauli-blocking effect dom-
inates. But for nucleon energies in the range of 100—200
MeV, effective cross sections are very considerably re-
duced compared to the Pauli-blocked free ones. The
effect diminishes for larger energies. The reader might
prefer to think in terms of a mean free patn instead of
an effective cross section. Defining the mean free path A.

by k= 1/(p cr&), we obtain, for nucleon energies above

100 MeV, values of about 5 —6 fm, in agreement with
empirical values. Similar results, but in a more conven-
tional approach, and for energies below the pion produc-
tion threshold only, are found by the Liege group. '

With respect to the effective (elastic) NN cross sec-
tions at high energies, the results differ considerably
compared to the low-energy region. At high momenta
the Pauli blocking becomes less and less important, and
furthermore, the effective interaction, I », gets larger
compared to the free t matrix. This is nicely demon-
strated in Fig. 7, where the differential effective elastic
cross section do. 2/dA is displayed at several incoming
momenta. At p =0.85 GeV/c one sees that for 3 times
normal density the cross section is enhanced compared
to results for p =po. At sti11 higher momenta the
effective cross sections are mainly left unchanged, or are
even a little larger, when compared to the vacuum
values. The results for the total cross sections are sum-
rnarized in Table III. In this table the values for the
pion production cross sections are also given. These are
calculated from the effective NN~Nh interaction, I &2,

combined with a final decay of the delta into a pion and
a nucleon. Results are displayed in Fig. 8. One observes
a completely opposite behavior compared to the elastic
cross sections. The effective pion production cross sec-
tion, o, is stable at low momenta, but strongly reduced
at higher values. The stability at the lower side is due to
Fermi motion. Recall that we averaged over all momen-
ta inside the Fermi sea. As a result, the inelastic chan-
nel, which is still closed in the vacuum for p =0.5
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TABLE II. Values of effective isospin averaged NN cross sections. (k gives momentum of particle
1 in nuclear matter rest frame. E, ~ gives single-particle energy of particle 1, and particle 2 is in-
tegrated over Fermi sea of nuclear matter). o.

&
is the effective Dirac-Brueckner cross section, includ-

ing Pauli blocking; o.
2 is o.

~ without Pauli blocking in the outgoing channel; o.
3 is the free NN cross

section, with Pauli blocking in the outgoing channel; and o4 is the free NN cross section without Pau-
li blocking.

popo

0.5

1.0

2.0

k
(GeV/c)

0.22
0.25
0.29
0.31
0.38
0.46
0.55
0.65
0.75
0.85

0.27
0.29
0.31
0.34
0.38
0.42
0.46
0.55
0.65
0.75
0.85

0.34
0.38
0.46
0.55
0.65
0.75
0.85

E
(Mev)

—21.7
—13.5
—0.8

7.3
41.3
81.2

129.1

188
252
213

—20.3
—12.9
—6.1

7.2
25.9
46. 1

68.7
122
185
253
325

50
68

108
159
225
295
365

2.9
12.5
28.6
33.7
31.8
23.4
18.7
17.0
16.5
16.4

0.2
1.7
3.4
6.6
9.6

11.6
11.7
11.9
12.3
13.3
14.3

0.0
0.8
4.0
7.3

10.0
12.5
14.1

(mb)

137
133
119
108
61.0
35.0
24.8
20.9
19.3
18.7

49.8
46.6
45.0
40.2
34.7
29.9
24.4
19.5
17.7
17.6
18.0

22.6
22. 1

20.8
19.9
20.0
21.2
21.6

+f'ree

(MeV)

25
33
44
50
74

107
149
203
263
327

38
44
50
60
74
90

107
149
203
263
327

60
74

107
149
203
263
327

5.7
22. 1

41.5
46.7
45.8
38.5
31.8
27.4
24.2
22.0

0.7
5.0

11.5
21.5
27.5
29.9
29.8
27.0
24.4
22. 1

20.5

0.2
4.0

16.2
19.6
19.8
19.0
18.2

(mb)

279
222
155
133
83.3
56.8
41.6
33.3
28. 1

24.7

190
169
144
115
88.5
70.6
58.8
42.4
33.6
28.2
24.8

126
99.1

63.2
44.0
34.2
28.4
24.9

GeV/c, can be attained for the same momentum at den-
sities p&2po. At high momenta, far above the threshold
value, pion production in nuclear matter assumes much
lower values than compared to the vacuum. At p=2po,
o. reduces to only 40% of the vacuum value, and at 3po
this even goes back to 25%, reaching values of only 5
mb. The absolute values of o. should be treated with a
little caution since we underpredict (in our model) the
vacuum values by 15%.' This factor will probably be
about the same in nuclear matter. Part of the medium
reduction of o. is due to Pauli blocking in the exit chan-
nel. Evidently, the nucleons lose energy and momentum
be creating the pion, which enhances the importance of
the Pauli blocking at high incoming momentum. But
this only explains part of the result. Also, the effective
interaction I &2 is reduced, mainly because of the low
values of the effective nucleon mass m* that are in-
volved. These effectively reduce the Nkvd coupling. In-
terfering with p exchange, this results in the observed
quenching of cr . Evidently, the observed density depen-
dence of the pion production cross section has interest-

ing consequences for the description of pion yields in rel-
ativistic heavy ion collisions. One might recall that until
now, the model calculations overpredicted the number of
final pions. ' Figure 8 indicates why, in part, but not
fully, since the density dependence of the pion absorp-
tion mechanism might also strongly inhuence the num-
ber of produced pions. It is clear that an enhanced ab-
sorption rate might have the same effect as a reduced
production rate. We shall allude to this problem in the
next section.

IV. DELTA ABSORPTION AND ELASTIC
SCAI l'ERING IN NUCLEAR MA'l I'ER

In this section we shall present calculations of the
remaining effective interactions, I 2& and I 22. In con-
trast to the preceding section, the incoming channel con-
sists, in this case, of a nucleon and a delta. The results
that we obtained here should be viewed with a little
more caution than those of the foregoing section. The
reason for this is that, empirically as well as theoretical-
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TABLE III. The effective elastic and pion production cross
section.
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15.3
16.4
17.5
18.8

m *=0.720
37.0
20.9
18.7
17.7
17.5
17.7
18.5

m *=0.605)
24.7
17.7
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17.7
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20.3

{GeV/c 'j]
0.0
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0
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FIG. 6. Effective elastic nucleon-nucleon cross sections as a
function of nucleon momentum in the laboratory system, for
densities p = —'po, po, and 2po, where po gives the saturation
density. Dirac-Brueckner results (solid lines} are compared
with calculated free cross sections corrected for Pauli blocking
on the final phase space population (dashed lines).
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10.0
14.1
15.8
17.7
19.3
20.8

(k, =0.38,
2.0
8.3

13.5
16.2
18.4
20.4
21.6

m *=0.428)
20.8
20.0
21.6
21.2
22.2
23.0
24.0

m *=0.309)
25.2
23.3
24.7
24.8
25.7
26.7
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7.9

0.1

0.4
1.8
3.6
4.5
4.6
4.8

2.0

0.0
8.0—
6.0—

p= l.25
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ly, very little is known about the NA interaction. This is
reflected in large uncertainties concerning the OBE in-
teraction V&2, which is not very important in the NN
effective interaction, but its role is increased in the NA
interaction. Furthermore, in our approach we ignored
possible intermediate AA states. This also reduced the

20—
N+

2.0

I.O
0.8—

lO—

50 60
I

30
I

60
Crn.

FIG. 7. Effective differential elastic NN cross sections calcu-
lated in the Dirac-Brueckner approach as a function of c.m. -

scattering angle 0, for different (laboratory) nucleon momen-
ta and difFerent nuclear densities.

0
0.4 0.8 l.2

p (GeV/cj
l.6

FIG. 8. Effective pion production cross sections vs nucleon
momentum in the laboratory system for different nuclear densi-
ties.
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trustworthiness of our calculations for the NA interac-
tion. Finally, our nuclear matter approach accounts
only for an infinite system of nucleons. The possibility
of a certain mixture of nucleons and deltas with both
their own characteristic density is fully ignored. In real-
istic calculations, however, one might deal with a finite
delta/nucleon ratio. This would cause additional cou-
plings (although they are probably less important) that
are not included here. In this section we describe prop-
erties of a single delta interacting with nucleons which
are part of a purely nucleonic medium. For the incom-
ing channel of I 2& and I 22 we chose the nucleon to be at
rest in the nuclear medium, and we varied the 5 momen-
tum. The incoming (invariant) 6 mass, sz, has been
fixed at the value of s& ——1.23 GeV. Note that in the nu-
clear medium this is not the on-shell value for all densi-
ties. Concurrently, we could have chosen the density-
dependent on-shell value of sz as the starting energy, but
the differences are not very large. As we have shown in
Sec. IIIA, the 6 mass shifts to somewhat lower values
than the vacuum mass, 1.23 GeV/c, at low densities,
but at densities higher than normal density this effective
mass moves upwards, but to values still smaller than 1.3
CxeV/c at p=3po. However, since one is more interest-
ed in pion absorption than 6 absorption, the on-shell 6
mass is of somewhat less importance. As we checked ex-
plicitly, the inhuence of s& on the final results is small,
and is mainly rejected in the Pauli blocking in the exit
channel.

As in Sec. III, we calculated effective cross sections
based on I 2& and I 22, and incorporated Pauli blocking
in the exit channel. To calculate the Pauli-blocking fac-
tor, we relaxed the initial condition (nucleon at rest in
the medium), and averaged over the nucleon states in the
Fermi sea. Practically, this diminishes the effect of Pauli
blocking somewhat, but gives, in our opinion, a better
view of what Pauli blocking, in realistic cases, might do.
Note that a nucleon at rest in nuclear matter is very
rare, although the average momentum (not as a length
but as a vector) is zero. Results for the b absorption
cross section, a(Nb, ~NN), are presented in Fig. 9,
where the vacuum values (p=O) are compared to values
in dense nuclear matter, p=po, 2po, and 3po. In contrast
to some speculations about enhanced 6 absorption in
nuclear matter, ' one observes a reduction of the
effective cross section as a function of density. Because
of the mass difference between the incoming and outgo-
ing channels, the outgoing momenta are rather large,
which reduces the effect of Pauli blocking for p(2po
considerably. At p=po the effect of Pauli blocking in
the exit channel is negligible. The difference between
o (po) and o (Zpo) is half caused by Pauli blocking and
half explained by a reduction of I 2&. The striking reduc-
tion at p=3po is, however, to a large extent the result of
Pauli blocking. The mass difference yields a momentum
gain that is smaller than the Fermi momentum at this
density. In this respect the 6 absorption cross section
behaves differently from the elastic NA cross section,
which is displayed in Fig. 10. Here, already at normal
density, the low-momentum results are strongly reduced,
in part by the blocking of the outgoing channel. In fact,

60-

40—
E

20—

0
0 04 0.8

kz (GeV/cj
1.2

FIG. 9. Effective 5-absorption cross sections as a function
of laboratory 5 momentum for different nuclear densities (po
represents the nuclear saturation density).

Fig. 10 largely resembles the effective elastic NN cross
sections, shown in Fig. 6. As a result, for 6 momenta
below 0.7 GeV/c, the 5 absorption, although in absolute
terms reduced, is strongly enhanced relative to 6 elastic
scattering, compared to the vacuum situation. For
higher momenta, the behavior is the opposite and the 6
absorption is more severely reduced than the elastic

100—

80—

E 60-

40-

20-

0
0 0.4 0.8

k (GeVt'cj
1.2

FDIC&. 10. Effective hN elastic cross sections as a function of
laboratory 6 momentum for different nuclear densities.
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scattering. Even though the cross section values, in an
absolute sense, contain large uncertainties, we believe
that the trends observed here are rather unambiguous.

V. SUMMARY

We have discussed high-energy nucleon and delta
properties in dense nuclear matter. These properties are
of great importance in proton-nucleus, pion-nucleus, and
nucleus-nucleus scattering. We opted for a fully-self-
consistent approach, built on field theory, which com-
bines an adequate description of all the vacuum proper-
ties of nucleons, deltas, and their scattering processes
with an equally good description of the empirically
known properties of nuclear matter. The resulting
Dirac-Brueckner approach for nucleons and deltas has
been applied here to situations of large particle momen-
ta. For highly-energetic nucleons, we calculated the
self-energy decomposed into its scalar and vector com-
ponents. The resulting values are in agreement with
values obtained empirically or theoretically, by using the
relativistic impulse approximation in the study of
proton-nucleus scattering. Since these approaches differ
considerably, particularly with respect to self-consistency
and the treatment of negative-energy nucleon states,
these points need more attention in future calculations.
The (generally) nonlocal self-energy can also be approxi-
mated in terms of a local mean field. It turns out that
this mean field becomes repulsive both for large momen-
ta as well as for large densities. This momentum depen-
dence has been overlooked in most of the calculations of
the equation of state derived from nucleus-nucleus col-
lisions. In the presentation of our results we focus on
the concept of effective, medium-dependent cross sec-

tions, which are related to the effective Dirac-Brueckner
interaction, I", instead of the free t matrix. This correc-
tion to the vacuum cross section exists in addition to the
more frequently used Pauli-blocking effect in the outgo-
ing two-particle channel. For the elastic NN interaction
we observe, in the energy range 50—400 MeV, a strong
reduction of the effective cross section, which is only in
part due to Pauli blocking. For higher energies the
difference compared to the vacuum cross section be-
comes much smaller and even changes sign. The
effective inelastic NN interaction determines mainly pion
production in a nuclear medium. It is seen that al-
though, through Fermi motion, the production threshold
shifts downwards, at high momenta the inelastic channel
is strongly decreasing as a function of density. This in-
dicates a mechanism that is responsible for the fact that
the observed pion yield in relativistic nucleus-nucleus
collisions is considerably smaller than calculations have
so far predicted. On the other hand, the final number of
produced pions depends also on pion absorption of the
medium. To attack this problem, we calculated 5 ab-
sorption and 6 elastic scattering in dense nuclear matter.
Both turn out to decrease as a function of density for 5
momenta below 0.7 GeV/c. Relative to elastic scatter-
ing, however, the importance of 6 absorption is
enhanced considerably. For higher momenta the situa-
tion is the opposite.

All the foregoing novel results might be interesting in
themselves. More important, however, is an implemen-
tation of our concepts and results in realistic particle-
nucleus and nucleus-nucleus calculations, in which they
eventually can be verified. In this respect, the situation
in which the temperature takes on finite values (i.e.,
dense and hot nuclear matter) also needs further study.
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