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Isoscalar giant resonances in fast rotating nuclei are investigated within the framework of nu-

clear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of
reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation re-
moves completely the azimuthal degeneracy of the giant resonance energies. Realistic large values
of the angular velocity„which are still small as compared to the giant resonance frequencies, are
briefly reviewed in relation to allowed high angular momenta. It is shown that for the A =150 re-

gion, the Coriolis force is dominating for small values ( 0.05) of the ratio of angular velocity to
resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split
resonance energies for larger values of the ratio. Typical examples of the resonance energies and
their fragmentation due to both rotation and deformation are given.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I), we in-
vestigated the isoscalar giant resonances of deformed nu-
clei within the framework of the nuclear elasticity. In
particular, we turned our attention to the fragmentation
of the giant monopole and quadrupole resonances. It
was thus shown how the nuclear surface deformation
contributes to the fragmentation through the coupling
between the monopole and quadrupole modes of oscilla-
tion.

In the present paper we extend the concept of nuclear
elasticity to rotating nuclei and deal with the isoscalar
giant resonances of rotating elastic nuclear matter. The
origin of the nuclear elasticity can be found in the fact
that the equations of motion formulated in the dynam-
ics ' of nuclear fluid in the framework of the time-
dependent Hartree-Fock theory can be approximated for
some collective motions, such as the giant resonances, by
the Lame equation which governs the classical theory of
elasticity. Thus the isoscalar giant resonances of spheri-
cal nuclei ' and those of deformed nuclei' have been ful-
ly studied recently in the spirit of the nuclear elastic vi-
bration.

In a recent experiment, Newton et al. analyzed the
high energy tail of y rays emitted following Ar-
induced reactions and suggested that the nuclear giant
dipole resonance may be excited in a nucleus which ro-
tates with very high angular momentum. Regarding the
isovector giant dipole resonance of rotating nuclei, there
have been several theoretical investigations in the past
few years. For example, calculations of the position and
splitting of the isovector giant dipole resonance were
first performed on the basis of a simple schematic model
of a rotating harmonic oscillator. ' More elaborate
models ' were then applied to the same problem. In a
recent paper, we also studied the isovector giant reso-

nances of arbitrary multipolarity in fast rotating nuclei
by solving the invicid two-fluid equation of relative
motion written in a rotating frame of reference. Though
the description we used in Ref. 9 is a rather semiclassical
one, the resulting expressions display in a quite simple
way general features of isovector giant resonances of fast
rotating nuclei. In particular, we have shown how the
splitting of the giant resonances arises from rotating de-
formed nuclei.

For the rotating elastic nuclear matter, we have to
transform first the equation of motion in I into one in a
rotating frame of reference. Generally, the effective
force in the new equation of motion in the rotating coor-
dinates contains the terms corresponding to Coriolis and
centrifugal forces. The equation of motion of the rotat-
ing nuclear matter is, on the whole, more complicated
than the corresponding equation of motion obtained in
the two-fluid hydrodynamical model. The reason is
that the elastic medium under the influence of external
potentials is not free from stress, even in the initial equi-
librium state, and thus the usual expression for the elas-
tic stress in the equation of motion in I has to be slightly
modified by adding pressure-dependent terms. Never-
theless, if the density of the elastic nuclear matter is as-
sumed to be constant, the equation of motion can then
preserve the same form of the rotational forces as in the
case of the two-fluid model, except that the displacement
vector now takes part in the force in place of the ordi-
nary radial vector. However, the presence of the rota-
tional forces in the equation of motion prevents us from
obtaining an analytical solution of the equation, whatev-
er forms these forces may take.

The derivation of the equation of motion in a rotating
frame of reference is described in Sec. II. This is fol-
lowed by a method of solution of the equation. The per-
turbation method is shown to be of great utility for the
treatment of the equation of motion that contains rota-
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II. EQUATION OF MOTION
OF ROTATING ELASTIC NUCLEI

As shown in I, the equation of motion of a uniform
perfectly elastic nuclear medium in inertial system is
given by

a u(X+2p)V(V u) —pVXVxu+F=p
at2 ' (2.1)

where u is the displacement vector, F the external body
force, and p the nuclear density. For the nuclear elasti-
city the Lame coeScients A, and p take the forms'

L

1

2
]5 g f (2.2)

(2.3)

where K is the nuclear compressibility, m ' the effective
nucleon mass, and kf the Fermi momentum. It is also
noticed that the quantity k+ —', p is the compression
modulus of the elastic medium; that is, the ratio of iso-
tropic pressure to fractional rate of decrease of volume.
The Lame coe%cient A, is also related to the Landau pa-
rameter I'o by

kfp(1+ T—5FO) .
1

5 m*
(2.4)

Generally, a dynamical equation of motion expressed
in the syst~ of rotating coordinates has the same form
as the original equation of motion written in the inertial
system, except for the body force term, which now be-
comes the effective body force. This was the case in the
two-Auid model we formulated in a previous paper.
Therefore, to an observer, in the rotating system it ap-
pears as if the body is moving under the inhuence of this
effective force, which is represented by

drF ~——F—2p Q~ —pQx(Qxr), (2.5)

where 0 is the angular velocity. The velocity in the
inertial system v; is related to the velocity in the rotating
system v by v; =v+ 0X r. The second term in the
eff'ective force (2.5) represents the Coriolis force and
third term denotes the centrifugal force. If the angular
velocity is time dependent, an extra term, —pr dXQldt,
is to be added to the effective force.

The fact that the displacement vector u plays the role
of the usual radial vector r in the classical dynamics
necessitates a careful formulation of the effective force in

tional forces. Section IV is devoted to discussions of
particular examples of the resonance energies in terms of
the angular velocity of rotating deformed nuclei. The
meaning of nuclear fast rotations is briefly discussed in
relation to high angular momenta which can be accomo-
dated in nuclei. A summary and final conclusions are
presented in Sec. V.

a U—pQx(Qxu)=p
at2

(2.6)

Equations (2.5) and (2.6) show that the centrifugal
force is or order 0, , whereas the Coriolis force is of
order Q. We now assume that the displacement vector
can be separated into spatial and time parts as
u(r, t)=u(r)exp(idiot). Applying the variational principle
to Eq. (2.6), as was done in I, we get, after rather tedious
tran sformations,

co f p/u/ dr=A f /Vu/ dr+2@ f g /e;
/

dr

+ f pu" (2icoQXu)dr

+ pu*&X OXu d~ . (2.7)

This is the variational form of the equation of motion
which consists of the main equation in the present inves-
tigation. Because of the presence of the additional force
terms which represent nuclear rotation, we cannot ex-
pect to express the frequency co in the variational form
as in Eq. (3.4) of I. We shall show, however, how the
perturbation method enables us to acquire a quite simple
expression for the frequency of vibration of rotating nu-
clei.

Before going closely into the method of solution of Eq.
(2.7), we shall now consider briefly the case of an elastic
body whose density is a function of r and which, accord-
ingly, is assumed to be in a state of hydrostatic stress be-
fore being disturbed by external forces. In a slightly de-
formed elastic state, the stress is then the sum of the
usual stress due to the small displacement u and the ini-
tial hydrostatic stress. The former is given by Eq. (2.2)
of I and the latter is expressed as the negative of the
original hydrostatic pressure at the initial representative

the approach of nuclear elasticity. Furthermore, the
elastic medium under the inhuence of external potentials
is not free from stress, even in the initial equilibrium
state, and thus the actual form of the term correspond-
ing to the centrifugal force is slightly more complicated
than the term shown in Eq. (2.5). For constant density,
however, the effective force can take the same form as
before, except that the radial vector is now replaced by
the displacement vector. Let the position vector of a
typical point Po of the elastic body referred to the origin
of a fixed rectangular cartesian system be s. At time t,
the representative point Po has moved to a point P with
position vector r, and the position vector of the point P
relative to Po is given by the displacement vector u with
u =r —s. In terms of general orthogonal curvilinear
coordinates (q&, q2, q3), the position vectors s and r can
be written in the forms s=s(q&, q2, q3), r=r(q„q2, q3, t ),
and it follows that u=u(q&, q2, q3, t). Therefore, for con-
stant density and in the absence of other potentials such
as the Coulomb potential, the linearized equation of
motion now takes the form

(A. +2@)V(V u) —pVX VXu —2pQX
au
at
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points Pp. Thus the initial stress is shown to be

—p(r+( —u))= —[p(r) —u Vp],
where p is the hydrostatic pressure. Moreover, owing to
disturbance due to the small displacement, the density in
the disturbed state may be written as p'=p+5p, where
5p is the change in density, which is calculated from the
principle of mass conservation.

Assuming further that the body force can be associat-
ed with a potential +, we can equate the body force F to
the gradient of the potential, multiplied by the disturbed
density. Since the nucleus under consideration is rotat-
ing, the potential 4' may comprise the centrifugal term

there is no rotation, the potential + reduces practically
to the Coulomb term and the contribution from the ini-
tial stress to the usual nuclear elastic vibration will be
inconsiderable, unless the relation (2.10) is reviewed so
as to be still significant with regard to other specific
external potentials. The form (2.9) of the centrifugal
effect for the rotating elastic body contrasts with the
corresponding term in the equation of motion (2.6) for
constant density. We shall come back to the expression
(2.9) on the occasion of practical evaluation of various
rotational effects.

P= —,'[(Qr) —(Q r) ], (2.8)
III. PERTURBATION TREATMENT

OF ROTATIONAL EFFECTS

as well as the Coulomb potential. It is to be remarked
that the use of the potential + instead of the explicit
form of the centrifugal force modifies the expression (2.5)
so that the centrifugal term is now included in F.

When we introduce the initial stress as well as the
body-force term into the equation of motion written in
terms of the stress-strain tensors, such as Eq. (3.1} of I,
we see that the equation of motion now contains the
terms

—V(p —u Vp )+p V'0+5p V'P . (2.9)

When we neglect the contribution arising from the
change in density and omit the initial stress, the expres-
sion (2.9) reduces then to the term which represents the
usual centrifugal force. The pressure in (2.9) may also
be associated with the potential (II by assuming that the
pressure force in the hydrostatic equilibrium state, which
is the negative of the pressure gradient, counterbalances
the body force. Thus, for the rotating body with angular
velocity 0, we have'

Vp=p V+ . (2.10)

The pressure force will, in general, be very small, unless
there is a very large pressure gradient. When we keep
only the centrifugal term g in %', we see, in view of the
relation (2.10), that all terms of (2.9) are of order Q . If

Though an analytical solution of Eq. (2.6) cannot be
expected, the equation of motion of this type can well be
treated using the perturbation method, provided the
magnitude of angular velocity is much smaller than the
unperturbed initial frequency of oscillation without rota-
tion. From the quantum mechanical point of view the
nuclear rotation makes sense only for deformed nuclei,
whereas the rotation of a spherical body has meanings in
the classical picture. In the following we first concen-
trate on the rotational efFects by solving Eq. (2.6)
without including the degree of freedom of deformation
in the formulation and we subsequently take into ac-
count the nuclear surface deformation.

The displacement vector u as well as the frequency co

are now expanded in powers of Q/cop as

0u)+ u2+ (3.1)
QU= up+

COpCOp

0
CO =COp+

COp

0
CO) +

COp
CO2 + (3.2)

where ep is the unperturbed initial frequency of oscilla-
tion without rotation. Upon introducing the expansion
(3.1) and (3.2) into Eq. (2.6) and collecting the terms of
the same power of 0/cop up to second order, we get

( A, +2p )V ( V up ) —p V X V X up ———copi) up,
2

COp 2
(A, +2@,}V(V.u~) —pVXVXu~ —2i pQXup ———p( p co+u|2 p co] cop)u,

Q

(3.3)

(3.4)

2
COp COpQ) ]

(A+2@)V(V.u2) —pV X VX u2 —2~ pQ Xu) 2i pQ X—up—0 0

'2
COp

QX(QXup)

= —p(copu2+2copco|u|+co|up+2copco2up) .2 2 (3.5)

Multiplying Eq. (3.3) by up and integrating the result by
parts, we obtain

cop f pinup~ dv'=A, f ~V.up~ dr
3

+2p f y i
e~(~p)

(
2d

I

where e;~ are the strain tensors which were defined in I.
In obtaining Eq. (3.6), we have taken into account the
boundary condition which states that the strain-stress
tensor compoiients vanish at the nuclear surface. Equa-
tion (3.6) is nothing but the variational expression we
have already derived for the original Lame equation
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which governs the motion of a perfect elastic medium.
The explicit form of the function up has been shown' to
be

Q = ( Q cosg )n„+ ( —Q sin8 )n&+ On~ . (3.13)

Upon introducing the expression (3.13) into Eq. (3.12),
we get, after performing angular integrations,

uo= uprnr +uoene+ u p~n~,

where

(3.7) I„
CO]

——m COp
Id

(3.14)

~o. = U((r)Y& (8,$), (3.8a) where

() Y(m
uos ——V, (r) (3.8b)

I„=f p[2U~(r) V~(r)+ V~ (r)]r dr,

Id ——f p[ U& (r)+ l (l + 1)Vj (r) ]r dr .

(3.15a)

(3.15b)

uop
——V)(r)

sin0
(3.8c)

where

h =pcoo/(A, +2p) and k =peso/p .

The constant multipliers A( and C( are determined from
the boundary conditions. To be more precise, the
boundary condition we have previously stated leads to
two expressions for the ratio C(/A(. For example,

(3.1 1)

where g=hRo and g=kRo Ro being the radius of a
spherical nucleus. The other expression for the same ra-
tio was shown in I. Having obtained the eigenvalues g
and g, we can proceed to the evaluation of various in-
tegrals in which the radial functions U( and V( take part.

Equations (3.4) and (3.5) can now be solved with the
help of the standard stationary perturbation technique.
To this end, we multiply Eq. (3.4) by uo and Eq. (3.3) by
u& and then integrate the difference between two result-
ing equations. We then get

pup Q)&up d7
COi = I (3.12)f p~uo~ d~

The expression (3.12) represents the rotational effect aris-
ing from the Coriolis force alone. We now assume,
without losing generality, that the angular velocity Q is
directed to the polar axis Oz of rectangular Cartesian
axes Oxyz with the center of nucleus as the origin. In
spherical polar coordinates, 0 then takes the form

and n„, ne, and n& denote, respectively, unit vectors in
the directions of r, 8, and P. In Eq. (3.8), Y~ (8,$) are
the spherical harmonics and the radial functions U&(r)
and V&(r) for constant density are expressed in terms of
spherical Bessel functions j&(x) as

1 a 1 l(l+1) .U((r)= 3( j((hr)+C( g, (kr),
P2 Qr k'

(3.9)

V~(r) = A~ j~(hr)+C~— — [rj ~(kr)],
1 a

h' r r Qr

(3.10)

1
COp =

2COp

f puo QX(QXuo)dr
67( + +e, (3.16)

p~uo~'«

where

pup used 7
e =(co) —co) )

p I
uo

I
«

with

f puo ( Q X u) )d1
CO( = f puo uid1

(3.17a)

(3.17b)

The first and last terms on the right-hand side of Eq.
(3.16) clearly represent the second order contribution
from the Coriolis force, while the second term shows the
centrifugal part. The expression for co'& is formally the
same as for co&, except that u& is used in place of up.
Since e describes the difference between co& and co&, we

We see that, apart from two radial integrals, the effect of
rotation due to the Coriolis force is simply proportional
to the azimuthal component m multiplied by the initial
unperturbed frequency. The present result is to be com-
pared with the corresponding formula obtained in the
two-Quid model. Since the eigenvalue equation obtained
in the framework of the nuclear elasticity is much more
complicated than the similar equation used in the hydro-
dynamical model, further simplication of the expression
(3.14) as a function of eigenvalues cannot be expected
even for constant density. The formula (3.14) is unfami-
liar to nuclear physicists but not to geophysicists. It is
worth mentioning that the classical theory of elasticity
has already been applied to the rotational problem of the
Earth. ' The assumption of constant density allows us
to integrate analytically two radial integrals (3.15a) and
(3.15b) (see the Appendix). As we shall see, these are the
only integrals to be computed through the present work.
The result (3.14) shows that there is no rotational effect
for m =0 as far as the first order calculation is con-
cerned. The second order formulation removes, howev-
er, this restriction.

In a way analogous to the derivation of the first order
effect, we can derive the second order frequency of oscil-
lation, co2. Thus, we get, from Eq. (3.5),
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can expect its contribution to co2 to be small. Actually,
this is verified by computing explicitly the first order dis-
placement vector u& by means of the usual perturbation
method; that is, by expanding u& in terms of up as

u& —— a up .(v) (v)

The angular integrals in Eq. (3.16) can easily be evalu-
ated and, finally, ~2 can be expressed in terms of known
radial integrals I„and Iz of Eqs. (3.15). We have

I„
co2 ———,cup m1

Ig
2(l +l+m —1)—(1 +l —3m )

(2l —1)(21+3) I~
(3.18)

The result (3.18) is quite simple and its numerical computation is elementary, as in the case of the first order fre-
quency. We see immediately that the second order frequency does not vanish even for m =0 and the second order ro-
tational correction does also act to shift the eigenfrequency of m =0 mode.

When the density is a function of r and when we keep only the term g in the potential 4, the centrifugal contribu-
tion can be evaluated with the help of the expressions of (2.9) and (2.10). When we apply the principle of mass conser-
vation to the total density, the small deviation of density 5p may be equated to —V (pu). Neglecting small quantities
of the higher order, the second order frequency is now shown to be

8
'co~+

2 f uo V (puo) Vgdr f uo—V(puo. VQ)dr
2cop Q

Ig .+e . (3.19)

The angular integrals involved in this representation are rather cumbersome, but they are still analytically integrable.
Thus, the second and third terms in the square brackets on the right-hand side become

Q 2[1(1+1)+m —1] f b~(r)U~(r)r dr+[3m —l(1 +1)] f b&(r)V~(r)r dr . Iz,
(21 —1)(2l +3) (3.20)

where

a a
A~(r) =2p(r) l (l +1)V~(r) 2U~(r) r—U~(r) ——U~(r)r p(r) .

Br Br
(3.21)

The expression (3.20) contrasts with the corresponding
form (3.18), obtained from the density-independent cen-
trifugal potential. In fact, the eigenvalues hRp and kRp
that are involved in the integrals of (3.20) are not those
evaluated from the eigenvalue equation formulated in I.
Since both displacement vector and density in the origi-
nal Lame equation are now variables, the zero-order
equation (3.6) can be solved only numerically and thus
the radial functions U&(r) and V~(r) are no longer given
by the relations (3.9) and (3.10). Furthermore, according
to the formulas (2.2) and (2.3), the Lame coefficients A,

and p also change their values when the density varies
(see Ref. 11). Though the study of the density-

I

I

dependent nuclear elasticity constitutes an interesting
new subject, the complexity of numerical calculations in
the present problem may prevent one from gaining phys-
ical insight into the problem of rotating nuclear vibra-
tion. In the following we therefore turn our attention to
the expression (3.16) together with (3.12).

IV. TYPICAL NUMERICAL RESULTS

When we substitute the results (3.14) and (3.18) into
the formula (3.2) for the total frequency of vibration, we

get the desired expression to second order for rotating
nuclei. Thus,

Q)p COp

I„
m +

d Cc)p

I +1+m —1)+—,'[3m —l(l + )]
d COp

(4.1)

Upon introducing explicit results of the radial integrals
I„and I&, the ratio co/cop for a given value of multipo-
larity l and its projection m can be expressed as a func-
tion of 0/cop, which is a measure of the angular velocity
of the rotation.

Generally, rotational states with angular momentum I
in nuclei can be characterized by their excitation ener-
gies Ez, which usually lie low compared to the single-
particle excitations and which obey the I(I+1) rule.

I

However, the well-known expression for rotational exci-
tation energies,

Eg ——AI(I+1)+B(I(I+1))+

converges poorly for I~10 (Refs. 12 and 13). A much
wider region of convergence can be realized if the angu-
lar velocity of nuclear rotation, Q, is used as an expan-
sion parameter. With the assumption of a rigid rotor,
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V. SUMMARY AND CONCLUSION

The main purpose of the present work was to study
the giant resonances of rotating nuclei, especially the iso-
scalar type of giant dipole and quadrupole resonances,
by extending the concept of nuclear elasticity to the ro-
tating nuclei.

The following is a brief summary of the present work.
The equation of motion of a perfectly elastic nuclear
medium in the rotating frame of reference is derived.
The effective forces, generated by the transformation of
the equation of motion in the inertial system into that in
the system of rotating coordinates, consists mainly of
Coriolis and centrifugal forces. The case where the in-
tial pressure is related to the external potential is also
discussed. We have shown how the equation of motion
of rotating nuclei was solved with the help of the pertur-
bation method. The final result for the frequency of vi-

bration of rotating nuclei is quite simple and its numeri-
cal evaluation becomes elementary. The angular velocity
of nuclear rotation is brieAy analyzed in relation to high
angular momenta, which can be accomodated in nuclei.
It is illustrated that for the A =150 region the Coriolis
force dominates for small values (&0.05) of the ratio of
angular velocity to resonance frequency, but the centri-
fugal force plays a prominent part in the shift of the
split resonance energies for larger values of the ratio. It
is seen that the rotational effect removes completely the
azimuthal degeneracy of the giant resonance energies.
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APPENDIX

The radial integrals I„and Id of Eqs. (3.15) for constant density can be evaluated analytically using the explicit
forms of the functions Ut and Vt of Eqs. (3.9) and (3.10). Thus,

In 1= At jt (g')+2AtCt
pRo $2~2 d jl(k)+jl(k) il(n)+» [kJI+l(kj)l(n) ~JI(k)jl+—1(n)]

$2 ~2

+CI21. f (~)+it(n) ft(n)+I (t +1)ji'(n)+-,'n'[it'(n) —it - i(n)jt+ t(n) jd'g

Id
kjt(k) d

jt(k)+ ,'0'[j i'(k) —ji i(k)jt—+i(k)] +2AICI
p p

I(1 +1)jt(k)jt(r))
pR,'

+Ct 4 I(I +1) it(ri) it('tl)+ri i«rl) + 2't)'[Jt'("t)-) ii i(r)V—i+i('t))) '

dn

where g=hRo and r)=kRp Ro being the radius of a spherical nucleus. h and k are defined in relation with Eqs. (3.9)
and (3.10).
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