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A general Poincare invariant potential model for two-particle systems is constructed within the
framework of light front dynamics. The model specifies all ten of the generators that are neces-
sary to satisfy the Poincare algebra. Formal expressions for the scattering states are constructed,
and it is verified explicitly that they transform correctly under Lorentz transformations. The S-
matrix elements are shown to be Lorentz invariant functions of the initial and final four-momenta
of a scattering process. The T matrix is found to satisfy an integral equation that has the
mathematical simplicity of its nonrelativistic counterpart.

I. INTRODUCTION

Many years ago Dirac' established the necessary con-
ditions that a Hamiltonian formulation of relativistic dy-
namics must satisfy. In quantum mechanics these condi-
tions arise from the requirement that to each inhomo-
geneous Lorentz transformation there corresponds a uni-
tary operator that transforms the state vectors of the
system. For those transformations that can be built up
from infinitesimal transformations, these unitary opera-
tors can be expressed in terms of ten Hermitian genera-
tors P„and J„,where P„ is the four-momentum opera-
tor and J„ is the angular momentum tensor. From the
fact that the inhomogeneous Lorentz transformations
form a group, it follows that these generators must satis-
fy a set of commutation relations which define the so-
called Poincare algebra. These commutation relations
are the necessary conditions that a relativistic dynamics
must satisfy. A dynamics that does so is said to be Poin-
care invariant.

In constructing the ten generators, P„and J„,of the
Poincare group it is necessary to decide on the dynami-
cally independent variables. Causality suggests the vari-
ables associated with a hypersurface X in Minkowski
space that does not contain timelike directions. In the
usual form of dynamics, X is taken to be the spacelike
surface t =0, or any other surface related to it by a
Poincare transformation. As is well known, the genera-
tors associated with the transformations which map this
X onto itself are the three-momentum (P',P,P ) and
the angular momentum (J23,J3„J,z). These generators
are the simple or kinematical ones in that they can be
taken to be of the same form as those of a noninteract-
ing system, while the remaining ones (P,J~0,J20,J30) de-
pend on the interaction and are said to be dynamical.
Dirac' calls all of the dynamical generators Hamiltoni-
ans.

It was Dirac' who first emphasized that it is possible
to work with hypersurfaces X other than t =0. Other
choices of X lead to di6'erent ways of splitting the ten
Poincare generators into kinematical ones and Hamil-
tonians. In principle, X can be any surface which does

not contain timelike directions, but in order to get a
practical theory X should be associated with some sub-
group of the Poincare group, so that it has some sym-
metries. This subgroup is called the stability group of X.
The generators of the stability group are the kinematical
ones, while the remaining ones are the Hamiltonians.

It can be shown that if it is required that it be possi-
ble to map every point of X into any other point of X by
an element of the stability group, then there are only five
inequivalent classes of surfaces. Inequivalent means that
the surfaces are not related by Poincare transformations.
Representatives of these classes are the following: (i) the
time instant t =0, (ii) one sheet of a hyperboloid
t x —y —z =—a, t &0; (iii) the null plane t +z =0;
one sheet of the hyperboloids (iv) t x —y =a—, t &0,
and (v) t —z =a, t &0. The number of generators for
the stability groups of the surfaces (i)—(v) is 6, 6, 7, 4,
and 4, respectively.

Dynamics based on the last two cases appear to be im-
practical, since they each involve six Hamiltonians. Dy-
namics based on the first three classes are called' (i) the
instant form, (ii) the point form, and (iii) the front or
light front form. These three forms have all been used
to construct Hamiltonian quantum theories for systems
with a finite number of degrees of freedom. As might be
expected, the instant form has the longest history and
has been the most thoroughly investigated. Interest in
the point form and the front form ' has developed
somewhat more recently.

Here we will be mainly concerned with the light front
formulation of the quantum mechanics of two-particle
systems. We will not be concerned with the light front
approach to quantum field theory, although it must be
stated that quantum field theory has provided much of
the impetus for studying the light front approach. This
aspect of the subject has been thoroughly documented
by Namyslowski.

For our purposes the most important papers are those
of Bardakci and Halpern and Leutwyler and Stern. ' It
appears that Bardakci and Halpern were the first to
construct Poincare invariant potential models for two
particle systems using the light front approach. As their
work makes clear, the light front approach actually has
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a more thoroughgoing nonrelativistic analogy than the
instant form approach. This makes it easier to construct
models which satisfy the separable condition, which is
the rather obvious requirement that a theory reduces to
a free particle theory when interactions are negligible.

The most thorough and systematic analysis of the
light front approach to Hamiltonian quantum theories of
finitely many degrees of freedom has been carried out by
Leutwyler and Stern. They have stressed the analogy
with nonrelativistic quantum mechanics. In particular,
they have shown that, just as in nonrelativistic quantum
mechanics, the variables that describe the internal struc-
ture of a system can always be uncoupled from those
that describe the motion of the system as a whole. To
be precise, they have shown that the dynamical content
of a theory resides in a mass operator M and spin opera-
tor 8 that act in the space of the internal degrees of free-
dom. Since the ten generators of the Poincare group are
either purely kinematical or involve combinations of
kinematical operators with M and 8, constructing a
Poincare invariant theory amounts to finding models for
M and 8. The only constraints on these operators are as
follows: M must commute with d', the components of 8
must satisfy angular momentum commutation rules, and
M and 8' must commute with all the generators of the
stability group except J3. The angular momentum J3 is
associated with spatial rotations in the null plane and is
simply related to o"3. Because of its relation to a stabili-
ty group generator, 8q is essentially kinematical al-
though it is a necessary part of the U(2) algebra associat-
ed with the dynamics. The interactions only occur in M,
cP], and 82.

Here we will develop a rather general Poincare invari-
ant potential model for two particle systems. This mod-
el is characterized by the assumption that the internal
spin operator 8 is the same as that for two free particles.
The mass operator M is given by M =Mo+U, where
Mo is the free particle mass operator and U is the in-
teraction. If it is assumed that U is such that scattering
states exist, then the resulting S matrix turns out to be
an invariant function of the initial and final state four-
momenta. We will see that the T matrix that such a U
gives rise to satisfies an integral equation that is very
similar to, and just as simple as, its nonrelativistic coun-
terpart.

The outline of the paper is as follows. In Sec. II we
outline the results of Leutwyler and Stern that are
necessary for establishing the Poincare invariance of our
potential model. The model is developed in Sec. III and
its Poincare invariance is verified. The scattering theory
for the model is presented in Sec. IV and the Lorentz in-
variance of the S matrix is demonstrated. The integral
equation for the T matrix is also obtained. Section V
contains a summary of the results, as well as some com-
ments on requirements that might be imposed on relativ-
istic systems, other than Poincare invariance.

II. THE LIGHT FRONT APPROACH

~

~'& =U(a, b)
~

e& . (2)

Two successive Lorentz transformations with parame-
ters (a, b) and (a', b') are equivalent to a single transfor-
mation with parameters (a",b") given by

a"=a'a,
b"=a'b+b' .

(3)

This implies that the unitary operators which transform
states should satisfy the multiplication law

U(a", b")=U(a', b')U(a, b) .

For the infinitesimal transformations

(4)

b„=ep,
apv =gpv+&pv~ &pv= —

&pv ~

where gp is the metric tensor, the corresponding uni-
tary operators can be written in the form

U(a, b)=1+is P" —e P"—
p 2 p

The multiplication law (4) implies that the ten genera-
tors, Pp and J",satisfy the commutation rules'

[P„,P,, )=0,
[Jp Pp ] ] (g pPp g~pP )

[~„.J,~]=i(g„].J.,+g.,-J„]. g„,J.~ g,],—J„,»—
(7)

(9)

where indices have been lowered using the rule

V
Xp gpvX (10)

A model or theory is said to be Poincare invariant if it
contains a set of ten generators which satisfy the Poin-
care algebra given by (7)—(9). In general, the unitary
operators that transform the state of a system described
by such a model will satisfy the multiplication law given
by (3) and (4).

The Poincare algebra defined by (7)—(9) can be ex-
pressed in terms of any metric. Here we will use the
metric tensor implied by the use of the light-front com-
ponents.

x"=(x,x,x,x )=pQ]23r+zrz2' ' &2

where x is a two-vector transverse to the arbitrarily
chosen z direction. In order that

x'P=aP~ +bP,
corresponding to a homogeneous transformation, fol-
1owed by a displacement. We assume that there exists a
unitary transformation U(a, b) associated with (1), which
transforms the x-frame state

~

4& to the x'-frame state
~

]p'& according to

An inhomogeneous Lorentz transformation is of the
form

X =X X =XpX'2 lL

we must have

(12)
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0 0 0 1

0 —1 0 0
(gy„)=(g" )= 0 0 (13)

correspond to Lorentz transformations for which
x'=x'=O.

Representations for the stability group generators can
be obtained by introducing the states defined by

1 0 0 0

o p+mpO p
P

2p
(14)

It is interesting and important to note that p has the
structure of a nonrelativistic kinetic energy in two di-
mensions with p analogous to the mass.

Here we will adopt the notation of Kogut and Soper"
for the components of the four-momentum and angular
momentum operators, i.e.,

The use of this nondiagonal metric has important conse-
quences, e.g., the light-front components of the four-
momentum of an on-mass-shell particle of mass m are
given by

~

(p', p)n ) =U(P)
~

(P', O)n ),
U(P) —iP.B 'i 3 3

&=p/p' & =»(p'/P '»

(21)

(22a)

(22b)

where
~
(P,O)n ) is an eigenstate of P and P with ei-

genvalues p and 0, respectively, and n refers to any
other quantum numbers of interest. By using the well
known result'

U(a)P„U(a) '=P a"„, (23)

it is easy to verify that the unitary transformation U(P)
corresponds to the homogeneous Lorentz transformation
given by

P"=(P,P', H ), (15)
x" = a",(P)x ', (24)

0

Si

—S) —S2 E3
0 J3 B)

Pge

Pgp

0 0 0

1 0 0J —J3 0 B2
—B) —B2 0

(16) [a" (P)]=
e 'p2 0 1 0

p, P'i+02

(25)

Ki ——(Si+Bi)/&2, K~=(Sp+B2)/&2 . (18)

It is easy to check, with the help of (9), that the com-
ponents of J and K satisfy the well known commutation
rules for angular momentum and boost operators.

It is not dim. cult to find generators that describe sys-
tems of free particles. The problem is how to determine
generators for systems with interaction. Leutwyler and
Stern have developed a systematic procedure for solving
this problem in the framework of light-front dynamics.
In particular, they have shown that the generators of the
stability group of the null plane, which are

(P,P, B,K~,J~ )-stability group generators, (19)

can be taken to be the same as the free particle genera-
tors, while M and S are modified by interactions. With
our conventions, the equation for the null plane is

Since (6) implies that P generates translations in
x 3 —x, denoting P by 8 draws attention to the fact
that we are choosing x to play a role analogous to time,
so that P plays the role of a Hamiltonian. In (16) J&
represents the z component of angular momentum, while
EC3 generates boosts along z. The transverse components
of the angular momentum J and boost operator K are
related to the light-front components J„by

Ji ——(S2 Bg )/V 2, J—p ——(Bi —Si )/&2, (17)

From this transformation it follows that

P ~pn)=p ~pn), (26)

where here, and from now on, the overbar indicates ei-
ther the triad of operators (P, P) or the triad of eigen-
values (p, p). Using (9), (13), (16), (21), and (22), it is
straightforward to show that

e "
~
(p, p)n ) =

~
(p,p" cop,p'—)n ) (r&s),

e'" '
~

(p', p)n ) =
~

(e p', p)n &,

(27)

(28)

which, in turn, leads to, upon letting ~ become
infinitesimal,

(pn
~

B„=—ip~ (pn
~

Bp

(pn [K,= ip,—(p [n.O

ap'

(29)

(30)

Thus the states defined by (21) and (22) fix the represen-
tation of all the stability group generators except J3 in a
relatively simple way. The case of J3 is only slightly
more complicated.

Leutwyler and Stern have shown that the operator 8q
defined by

x =0 (null plane), (20) 1 2 2p2 pl +J (31)
and the stability group is the subgroup of the Poincare
group that maps this hypersurface onto itself. Using (1),
(5), and (6), it is easy to verify that the generators of the
stability group are given by (19); that is, these generators

commutes with all of the generators of the stability
group, and is therefore a Casimir operator for this
group. Clearly the action of a q on the states

~
(P,O)n )
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is the same as j3, and since J3 leaves (p, 0) invariant, it
can be diagonalized on this set of states. Each eigenvec-
tor of J3 with eigenvalue h gives rise to a separate repre-
sentation of the stability group. Since 83 commutes with
B and K3, (21) and (22) allow us to write for such an
eigen vector

P =P1+P2 P1+P2

p 8 . p ()B„=B„1+B,2~ —ip 1 ~
—jp

BP1 QPP

p 0, p ()
K3 ——K31+K32~ lp 1 p

—&p 2
Bp

(39a)

(39b)

(39c)

+3
~
pn & =h

~

pn (32)

(pn
~
J,= i, p —i p +h (pn

~ap' ap'
(33)

which gives the representation of J3.
In treating the interaction dependent operators H and

S, it is convenient to introduce the mass operator M and
two spin operators 8„according to

where the helicity quantum number h is now one of the
n. From (31), (32), (26), and (29), we find

3 31+J32 ~ 1p —~ 2papl g 2

'0 2+ ~ p —~ p
. 2

(39d)

where the expressions after the arrows are the momen-
tum space representations of the operators. We are as-
suming that the particles are spinless. Following
Leutwyler and Stern, we introduce the relative momen-
tum operators

M =P P

M/„=d„M =a„,(P S, P'K, —HB, ) ——P"o3

(34)

K=(P2PI P I Pz)/—P

(40a)

(40b)

=e„,(S,P K,P' B—,H) ——8,P", r =1,2

(35)

where e„ is a Levi-Civita symbol. From (34), (10), and
(13), we find

H=(P +M )/2PO . (36)

It can be shown that the three spin operators 8; and
the mass operator M satisfy the commutation rule

(37)

[M, 4;]=0, (38)

and commute with all of the stability group generators
except J3.

Since we already have a representation for the stability
group generators, the problem of constructing a Poin-
care invariant theory amounts to finding forms for H
and S, or equivalently, M, 8I, and 8z. Leutwyler and
Stern have shown that it is sufficient for M and 8 to
satisfy the commutation rules (37) and (38), and com-
mute with all of the stability group generators, except
J3, to guarantee that the stability group generators and
the H and S given by (35) and (36) satisfy the Poincare
algebra. Thus the problem of constructing a Poincare
invariant theory amounts to finding an M, 8I, and 4z
that satisfy the just mentioned conditions. In the next
section we will construct a potential model for a two-
particle system that satisfies these requirements.

which commute with P, P, B, and K3 and satisfy

[8„K ]=0,
[8,, K "]=i e„,K',

(41a)

(41b)

where 83 is defined by (31) and (39d). We rewrite our
momentum space basis vectors

~ p Ipz & as
~ p k &, which

are eigenvectors of P=(P, P) and K=(K,K) with ei-
gen values

P =P1+P2
k'=(p I

—pz )/2p"—=o ——,
'

k=(P zpl —P lpz)/P

(43a)

(43b)

(p k
~

83=83(k)(p k
~

with

(44)

d, (k)=i k i k'—
'ak1 'ak2 (45)

We now have all of our stability group generators and
therefore turn our attention to the Hamiltonians H and
S, or, equivalently, M, 8I, and 8z. For two noninteract-
ing particles of mass rn1 and m2, H and S are given by

In (43a) we have introduced a parameter q which will
turn out to be convenient. It is trivial to rewrite the rep-
resentations given by (39) in terms of the total variables

p and relative variables k, and verify that they agree
with (29) and (30), and that (31) leads to

III. A POTENTIAL MODEL

P +mH=g 2P' (46)

We begin by introducing a "momentum space" basis
p,pz & for the two particle system where here, and sub-

sequently, the subscripts 1 and 2 on the "momenta" and
the various operators will distinguish the two particles.
We take for the stability group generators

p +m

1P 2P
(47)

where these expressions have been obtained by using (35)
and (36) for each particle, with the understanding that
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for each particle 8 =0. Recall that we have assumed
that the particles are spinless. By transforming to total
and relative variables, and again using (35) and (36), it is
straightforward to show that

qi ——k . (55)

It is also convenient to introduce two other quantities coq

and E'q which are the c.m. energies of particles 1 and 2,
respectively. These, of course, are given by

=(P +M )/2P

where

Mo ip k) =s(ql, k) ipk),

(48)

(49)

co, =(q-'+m', )'",
( 2+ 2 )1/2

q

which, in turn, allow us to write

(56a)

(56b)

(p k
~
8„=8„(k)(pk

~

(51)

with
k2+~ 2 k2+~ 2

s(il, k)= W (il, k)= + =(pi+pp)
1 —g

(50)
and

W(qi, k) = Wq =coq+eq =sq

According to (43a) and (25), we have

0
p1 q +qz

I 0
p c.m. ~q

(57)

(58)

with

&rs
W(k ) = . —ql(1 ri)k'i—

which, in effect, inverts (54). It is now straightforward
to show that the angular momentum given by (45) and
(52) is also given by

8 (q)=iVq xq, (59)

a
+'ak'

2g —1
s(qi, k)

2 2
m& —m2

which, of course, is recognized as an angular momen-
tum.

We are now in a position to state our model. We
write the Hamiltonian in the form

(pi)cm = W(n, k) e2 k'+m
1

v'2 ' '
W(qi k) 2i)

(53a)

(1 ri)W(iI k) k
i/2 k +mq

v'2 ' '
W(ql, k) 2(1 —ri)

(53b)

From the relation between light-front components and
ordinary components as given by (11), it follows that the
z component of the momentum of particle 1 in the c.m.
frame is

q, = W(il, k)— (54)
2

' 2W il k

which we take as the variable to replace g and k . The
transverse components of q are given by

Here A is a component of the spin operator for the free,
two-particle system. This expression for 4„does not
look like an angular momentum, but nevertheless it is, as
can be shown by verifying (37).

It is convenient at this point to introduce an alterna-
tive to the variables qi and k defined by (43a). In what
follows it should be kept in mind that the particles are
on the mass shell, so the light-front components of the
four-momenta p~ and pz are related as in (14). If in
(22b) P is taken to be W(qi, k)/&2, then the Lorentz
transformation given by (25) becomes the transformation
from the c.m. frame of the two particles to the frame in
which their four-momenta are p& and p2. Using this, it
is very easy to verify that the c.m. light-front com-
ponents of the two particles' momenta are

H=H + =H +V,o U o

2ro

which by (34) and (48) leads to the mass operator

M =Mo+U .

(60)

(61)

which, of course, satisfies (37) and commutes with all of
the stability group generators, except J3. In order to
have a Poincare invariant model, we must choose U so
that M commutes with these generators and satisfies
(38). It is not difficult to show that M satisfies these re-
quirements if and only if they are satisfied by M .

Rewriting our momentum space basis vectors
~ p k )

as ~pq), we choose a normalization so that the com-
pleteness relation for these vectors is

~
dp 0(p )dp Wqdq

(2ir) 2p (2') 2coqeq
(63)

The volume element in (63) is Lorentz invariant as it is
proportional to a transformed version of
dp&g(pi )dpzo(pz )/(p @z), which, in turn, is a product of
two invariant single particle volume elements. For the
interaction we take

with

U=
it pq

dp |)(p o
) Wq d q

2w 2p 2' 2')q E'q

8 qdq'
x &(q, q')

(2') 2coq Fq'
(64)

For the internal angular momentum operator, we take
the free operator analyzed above, i.e.,

(62)
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U(q, q') = g Y~(q) U (q, q') Y~ *(q '),
J, A.

(65) where we have introduced the resolvents

Gp(s) = (s —Mp ) (73)
where Y~ (q) is a spherical harmonic depending on the
angles specifying the direction of q.

It is obvious that U commutes with P and P. In or-
der to see that U commutes with B and E3, it is easiest
to subject U to a unitary transformation exp(icpX) with
X=B,K3, and use (27), (28), and the invariance of the p
volume element under such a transformation. From (62)
and (59), it follows that

G(s) = (s —M') (74)

It is not difficult to verify that the states defined by
(72) transform properly under a homogeneous Lorentz
transformation. The operators B, K3, and J3 commute
with M and U, so we have

e' pq)' —'= [1+G (sq+i e) U]e' pq),
e ' 'Ipq&= lpq'& (66) X=B,K, , J3 . (75)

IV. THE INVARIANT S MATRIX

We begin by assuming that the interaction given by
(64) and (65) is such that the two particles are asymptoti-
cally free, so that we can construct scattering states. We
are interested in simultaneous eigenstates of the corn-
ponents of the four-momentum operator, i.e., we want

P", (p" p)q&
—=p"

I

(p' p)q&
-'

where

(67)

p2+ Q2
P

2p
(68)

The plus and minus superscripts indicate in and out
scattering states, ' respectively. Assuming the validity
of the standard results of scattering theory, ' we can
write, with the help of (60), the equations

where q' is obtained from q by rotating about the direc-
tion u through the angle 0. Subjecting U to the unitary
transformation in (66) immediately leads to the con-
clusion that U is invariant under such a transformation
and hence commutes with 8. This completes the
verification of the Poincare invariance of the model. In
the next section we will show that the S-matrix elements
for the two-particle scattering processes that arise in this
model are Lorentz invariant functions of the initial and
final momenta.

In order to see what happens with the transformations
generated by S, we solve (35) for S, and let the resulting
expression act on pq)i —', which allows us to replace
the operators P" with the eigenvalues p". Using this,
the commutivity of B, K3, and 8 with M and U, and
the fact that 8 is given by the free particle expression,
we find

i s'
e " pq)'+~=[1+G(sq+ie)U]e "

~
pq) . (76)

Given the fact that the free states transform properly
under the homogeneous Lorentz transformations, we can
now conclude that

(77)

( —)g s(+)J lf J2f J li P2i ~

( ap &f, ap 2f I
ap &;,ap &; ) '+ ', (78)

we see that the S-matrix elements are Lorentz invariant
functions of the initial and final four-momenta.

We now introduce a T operator, in the standard
way, "by

T(s)= U+ UG(s)U, (79)

where pi and p2 are the on mass shell four-momenta
that determine p and q through (42), (43), (50), (54), and
(55).

As is well known, ' the S-matrix elements are deter-
mined by the overlap of the in states and out states, and
since it follows from (77) that

pq&
'- = Pq&+, . , I' Pq&

-"1

p +is —H
(69) which when combined with the well known resolvent

identities,

11+
p +i@—H IPq& (70)

G (s) =Gp(s)+ Gp(s) UG (s)

=Gp+ G (s) UGp(s),

(80a)

(80b)

where the states with no superscripts are the free, two-
particle states introduced in Sec. III. From (60), (48),
(68), (61), and the fact that P and P commute with U, it
follows that (69) and (70) can be rewritten as

leads to

T (s) = U + UGp(s) T (s)

=U+T(s)GpU .

(81a)

(81b)
I
pq&i —'= pq&+Gp(s, +ie)U pq&' —~

=[I+G(s~+ie)U]
I pq),

|',71)

(72)
From (72), (74), (79), and (68), it follows that the S-
matrix elements are related to the T-matrix elements by

~p if p2f I p li p2i & (2') 2p i;ii '(plf p~; )2p2;8' '(pqf —p2; ) —(2r ) i&' '(pf —p; )T(qf, q;;p; +ie) (82)
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where we have defined the T-matrix elements by

(pq ~

T(s)
~ p 'q') =(27r) 2p 5' '(p —p ')T(q, q', s) . (83)

Using (81), (64), (63), (73), (49), and (57) it is straightfor-
ward to show that the integral equation for the T-matrix
elements is

dq" W~- ~(q q")
(2n) 2coz 6q s sq"

(84)

p2+ ~2
p = p ~p~

2p
(85)

where W~ is given by (57) and (56). As a consequence of
this, there is a different c.m. frame in the final state for
each value of q . Similar remarks apply to the initial
and intermediate states. Accordingly, the momenta q',
q, and q" in (84) can be interpreted as the momenta of
particle 1 in c.m. frames determined by 8q, 8'q, and
&q, respectively.

This raises the question of whether or not the model
presented here has a reasonable nonrelativistic limit. By
putting the c's back in, it is easy to show from (43a) that

m& pz
Y1 ~ + +c- mi+mz ( i+mr)c

(86)

where p, is the z component of the nonrelativistic rela-
tive momentum defined by

m2p& —mip2

m&+m2
(87)

Here, p& and p2 are the three-momenta of the particles.
Using this result, it then follows from (43b), (54), and
(55) that

q ~ p, (88)

which makes it obvious that (84) goes over to its nonre-
lativistic counterpart when c~ oo.

The equation above has a form similar to the
Lippman-Schwinger equation, familiar from nonrelativis-
tic potential scattering; however, there is an important
difference in the interpretation of the momentum vari-
ables q, q', and q". In the nonrelativistic theory, the to-
tal, three-momentum is conserved throughout a scatter-
ing process, so there is a c.m. frame common to initial,
final, and intermediate states. As a result of this the
variables that play the roles of q', q, and q" in the non-
relativistic theory can be interpreted as the momenta of
one of the particles in the common c.m. frame. In
light-front dynamics the conserved quantities are P and
P, so the values of p and p are the same in initial, final,
and intermediate states. The light-front components of
the total four-momentum in the final state, for example,
are given by

V. SUMMARY AND DISCUSSION

We have succeeded in constructing a rather general
Poincare invariant potential model for two-particle sys-
tems within the framework of light front dynamics. By
Poincare invariant, we mean that the model specifies ten
generators, P„and J„,which satisfy the commutation
relations (7)—(9) which define the Lie algebra for the
Poincare group. This, in turn, implies the existence of a
group of unitary operators U(a, b) that transform the
quantum mechanical state vectors from one frame to
another in correspondence with the underlying inhomo-
geneous Lorentz transformations [see (1) and (2)].

The representations for the various generators have
been given in a "momentum" space whose basis vectors
are

~
pipq) =

~ p k ) =
~
pq), where, for example, p

stands for the triad (p, p). The stability group genera-
tors P, B, K3, and J3 are defined by the simple kinemati-
cal expressions given in (39). When these are rewritten
in terms of the external variables p and internal variables
k defined by (42) and (43), respectively, the general rep-
resentations given by (26), (29), (30), and (33) are
recovered. The generic quantity n becomes identified
with k or q. In (33) h can be replaced by 83(k) defined
by (45). The only stability group generator that depends
on the internal variables is J3, but as (45) shows the
dependence is kinematical.

The three dynamical or Hamiltonian generators H and
S are given in terms of the internal operators M and di

by (36) and (35), respectively. The mass operator M is
specified by (61), (49), (50), (64), and (65), while the spin
operator 8 is given simply by (62) and (59).

The scattering states of the model can be labeled with
the on-shell four-momenta pi and p2, which can be in-
terpreted as the initial or final momenta of an in or out
state, respectively. Under a homogeneous Lorentz trans-
formation x'=ax a state labeled with p &

and pz is sim-

ply transformed to a state labeled with p'& ——ap& and
p2 ——ap2, which, in turn, implies that the S matrix is a
Lorentz invariant function of the initial and final four-
mo menta.

The equation for the T matrix given by (84) is quite
appealing in that it has the mathematical simplicity of
its nonrelativistic counterpart. A reduction of this
three-dimensional equation to a set of uncoupled one-
dimensional equations can be carried out by inserting
the partial wave expansion (65) along with a similar ex-
pansion for T(q, q', s ).

It should not be difficult to extend the model here to
particles with spin and other internal symmetries.
Leutwyler and Stern have already laid the foundation
for treating spin- —, particles. With this extension it will
be possible to construct separable potential models simi-
lar to those that already exist for the pion-nucleon'
and kaon-nucleon' systems, but which are truly Poin-
care invariant. In this connection it will be interesting
to see if the light front approach can be easily extended
to the treatment of coupled channels, as this is necessary
for the just mentioned systems. ' '

In connection with the type of model considered here,
it is of interest to determine whether or not there exists
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a covariant bilocal wave function @(x&,xz) that de-
scribes the two-particle system. Here, xi and xz are the
space-time four-vectors of the two particles. Leutwyler
and Stern have shown that for spinless particles the ex-
istence of such a wave function is related to the existence
of a set of covariant vectors

l
x, ,x z ) that transform un-

der the action of the Poincare group according to

U(a b) lxi xz) = lxi x2)
=

l
ax, +b, ax, + b ) . (89)

With these vectors a covariant wave function can be
defined by

4(x&,xz)=&x&,x2
l
P), (90)

where
l
P) is a state vector for the composite system.

The transformation law for such a wave function is evi-
dently

4(x„x,)=&x],x,
l

U-'Uly)
=&x', ,x,' l

y')

=@'(x &, x 2 ) . (91)

Leutwyler and Stern have shown that, in general, some-
thing more than Poincare invariance is needed to ensure
the existence of a wave function that transforms accord-

ing to (91). That something is what they call the "angu-
lar condition, " which is an algebraic relation that in-
volves M and O'. It turns out that for states of spin zero,
this angular condition is automatically satisfied, so for
the model presented here it is possible to obtain covari-
ant bilocal wave functions corresponding to the j =0
partial wave states.

As Leutwyler and Stern have discussed, the existence
of a covariant bilocal wave function facilitates the con-
struction of the interaction between the system and a lo-
cal field such as the photon field. In other words, its ex-
istence makes it easier to construct a current operator
that transforms like a vector field under the Poincare
group. Also, a model which possesses the sort of con-
sistent space-time description implied by (91) will
presumably not suffer from the peculiar Lorentz contrac-
tion effects recently found' in some Poincare invariant
instant form models.

At present, work is under way to extend the model
presented here to include internal symmetries, so as to
construct Poincare invariant separable potential models
for the pion-nucleon and kaon-nucleon systems. Also,
an attempt is being made to establish systematic pro-
cedures for developing potential models that are not
only Poincare invariant, but also possess covariant bilo-
cal wave functions as well as sensible current operators.
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