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Proton-induced spallation reactions are studied in the energy region from 300 MeV to 20 GeV.
An analytical expression is derived for the production cross sections of target residues in which
the incident proton energy dependence of the cross sections is described by variation of a single
parameter. Rather good agreement is obtained with experiment when reasonable physical assump-

tions for the variation of this parameter are made.

I. INTRODUCTION

The present work was inspired by a paper of Abul-
Magd, Friedman, and Hiifner' (and by an older paper by
Campi and Hiifner?) in which the production of residues
from targets of Au, Ag, and Cu was pictured as arising
from what may be described as a low energy mechanism.
Specifically, the incident proton is supposed to deposit a
fraction of its kinetic energy in the target (via nucleon-
nucleon collisions), which subsequently decays by succes-
sive emission of nucleons or heavier particles. Because
the average mass loss from the target is roughly propor-
tional to the average energy deposited, which, in turn, is
proportional to the average number of nucleon-nucleon
collisions, T ={n ), it is clear that this latter quantity,
which is essentially geometrical in nature, is a funda-
mental ingredient in the calculation of cross sections.

No attempt has been made in this work to improve on
the physics contained in Ref. 1, which represents a
greatly simplified image of what must surely be a rather
complex process. On the contrary, we use results of Ref.
1 to concentrate the physics of the reaction mechanism
into a single parameter which is the average mass emit-
ted from the target per nucleon-nucleon collision. We
do, however, show that a careful treatment of the reac-
tion geometry allows us to obtain a rather good descrip-
tion of experimental excitation functions (or residue
mass distributions) for protons incident on a Au target.

We divide this paper into five sections. Target nucleus
geometry is described in Sec. II, the underlying (and
greatly simplified) physics is the subject of Sec. III, Sec.
IV compares calculations with experimental results, and,
finally, Sec. V presents a summary and discussion.

II. GEOMETRY

A. Projection of nuclear densities

The fundamental quantity which determines the ener-
gy deposited by the incident proton in the target is as-
sumed to be the average number of nucleon-nucleon col-
lisions taking place between an incident proton at impact
parameter b (fm) and the nucleons of the target nu-
cleus! =3 which, in the optical limit of Glauber theory,*
is given by

T(b)=npp(b)=onn [ © plridz (1)

where p(r) is the target nuclear matter density and &y
is the free isospin averaged nucleon-nucleon cross sec-
tion. Integrals over impact parameter (used to obtain
cross sections) are, in general, not analytic if p(r) has a
Woods-Saxon (Fermi) form. In Ref. 5 for the case of in-
termediate energy nucleus-nucleus collisions an analytic
form for dT /db? was proposed which enabled integrals
over impact parameter (b) to be transformed into in-
tegrals over the average number of nucleon-nucleon col-
lisions (7). It happens to be the case that this form is
also suitable to describe the projected densities of atomic
nuclei. We take

dpy —kpp

W:—ppe P p/20'2, (2)
which yields

b*/20*=Ei[kp,(0)]—Ei[kp,(b)] , 3)

where Ei(x) is the exponential integral. In Fig. 1 we
show that Eq. (3) provides a good approximation to pro-
Jjected nuclear densities obtained by numerically integrat-
ing Woods-Saxon forms along the z coordinate. The
three parameters (see Table I) o, p,(0), and k, were ob-
tained for each nucleus as follows.

The numerically calculated projected densities are
quite close to Gaussian forms for large impact parameter
(this fact has been used by Karol® to derive a simple
analytical expression for total reaction cross sections).
This is also the case for the proposed analytical form
since Eq. (2) defines a Gaussian function when p, is
small. Thus o was determined by fitting the logarithm
of the projected density under consideration versus b’
using b =Ry+2a and b =R, +4a, where R, is the nu-
clear radius and a the diffuseness characterizing the
Woods-Saxon density. As expected, o varies approxi-
mately as 473,

The values of p,(0) were taken directly from the
numerical calculations. Approximately pp(0)
~2p(0)ry A 173 (Table I), where p(0) is the central nu-
clear density and ro 4 /*=R,,.

The volume integral of the nuclear density is, of
course, equal to the mass of the nucleus considered.
Thus,
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FIG. 1. Semilog plot of projected nuclear densities obtained
by integrating Woods-Saxon forms along one Cartesian coordi-
nate (solid lines) compared with results obtained using the ex-
ponential integral approximation (dots). The parameters for
these calculations are given in Table I. A linear plot is also
shown as an inset.

A= [ py(brambdb . @)

However, from Eq. (2) we obtain
A= * po(b)db?
T fo pp(b)

pp(O) k
=270? f e pp"a’pp
0

2
:27T_a(ekppp(0)_1) , (5)
kp
Zhich given o and p,(0) may be solved (numerically) for
P

TABLE L Geometrical properties  of
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Parameters for atomic nuclei from 2C to 2°Pb are
given in Table I. This table is not intended to provide
an accurate description for any particular nucleus, but
rather to illustrate the variation of o, pp(0), and kp with
mass number.

B. Calculation of cross section for a given number
of nucleon-nucleon collisions

Using the analytical form [Eq. (2)], it is a simple
matter to derive an expression for the cross section for
exactly n nucleon-nucleon collisions. For example, if the
probability distribution for n collisions takes on a Pois-
son distribution around the average value T ={(n) (see
Ref. 3), we have

P,=T" T/n!, (6)
anzfo‘” 2wb db T"(b)e =T /n 1, @)
with T(b)=0Nnpp and k =k, /TN, We easily obtain

o,={2ma?/[n(1—k)"]}
% |1—e—1-0TO

X 3 [(1—k)TO)]" " /(n —i) | . (8)

i=1

In Ref. 1 this quantity was supposed to follow a simple
law o,=cd", where ¢ and d are constants. Another
quantity used in Ref. 1 was the average number of
nucleon-nucleon collisions, the average being taken first
over the straight line trajectory (z) and then over impact
parameter (b). This quantity, of course, is zero if simply
averaged over all impact parameters (to infinity). Thus
the weighted average is defined through

(n ) =(T)
= [ T—eTambab [ [T (1—eTmbab ,
0 0
©)

where the weighting is taken to be the reaction probabil-
ity (the probability for > O collisions). The denominator
in Eq. (8) is thus simply the total reaction cross section

projected Woods-Saxon nuclear densities.

p(r)=1/{1+exp[(r —R)/a]}. The diffuseness parameter (a) was set to 0.55 fm for all nuclei. The
root mean square radii which were used to determine the radius parameters (R,) are typical values

from the compilation of RMSR for charge distributions (Ref. 15).

Mass Radius Diffuseness RMSR o pp(0) k,
(u) (fm) (fm) (fm) (fm) (fm~—?) (fm?)
12 1.743 0.55 2.450 1.443 0.967 0.09024
27 2.931 0.55 3.055 1.688 1.114 0.5176
40 3.588 0.55 3.430 1.790 1.208 0.7641
56 4.120 0.55 3.790 1.871 1.388 0.8748
90 4.825 0.55 4.260 1.952 1.634 0.9089
120 5.377 0.55 4.640 2.059 1.799 0.9016
152 6.018 0.55 5.090 2.155 1.851 0.9736
208 6.592 0.55 5.500 2.225 2.135 0.9212
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o g, and using Eq. (2) the numerator is simply evaluated
to yield

UnN=02ro*/og)[ (eFTO—1)/k
—(e*k DT _ 1y sk —1)], (10)

where the first term evaluates to onN. A4 /o i [using Eq.
(5)] and the second term, which was omitted in Ref. 1,
represents a correction of roughly 5% for a Au target.

II1. SIMPLIFIED PICTURE
OF THE REACTION MECHANISM

Above ~200 MeV the free nucleon-nucleon total
cross section”? is almost constant. We use a value of 40
mb for all energies in the range considered (0.3-20
GeV). We thus expect the number of primary nucleon-
nucleon collisions to vary little with energy (assuming,
even at the lowest energy, that &N is not modified by
the Pauli exclusion principle). The average kinetic ener-
gy Egl(elastic) transmitted per collision to a struck nu-
cleon in the target also becomes constant above ~1 GeV
(see Ref. 8). Thus one might expect the physics of nu-
cleon induced spallation to remain unchanged above this
energy. This simple picture is somewhat modified due to
the fact that above 1 GeV the free nucleon-nucleon total
elastic cross section diminishes, giving way principally to
the formation of delta resonances (inelastic nucleon-
nucleon scattering) which decay mainly by pion emis-
sion. Following Abul Magd et al.,' we assume that the
additional energy deposited in the target matter is pro-
portional to the ratio of the inelastic cross section to the
total nucleon-nucleon cross section,

Ey=E(elastic)+0.50(0 jpe1 /0 tora) (Mg —MN) (11

where m, —my is the delta-nucleon ground state mass
difference (300 MeV) and the factor of 1 comes from the
fact that the inelastic excitation may be produced on the
emerging high energy nucleon and thus not contribute to
the deposition of excitation energy.

The parameter a (a < 1) introduced in Eq. (11) is used
to represent the rather complex situation resulting from
the creation of delta resonances inside the target. This
quantity was not used in Ref. 1. However, the decay of
the delta resonance may lead to the ejection of a pion
from the target and thus to the loss of the corresponding
kinetic and rest energy.

In writing Eq. (11), of course we should be aware that
the physical basis of the inelastic energy dissipation im-
plied is unlikely to predominate above E, =3 GeV where
delta production gives way to two- and three-pion pro-
duction and reactions such as p + p—d+7" become
important (see Ref. 9). Indeed, we might expect that the
complexity of the inelastic energy dissipation [which
may be expressed in Eq. (11) as a(150 MeV)(0 i1e1/0 otal) ]
would lead to an energy dependent value of a. Howev-
er, since a detailed analysis of all mechanisms (and cor-
responding escape probabilities) is beyond the scope of
the present work, we have preferred to retain a constant
value for a in our calculations. As will be clear later
(Sec. IV), the approximate constancy of the excitation

functions at high energies is a consequence of an increas-
ingly wide ‘‘plateau’” in the mass distributions, the
height of which is only weakly influenced by changes in
the excitation energy deposited in the target nucleus.

If we adopt this simple picture and, in addition, as-
sume that the mass ejected from the target is proportion-
al to the excitation energy, we can write

(dm,)/dT =C(E,) , (12)

where the slope C depends on the excitation energy and
thus on the incident proton energy E,, and m, is the

mass lost from the target. Equation (12) may, in princi-
ple, also take into account promptly emitted nucleons
(knock-out) since the number of such particles is also ex-
pected to be proportional to the number of primary
nucleon-nucleon collisions. Of course, we expect that,
because of the rather complex kinematical and geometri-
cal situation which governs the emission or retention of
struck nucleons in the target and, in addition, the impor-
tance of the sequential evaporation process which may
involve emission of both nucleons and complex particles,
the actual mass emitted when an incident proton
traverses the target may be subject to considerable fluc-
tuation around the mean. We (conveniently) assume a
Poisson shape to describe this fluctuation afnlz(CT).

Thus,
P, (T)=(CT)"'e=T/m! . (13)
The advantage of this procedure is that we may immedi-

ately [as in Egs. (6)-(8)] write the expression for the
cross section o,, (m;=A4 — Ap, where Ap is the ob-

served fragment mass) as

Om, = {2107 /[m(1—k/C)"']}
X | 1—¢ (€T

my .
xS [(C—kTO]™

i=1

/my—it|, (14)

in which C is the only unknown parameter. Since the
average number of collisions is approximately four [us-
ing Eq. (10)], we have chosen to ignore the prompt
knock-out contribution in describing the energy varia-
tion of this parameter (as in Ref. 1), which will thus be
specified using Eq. (11).

IV. CALCULATION AND RESULTS

Calculations were made of excitation functions for
specific residual nuclei for protons incident on a Au tar-
get in the energy range from 0.3 to 20 GeV and com-
pared with the data reported in the work of Kauffman
and Steinberg.!® The constant C of Eq. (13) was fixed by
comparing measured and calculated mass distributions
at 3 GeV to a value of 8.8 u per nucleon-nucleon col-
lision. We then used the estimation of the mean excita-
tion energy per unit mass loss (€), which was calculated
by the authors of Ref. 1 using the evaporation model of
Friedman and Lynch!? to calculate the parameter a of
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Eq. (11). With e=13.2 MeV, we obtain a=0.5. The re-
sulting variation of the energy deposited per nucleon-
nucleon collision is shown in Fig. 2(a). At each energy
the quantity C [in Eq. (14)] was fixed by scaling the value
fitted to the data at 3 GeV by the ratio of excitation en-
ergies deposited in the target per nucleon-nucleon col-
lision.
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FIG. 2. (a) Variation with incident proton energy of the to-
tal energy deposited per nucleon-nucleon collision in target
matter (solid line). The energy deposited due to elastic scatter-
ing alone is indicated by the dotted line [see Eq. (11)]. (b) Exci-
tation functions for various spallation products compared with
the calculations [Eq. (14)]. The data are from Refs. 10 and 11
('Tb). The ""*Au yield, which is known to represent only a
fraction of the mass 194 cross section, has been multiplied by
3.33. The '"°Tb data (Ref. 11) are for the alpha decay branch,
which is thought to represent ~10% of the cross section (see
Ref. 10). The measured cross section has thus been multiplied
by 10 and the calculation normalized arbitrarily to the data.
The experimental and theoretical normalization for all other
cases is absolute.
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FIG. 3. Calculated and measured (Ref. 10) mass distribu-
tions following proton spallation reactions on a Au target at
0.49 and 3 GeV incident proton energies. The 3 GeV data
were used to fix the parameter C of Eq. (12), which was scaled
for other energies by the ratio of the excitation energy deposit-
ed in the target to the same quantity at 3 GeV [see text and
Fig. 2(a)]. The shape of the calculated (solid lines) and ob-
served (dots) distributions is discussed in the text. The mea-
sured cross sections for isotopes near the target are lower lim-
its due to the strong probability in this region for (undetected)
stable nuclide production. Otherwise, errors in the data are
typically of the order of 10%. Normalization, for both experi-
ment and calculations, is absolute.

Excitation functions calculated using Eq. (14) for mass
losses between 3 and 70 u are presented with the data in
Fig. 2(b). As can be seen from the figure, the overall
agreement is quite satisfactory. The measured cross sec-
tions are however up to a factor of 2 smaller than the
predictions at the highest energies.

In addition, we have calculated the residual mass dis-
tributions at 0.49 and 3 GeV. The agreement with the
data (see Fig. 3) is once again very satisfactory. Both
the data and the calculation show cross sections which
fall steeply as we descend below the target mass followed
by a plateau which extends to mass losses of
~Connpp(0) corresponding to a zero impact parameter
trajectory after which the cross section falls sharply.
These three regions can be readily distinguished in Eq.
(14). The “plateau” is produced by the geometrical fac-
tor 1/(1—k/C)"!, whereas the cutoff [term in large
parentheses in Eq. (14)] is caused by the fact that the
average number of nucleon-nucleon collisions, and thus
the average mass loss maximizes at zero impact parame-
ter. The initial steep falloff of the cross section for
masses close to that of the target is approximately given
by 2ma?/m and is thus energy independent.

V. SUMMARY AND CONCLUSIONS

In this work we have presented a simple model for
proton induced spallation reactions in which the main
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emphasis has been placed on a rather accurate parame-
trization of projected nuclear densities, which permits a
simple analytical form to be derived for the spallation
product cross sections. Mass distributions and excita-
tion functions have been calculated for protons incident
on a Au target using a much simplified description of
the physics of spallation reactions inspired by previous
work."? The one parameter appearing in this simple
model is the average mass evacuated from: the target per
primary nucleon-nucleon collision. Its energy variation
was assumed to follow the energy deposition of the in-
cident proton in the target.

Very good agreement was obtained with excitation
functions measured by Kauffmann and Steinberg'®
despite the simplicity of the model and the neglect of the
fission channel. It is probable that this neglect mainly
affects cross sections for rather central collisions, i.e.,
leads to an overestimate of the cross sections near the
cutoff point and, of course, to an absence of predicted
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cross section significantly below the cutoff.

We should perhaps mention that Egs. (2) and (3) may
prove quite useful in other problems where projected nu-
clear densities are used. Typical examples are the micro-
scopic ablation abrasion model of Hiifner, Shafer, and
Schurman,'® and the linear cascade model of Knoll and
Randrup.'

In Ref. 1 the authors derived an expression for the
spallation cross section that was exponential in form.
Indeed, the geometry of projected nuclear densities was
approximated in such a way as to produce this depen-
dence. The approximation used is quite good for light
nuclei, but works less well for heavy targets. For light
nuclei the “plateau” region is very narrow and the cross
section shows an almost monotonic falloff. In this
respect we feel that the present work presents an appre-
ciable improvement over the treatment presented by
Abul-Magd, Friedman, and Hiifner.
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