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Folding model for sub-barrier interaction between alpha-type nuclei
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We show that it is possible to derive the real parts of the low-energy optical potentials for the
systems ' 0+' 0, ' C+' C, and ' C+' 0 simultaneously from a single effective interaction by
means of the double-folding model. However, this effective interaction does not produce satisfac-
tory results at high energies. In contrast, the effective interaction of Satchler ane Love gives satis-
factory results in both regions and can be regarded as reference potential over a wide energy
range.

I. INTRODUCTION

In the last few years there has been a great deal of dis-
cussion of the possibility that at energies below the
Coulomb barrier the fusion and elastic scattering of
heavy nuclei cannot be adequately derived by the optical
model and that it is necessary to invoke explicitly the
dynamics of the two interacting nuclei; see Ref. 1 for the
extensive review. However, the evidence for this in the
case of pairs of lighter nuclei (Z& Zz & 80) is less strik-
ing, and very recently Haider and Cujec have shown
that an excellent description of the sub-barrier fusion
and elastic scattering of the three systems ' C+ ' C,
0+ 0, and C+ 0 can be made in terms of an opti-

cal potential based on the proximity potential.
The underlying physical validity of this description is

suggested by the fact that once the ' C+ ' C and
' 0+ ' 0 systems have been fitted, the ' C+ ' 0 data are
very well reproduced without any further adjustment of
parameters at all. However, before drawing any con-
clusion in this respect, it is necessary to study the micro-
scopic basis of the optical potentials of the three systems
in question, and see whether they can be put on some
common footing.

In the present paper we make this study in the sim-
plest possible way: we see whether the real parts of the
three optical potentials can all be derived by the double-
folding model, starting from the same effective interac-
tion. This model, as formulated by Satchler and Love,
for example, offers about the simplest way to express the
phenomenological heavy-ion optical potential in more
microscopic terms. However, it can in no way be re-
garded as the ultimate microscopic theory of the optical
potential, essentially because the folding is made over
the local density, rather than over the density matrix,
i.e., over the wave functions, with the result that the
model as it stands cannot be antisymmetrized, and the
effective interaction of the model must be static and lo-
cal. Furthermore, polarization of one nucleus by the
other cannot be considered. For all these reasons it ap-
pears that the effective interaction of the model would be
purely phenomological bearing little relation to the real
N-N interaction.

Nevertheless, it has been possible to derive a simple
effective interaction which is convenient to use in this
model, but which at the some time bears some relation
to the "real" N-N force and simulates to some extent the
effect of the neglected antisymmetrization and polariza-
tion. ' The application of the model with this interac-
tion to the ' C+' C system in the energy range 35—60
MeV has been conspicuously successful, so that our
confidence in the underlying physical sense of the model
is considerably strengthened. Even if one reverts to
purely phenomenological interactions it is surely reason-
able to insist that the same interaction should be applic-
able to different pairs of nuclei in the same energy range.
This should be especially the case with the set of systems
' C+' C, ' C+' 0, and ' 0+' 0, since the pairs of
mass numbers involved are not very different from the
different systems, and there are similarities in the gross
structure, also. In particular, since both nuclei have
zero spin and X =Z, there will be a minimum of ambi-
guity associated with spin and isospin dependence.

In calculating these three systems we look first to the
same energy range as Haider and Cujec, i.e., below the
Coulomb barrier. It is noteworthy that it is in this re-
gion that the possibility of providing some microscopic
basis to the optical model is of direct practical interest:
We are thinking of the importance for astrophysics of
being able to use the optical model as reliably as possible
to extrapolate measured fusion cross sections down to
very low energies. However we also try to reproduce the
available data in the high-energy region in order to see
whether this effective interaction can be used over a wid-
er energy range.

II. FOLDING MODEL

For a spin-independent, density-dependent, two-body
effective interaction, u (r,p ), the double-folding model
gives for the optical potential

V(R ) = f d r )d r2p)(r ) )p2(r2 )u, ft(r, p)+pq), (l)

where p& and p2 are the master-density distributions of
respective nuclei, assumed spherically symmetric, and

36 1987 The American Physical Society



36 FOLDING MODEL FOR SUB-BARRIER INTERACTION. . . 1409

r=l2+R —I i (2)

In a rigorous approach to the folding model the
effective interaction u, fr(r, p) will be derived from the G
matrix by solving the Bethe-Goldstone equation, and can
be complex. In the present more phenomenologica1 ap-
proach the effective force is assumed to be real, so that
only the real part of the optical potential can be derived;
the imaginary part will have to be put "by hand, " as in
Refs. 4 and 7.

The form of effective interaction that we consider is
fairly general, having two density-independent Yukawa
terms of short range and long range, respectively, and a
zero-field density-dependent term,

—p&r —PpPe e
u, s(r, p)=C& +C2 +C3p 5(r) .

pir p2r
(3)

where

rz(8&) = [(r &
+R 2r&R—cos8~)]'

and

u [r&,R, rz(8, )]

=u i(r) )+u2(ri )+C3pl(rl ) IPl(rl )+P2[r2(8I)]I

with

u;(r, )= f
f'1

p~(r &
)r sinh(p;rI )dr I

0

sinhp;r
&

p, (r', )r', e ' 'drI .
r] 1

After a change of variables and some straightforward
algebra, Eq. (4) becomes

2'7T R +rl
V(R)= r, dr,

0 IR —r) I

u (r),R, r2)p2(r2)r2dr2,
(7)

which is more suitable for calculations.
The matter densities that we took for ' 0 and ' C

This actually has the same form as that of the Satchler-
Love force, except that our introduction of a density
dependence allows a better conformity to a realistic 6
matrix.

Equation (1), for the real part of the optical potential,
now becomes

V(R) =2m f"r ~dr& f u [r &, R &, r2(8~)]

+p2[r&(8& )]sin8&d 8, , (4)

were obtained by a spherical Hartree-Fock (HF) calcula-
tion with the effective force of Decharge and Gogny.
When the finite radius of the proton is taken into ac-
count, and a correction made for the c.m. motion, this
force gives an excellent agreement (to within 0.01 fm)
with the measured rms charge radii of all doubly magic
nuclei. Thus the matter distribution calculated for ' 0
(point nucleons were assumed) should be quite reliable.

For simplicity we also assume the nucleus ' C to be
spherical, noting, however, that the real equivalent
spherical matter distribution that enters into the optical
potential might have a smaller radius than that which
emerges from our HF calculations: The rms radius that
we obtain for point nucleon distribution is 2.35 fm. This
is to be compared with the experimental value' of 2.46
fm.

III. RESULTS AND DISCUSSION

We first derived the folding-model potential for the
Satchler-Love effective force. It can be shown, see for
example Fig. 1, that for all three systems this potential is
quite different from the proximity potential. Then we
determined a new force by fitting directly to the proxim-
ity potential for one particular system, i.e., the ' C+' C
system. The fit was made linearly, by adjusting the
coeScients C&, C2, and C3 for fixed values of p&, p2, and
o. . We selected the three points from the tail of the
proximity potential, namely, at distances 6, 8, and 10 fm
in order to reproduce its asymptotic behavior and fixed
the values of p& and p2 at the Satchler-Love values of
4.0 and 2.5 fm ', respectively. We set o. =0 or o. =1 al-
though the choice of o. was not crucial. Both classes of
potentials had the same shape, with the o. =1 case pro-
ducing strong repulsive cores, similar to the proximity
potentials, almost a factor of 4.5 stronger than in the
o. =0 case. The resulting values of C&, C2, and C3 are
given in Table I, where we have also shown, for purposes
of comparison, the corresponding values for the
Satchler-Love interaction.

With the effective interaction deduced by fitting to the
proximity potential for the ' C+' C system, we deduce
the folding-model potential for the other two systems as
well. In all three cases the folding-model potential is
very similar to the proximity potential beyond r =4 fm,
leading us to expect that similar fits to the data will be
obtained.

These folding potentials together with a Woods-Saxon
imaginary potential were used in an optical code to cal-
culate the elastic and the fusion cross sections. The
latter are plotted in terms of the so-called S factor which
is defined in the usual way by

S (E)=o (E)exp(2m-n ),

TABLE I. Parameters of the effective interaction of Eq. (3).

Present
Satchler-Love

C,
(pl ——4.0 fm ')

—19914.4 MeV
23 692.88 MeV

6315 MeV

C2

(p2 ——2. 5 fm ')

—3291.38 MeV
—6829.50 MeV
—1961 MeV

C3

6574.08 MeVfm'
9509.70 MeV fm

—81 MeVfm'
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FIG. 1. Real parts of the present the proximity and the
Satchler-Love optical potentials used in the calculations of the
elastic and fusion cross-sections for the ' C+' 0 system. The
potentials for the other two systems are qualitatively similar.
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FIG. 3. Comparison of the S factors for the ' C+' 0 sys-
tern. The data are taken from Ref. 2 and the references cited
there.

0.9— where

n =Z&Z2e (p, l2h E, )'

0.7— Following Ref. 7, we took for the imaginary potential,

06— W(r)=
W, (E)
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W1+exp

(10)
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FIG. 2. 90 elastic cross sections normalized to the Mott
cross section, for the "C+' 0 system for the three potentials
of Fig. 1. The data are taken from Ref. 2 and references cited
there.

an energy dependent depth of the form

W, (E)= —0.5E MeV .

The geometrical parameters r„and a as well as the
Coulomb potential, are as in Ref. 2.

The resulting cross sections together with those of the
proximity potentials (taken with the same imaginary
parts as with our potentials), are compared with the ex-
perimental data in Figs. 2 and 7. Actually, since the
o. =0 and the o. =1 potentials give very similar fits to the
data, only the o. =O case is presented, for clarity. It is
seen that our folding potentials produce a good fit to the
data for all three systems, very similar to the fits given
by the proximity potentials. For the purpose of compar-
ison, the fits given by the Love and Satchler folding po-
tential taken with the same imaginary part, are also
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FIG. 6. Same as Fig. 2 but for the ' 0+' 0 system.
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shown. They are equally acceptable except perhaps for
the elastic cross section of the ' C+ ' 0 system in which
the energy dependence of the imaginary part seems to be
more pronounced. However we also found a better qual-
ity fit for this system but with a different normalization
of the imaginary part, namely,
W, (E)= 1. +0.2E +0.1E for low energies and
W„(E)=0.1E +0.35E for high energies.

It is also possible to improve the fits by varying the
normalization of the folded real potential parameters in
the way prescribed in Ref. 11, with V(r)=Vo(r)
+AV(r) In .this case the polarization potential b, V(r)
might not have the same shape as V ( r ) No. single
choice however leads to completely acceptable fits in all
three cases. To improve our fits it is likely, that we have
to adjust the real and the imaginary potentials separately
in the three systems, and we are investigating this now.
We may note in passing that the repulsive core of the
o. =1 potential Battens the S factor in the ' C+' C sys-
tem at energies below 4 MeV thus producing a slightly
better fit at those energies.

We also turned our attention to the high energy re-

gion and tried to fit our potentials to the ' C+ ' C data
of Refs. 6 and 12 and to the ' 0+' 0 results of Refs. 7
and 13. No single satisfactory fit could be produced for
these systems despite several variations of the imaginary
parts of our potentials. It appears that our folding po-
tentials derived from the proximity potentials cannot be
used throughout the whole energy range.

To conclude, our calculations indicate that a unified
description of the sub-barrier properties ' C+ ' C,

C+ ' 0, and 0+ ' 0 systems can be obtained
terms of the double-folding model, using a common
effective force. However, the potential derived by the
Love and Satchler force are to be preferred, since they
work over a much wider energy range. It appears that a
more rigorous determination of the imaginary as well as
the real part of the optical potential is required. In par-
ticular, the energy dependence is of crucial importance
for the extrapolation to the low energies of astrophysical
significance.
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