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Global optical potential for a particles with energies above 80 MeV
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A set of parameters has been derived for a global optical potential from elastic a-nucleus
scattering with energies higher than 80 MeV. The geometry and energy dependence derived by
Put and Paans was adopted. The optical model predictions were tested with data from elastic as
well as from inelastic scattering.

I. INTRODUCTION

The study of a-particle scattering was proven to be a
sensitive tool for studying nuclear matter distributions
and transition densities. ' One reason for this is the fact
that the n particle is a very symmetric nucleus with a
simple underlying structure, and therefore there is hope
of learning something at the interface between nucleon-
nucleus interactions and nucleus-nucleus interactions.
As in the nucleon-nucleus case, one would like to ex-
press the a-nucleus interaction in terms of an optical po-
tential. However, low-energy data suffer from discrete
and continuous ambiguities in the optical model parame-
ters. ' One attempt to solve these problems was the
adoption of a form factor different from the one em-
ployed in the nucleon-nucleus case. There, the data
were nicely reproduced by assuming that the density and
the potential have the same shape. The folding model
analysis suggests a shape more like the square of a
Woods-Saxon form factor. However, medium energy
data were equally well reproduced by a single Woods-
Saxon form factor as by a squared Woods-Saxon form
factor. We have tried to derive a global optical poten-
tial for the n-nucleus interaction by only employing a
Woods-Saxon form factor.

fixed geometry and allowed only the real potential depth
V and the imaginary potential depth 8' to vary with the
energy and target mass number. For simplicity we
adopted, as a first choice, the values for a, and r, de-
rived by Put and Paans from a study of elastic e-particle
scattering on Zr;

r, =1.245 fm,

a, =0.801 fm,

r =1.570 fm,
(4)

and

a =0.567 fm .

We furthermore adopted the energy dependence for V
and 8'found in that work,

V(E )= Vo(1+a,E ), (5)

with Vo( Zr) = 155.2 MeV and a, ( Zr ) = —0.0016
MeV ' and similarly for W,

Wo( Zr) =19.17 MeV and a ( Zr)=0. 0003 MeV

We wanted to derive an expression for the potential
depths in the form

II. THE OPTICAL POTENTIAL V( A, Z, E ) =ao+a, ZA '~ +a2E (6)

The standard optical potential reduces, in the case of
cx-nucleus interactions, to

and

W(A, E )=bo+b, A ' +b2E (7)
U(r) = —Vf (r) i Wg (r)—+ Vc,„~,

with form factors of the Woods-Saxon type

f (r) = [ 1+exp[(r —r, A ' ') la„) )

and

g(r)= [1+exp[(r r„A ' )la )—)

(2)

(3)

Vc,„~ denotes the Coulomb potential. In this description
the potential is determined by six parameters. It was
found, by Singh et al. (Ref. 5) and by Put and Paans
(Ref. 6), that the radius parameters r, and the
diffuseness parameters a, „are rather constant for a-
particle energies above 80 MeV. We, therefore, chose a

The dependences of the real potential depth [Eq. (6)]
were similar to those introduced by Percy for nucleons.
The symmetry potential necessary to describe nucleon-
nucleus scattering is not effective in the case of a-
particle scattering. The term proportional to Z/3 '

was introduced by Percy as a correction for effects in-
troduced by Coulomb repulsion. The average Coulomb
potential at the nuclear surface is proportional to Z/R
and hence proportional to Z/2 ' . The imaginary po-
tential depth in the case of nucleons showed no mass
dependence. ' However, for deuteron scattering a linear2, 7

dependence of the imaginary potential on the nuclear ra-
dius has been observed and is therefore also assumed in
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TABLE I. Derived optical model depths for 140 MeV a-particle scattering on the indicated target
nuclei. The geometry parameters are those in Ref. 6. The total absorption cross sections are also
given. For details see text.

Nucleus

12C

40C

50T
' Ni
"Zr

V (MeV)

91.5
122.5
123.0
115.0
122.8

W (MeV)

31.5
27.8
24.9
21.3
20.4

X'/N
(best fit)

13.4
4.8
2.8
0.8
0.62

o.„(b)

0.77
1.37
1.52
1.58
1.97

Ref.

10
10
9

10
10

X'/N
(global potential)

14.1

18.9
16.2
6.6
9.3

TABLE II. Deduced parameters a and b for the potential depths [Eqs. (5) and (6)].

ap (MeV)
a1 (MeV)
a2

Real potential

116.1+18.9
4.77+ 1.62

—0.248+0.047

bp (MeV)
b1 (MeV)
b2

Imaginary potential

43.67+ 17.19
—5.55+ 1.23

0.006+0.012

TABLE III. Same as Table I but with four potential parameters constrained.

Nucleus V (MeV) W (MeV) a, (fm) a {fm)

X'/N
(best fit) o.„(b) Ref.

X'/&
(Global

potential)

12C

"Ca
"Ti
'Ni

902
208pb

89.5
109.7
114.1
116.2
123.1

159.4

23.5
21.8
21.8
21.7
20.4
17.2

0.751
0.818
0.802
0.792
0.806
0.733

0.651
0.684
0.628
0.549
0.562
0.607

5.57
0.25
0.42
0.57
1.66

65.9

0.77
1.43
1.55
1.56
1.97
2.98

10
10
9

10
10
12

20. 1

12.6
11.7
6.8
7.1

82.7

TABLE IV. Global potential parameters [Eqs. (6)—(9)] with
four parameters constrained.

ap (MeV)
a1 (MeV)
a2

101.1+28.3
6.051+0.373

—0.248+0.047
TABLE V. Results of the present global optical potential

(Table II) for elastic a-particle scattering on ' Ni.

bp (MeV)
(MeV)

b2

cp (MeV)
e1 (MeV)

dp (MeV)
d1 (MeV)

26.82+75.98
—1.706+0. 182

0.006+0.012

0.817+0.053
—0.0085+0.013

0.692+0.076
—0.020+0.019

E (Me V)

29
38
58

104
141.5
172.5

o.„(b)
1.47
1.56
1.62
1.63
1.60
1.57

X'/N

31.7
99.4
97.1

18~ 8
6.6
8.2

Ref.

19
19
19
20
12
4
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actions. The data are from Ref. 16. The present optical model
predictions are shown as solid curves.

Woods-Saxon form factors. Since we are interested in
medium energies where the geometry becomes indepen-
dent of energy (the so called Put-Paans effect) we could
neglect the explicit treatment of the surface absorption.
The Put-Paans geometry valid for Zr seems to depend
only weakly on the target mass number. This becomes
obvious by comparing these values with those derived in
Ref. 5.

The mass dependence found here for both the real
part as well as the imaginary part of the potential is
much stronger than those for nucleon-nucleus poten-
tials. ' The imaginary part seems to be almost indepen-
dent of the energy. Since global optical potential param-
eters for light composite projectile particles are scarce,
comparisons with those suffer from different energy
ranges. For low energies and in the case of neutrons and
protons Becchetti and Greenlees give a rather strong
energy dependence, even stronger than for the real part.
Bojowald et al. (Ref. 8) report, for low energy deute-
rons, an energy independent optical potential whereas
for energies above 22.5 MeV/nucleon it becomes energy
dependent. To check the derived energy dependences
for target nuclei different from Zr the volume integrals
for the real part as well as the imaginary part of the
present potential were compared with the systematics of
Motoba et al. (Ref. 15). They nicely agree with these
systematics. However, this is also true for small energies

FIG. 7. Measured (Ref. 17) and with the present optical
model calculated cross sections for the first 3 state in ' Ti.
For details see text.

where the present potential, because of its geometry,
fails to reproduce elastic scattering data.

A test of the potential, which is in some respect simi-
lar to volume integral comparison, is to look at the pre-
dictions for total reaction cross sections. Such a com-
parison is shown in Fig. 6. The data for the different
target nuclei are from Ref. 16. These data are repro-
duced from small energies up to 200 MeV/nucleon for
light and medium heavy nuclei whereas for heavy nuclei,
agreement is achieved up to 80 MeV/nucleon. This is a
much broader range of energies than that where the po-
tential is expected to work and, as already said above, it
does not work at low energies.

More stringent tests are needed. To check the mass
dependence of the parameter set at a different energy,
elastic scattering data taken at 104 MeV by the
Karlsruhe group' were compared with the present po-
tential predictions. These data are nicely reproduced.
To test the energy dependence at a mass number
different from Zr, elastic scattering data on Ni with
bombarding energies ranging from 29 MeV up to 172.5
MeV (Refs. 4, 12, 19, and 20) were compared with the
present optical model predictions. In a few cases no
data were available to us. In these cases we took
equidistant points obtained by employing the best fit pa-
rameters given in the literature (Refs. 12 and 20). The
obtained 7 values are given in Table V. As already ob-
served by Put and Paans in the case of Zr, it is impos-
sible to reproduce low energy data with an energy in-
dependent geometry. At higher u-particle energies we
achieve a very good reproduction of the data. Another
test of the present optical model is its ability to account
for inelastic scattering data. For that purpose not too
low lying states were chosen where channel coupling is
expected to be sma11. Calculations were performed
within the distorted-wave Born approximation (DWBA)
using the code DwUcK Iv. These tests again give satis-
factory results thus giving confidence in the validity of
the present parameter set. An example is shown in Fig.
7 for the first 3 state at E,„=4.42 MeV in Ti. The
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data of Ref. 17 are reproduced by fitting a deformation
parameter P3 ——0. 17 employing a Woods-Saxon deriva-
tive as form factor. This must be compared with the
value given in Ref. 17 obtained in a coupled channel
analysis, P3 ——0. 133. It can therefore be concluded that
we have derived a set of parameters for a global a-
nucleus optical potential. This potential is able to repro-
duce cross sections from elastic, as well as inelastic

scattering for energies above 80 MeV and light to medi-
um heavy nuclei. It fails at backward angles in the case
of Pb, as has been the case for so called best fit
searches. '
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