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A fermion dynamical symmetry model is presented. The model has a rich variety of dynamical

symmetries, with fully microscopic connections between these dynamical symmetries and the un-

derlying shell structure. In the low angular momentum region, without explicit introduction of
bosons, all the dynamical symmetries contained in the phenomenological interacting boson model

are recovered. Furthermore, the model predicts several new dynamical symmetries, one of which

has recently been empirically verified, and has limits appropriate to the study of high-spin physics.

I. INTRODUCTION

Dynamical symmetry is an important concept in phys-
ics. ' Mathematically, dynamical symmetry allows one
to obtain simple analytical solutions for the quantum
many-body problem. Physically, dynamical symmetries
depict various types of motion for such systems. There-
fore, it is always desirable to separate the full Hamiltoni-
an into a part possessing the symmetry which is respon-
sible for a particular mode, and a symmetry-breaking
part which represents deviations away from the "bench-
mark" symmetry. If this separation is successful, it is
possible to greatly simplify the many-body problem and
to gain a deeper understanding of collective motion.

In nuclear physics, there exists a rich variety of collec-
tive motion. The application of dynamical symmetries
to the study of one of these modes (rotational) may be
traced to the SU3 work of Elliott, which was motivated
by the observation of strong deformation in light nuclei
(A &24). Unfortunately, the Elliott model can only be
applied to a rather limited region of the periodic table.

There has been an effort in the last two decades to ex-
tend the Elliott model to investigate low-energy collec-
tive states in regions other than the s-d shell. This
was pioneered by Arima, Harvey, and Shimizu and
simultaneously but separately by Hecht and Adler by
introducing the concept of pseudospin —,

' and the
pseudo-SU3 model. By analogy with the Elliott model,
the pseudo-SU3 model explores the SU3 symmetry in the
(pseudo-) orbital part of the wave functions.

Another development in the use of dynamical symme-
try in nuclear physics which has particular relevance to

the work presented in this paper is the phenomenologi-
cal interacting boson model (IBM), which was proposed
by Arima and Iachello in 1974. " Motivated by the
assumption that there are strongly correlated valence
nucleon pairs with angular momenta zero (S pairs) and
two (D pairs), the s and d bosons were introduced as the
basic building blocks of low energy collective motion.
With this assumption, the model has the unitary group
U6 as its highest symmetry and three dynamical symme-
try chains: 06, U5, and SU3. The IBM differs consider-
ably from the pseudo-SU3 model in the usage of dynami-
cal symmetry. The pseudo-SU3 model, just as the Elliott
model, uses a mono-chain (SU3) to construct a Hilbert
space where the rotational aspect of the collective
motion is emphasized. On the other hand, the IBM is a
multi-chain model where each chain provides both a
complete mathematical basis and a collective mode (06,
y soft; U5, vibrational; SU3, rotational) which may phys-
ically be realized in various areas of the periodic table. '

Therefore, the IBM suggests that a dynamical symmetry
group chain may represent the algebraic manifestation of
a particular collective mode.

At the phenomenological level, the IBM has only a
tenuous link to the fundamental shell structure (through
the boson number). Therefore, although it provides a
unified algebraic view for various collective modes, it is
beyond the scope of the model to provide a deeper un-
derstanding of these collective modes and the related
dynamical symmetries at the fermion level. There has
been considerable effort' to provide a better way of
mapping a fermion system to a boson system so that a
microscopic understanding of the IBM could be
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achieved. However, any dynamical symmetries relevant
to nuclear structure should manifest themselues directly
from the fermion degrees offreedom without explicitly in
troducing bosons. This is the basic theme of this paper.

An important milestone for fermion dynamical sym-
metry in nuclear physics occurred when Ginocchio pro-
posed a fermionic model and investigated its possible
dynamical symmetries. ' ' In this model, the single-
nucleon angular momentum j is separated into a
pseudo-orbital angular momentum k and pseudospin i,
where

i active SO8 -SO, = SO SO, , (1.2)

SOq

SU3

has the property that the (S,D) subspace is decoupled
from the rest of the space. Ginocchio found the follow-
ing (multichain) dynamical symmetries:

SO) )& SU~

j=k+i . (l. la)

The single nucleon creation operator b&; in the k-i
mg lm

scheme is related to the fermion creation operator a
by a Clebsch-Gordan coefficient,

k active Sp6

SU2)& SO3

SO3 . (1.3)

a = g (kmkim; ~jm )bk
mg pl.

(1.1b)

Ginocchio pointed out that in this scheme there are two
alternatives to construct the S and D (fermion) pairs as
well as the multipole operators P" (with r &3). The first
is to take k = 1 and couple i to zero for the fermion pair.
This we call the k-active coup/ing scheme. The other is
to take i = —,

' and couple k to zero for the pair. This we

call the i-active coup/ing scheme. These couplings are il-

lustrated in Fig. 1. Ginocchio demonstrated that the k-
active scheme gives rise to an Sp6 Lie algebra, while the
i-active scheme gives an SO8 algebra. By assuming that
the Hamiltonian is a scalar (rotational invariant) con-
structed out of the generators of Sp6 or SO8, this model

J =k)+kg k-active coupling
(J =0, 2)

I active coupling
(J=O, 2)

k)

(c) ]2 '2 k =0 coupling
(J =0)

FIG. 1. The coupling schemes in the FDSM. The i-active

and k-active schemes are identical to those of the Ginocchio
model, and are appropriate for normal-parity orbitals. These

couplings lead to SOS and Sp6 symmetries, respectively, for the
S- and D-pair condensate in the normal-parity orbitals. The

k =0 coupling is relevant for abnormal-parity orbitals and is

associated with an 4'M2 (quasispin) symmetry for the 4-pair
condensate.

The spectra of the dynamical symmetries SO5XSU2 and

SUz&&SO3 are formally identical to those of the IBM's
U5 vibrational limit and SO6 is formally identical to the
IBM s 06 y-soft limit, while the SO7 limit does not
occur in the IBM. The Sp6 symmetry contains the SU3
(rotational) chain but suÃers from what has been viewed

as a serious problem: '' namely when the nucleon pair
number N & Q/3, where II [=X(2j+1)/2] is the total
pair degeneracy, the Pauli principle forbids the oc-
currence of the highest SU 3 representation
(A, ,p) =(2N, O), which is normally associated with ground
state rotational band. Similar Pauli restrictions occur
for other representations. Thus, the lowest energy SU3
representations do not always exist in the fermion mod-
el. In fact, Ginocchio estimated that due to the Pauli re-
striction, his fermion SU3 contained only about 70% of
the states of the boson (IBM) SU3 model. As a conse-

quence, Ginocchio abandoned the Sp6 model, along with

its important rotational limit. Furthermore, in the
Ginocchio model the relationship between the pseudoor-
bit and pseudospin angular momenta and the shell struc-
ture was not explored. Therefore, it was not obvious
that this model could be applied to real nuclei.

Despite the apparently serious difficulty associated
with the SU3 chain, and the ill-defined relation to the
shell model, the Ginocchio e(fort appears to be the first
serious attempt in nuclear structure physics to seek a
variety of dynamical symmetries (representing various
collective motions) from a unified fermion point of view.

Recently we have proposed a fermion dynamical syrn-

metry model (FDSM). ' This model, which may be re-
garded as a further development of the Ginocchio mod-
el, is intimately related to the shell structure of nuclei
and has a multitude of dynamical symmetries. In addi-
tion, because of the relation to the shell structure, one
finds that the SU3 limit of the Ginocchio model is
resurrected in the FDSM. It has also been shown' that
there is a one-to-one correspondence between the genera-
tors, irreducible basis, and the building blocks (i.e., the
s, d bosons versus the S and D fermion pairs) of the sub-

groups SO6, U5, and SU3 contained in the dynamical
group chains of the IBM and those of the FDSM, and
that the FDSM can describe phenomena in high-spin
physics normally considered to be the exclusive domain



36 FERMION DYNAMICAL SYMMETRY MODEL OF NUCLEI: 1159

of the geometrical model. Thus this model appears
capable of providing a unified shell-model basis for both
boson and geometrical pictures.

In this series of papers we give a comprehensive intro-
duction to the FDSM. To illustrate the basic idea of
this model, we shall concentrate in this paper on the
simplest situation: identical S and D fermion pairs mov-
ing in one major shell. In the forthcoming papers of this
series, we shall discuss (a) the situation where the neu-
trons and protons are distinguished and the effect of n-p
interaction is included; and (b) the case with broken
pairs or unpaired particles, which is relevant for the
study of odd-even and odd-odd systems and high spin
structures.

In Sec. II, we shall discuss the (k i) b-asis of the
FDSM and, in Sec. III, the general Hamiltonian of the
FDSM will be derived directly from the nuclear shell
model. The primary symmetry limits Sp6&SS'z and
SO8XSS'q of the FDSM are described in Sec. IV. This
is followed in Sec. V by a discussion of the rotational
limit in the Sp6 symmetry and the y-soft limit in the SOS
symmetry. In Sec. VI, the three "vibrational-like" sub-
chains, two of SO8 symmetry and one of Sp6 symmetry,
are compared. In Sec. VII, we argue that the FDSM is a
model of effective interactions in nuclei and a compar-
ison with the pairing plus quadrupole model is discussed.
Finally, in Sec. VIII, the paper is summarized, and the
differences between the FDSM and IBM, the effects of
the n-p interaction and other symmetry breaking terms,
and open questions requiring further study are discussed.

In order to emphasize the physical aspect of the
FDSM, we shall omit most of the group theoretical
derivations in this paper. Interested readers are directed
to Ref. 17 for the mathematical details.

shell, has precisely this property.
To understand the physical meaning of the k-i basis, it

is useful to introduce the concepts of the active part and
the inert part of a single-particle angular momentum j:

j= jactive+ jinert (2.1)

(k active, K =0,2) . (2.1a)

In Fig. 1(b), i& and i2 are active while k& and k2 are inert.
The S and D pairs are

(k lk2)0(~]~2 )I iIM ) [ gb/i [
/b& 21]20~

The active part j„„„,is defined as the part of the
single-particle angular momentum which for two identi-
cal nucleons can only couple to angular momentum J=O
and 2, while the inert part j;„„,is the remaining single
particle angular momentum. The dominance of the S-D
pairs in the low-lying collective modes suggest that, for
each identical nucleon pair, the inert parts of the angu-
lar momenta tend to couple to zero and become inactive
in the low-energy region. This is the reason we call this
part of angular momentum "inert. " The k-i basis is a
basis with the single-particle angular momentum j
decomposed into an active and inert parts instead of con-
ventional decomposition of orbital and spin parts. As
shown in Fig. 1, there are two alternatives as to which
part of the angular momentum is active in the k-i
decomposition j=k+ i, where k is an integer called
pseudoorbital angular momentum and i is a half-integer
called pseudospin. In Fig. 1(a) k~ and k2 are active
whereas i& and i2 are inert, and the S and D pairs are

l
(kik2)K(&i&2)0 K~) [bk&i&bk2i2]M0 I

0)

II. THE k-i BASIS OF THE FDSM
(i active, I =0, 2) . (2.1b)

It is well known that two identical nucleons partici-
pating in a low-lying collective mode preferentially cou-
ple their single particle (s.p. ) angular momenta j, and j2
to zero (S pair) and two (D pair). ' To implement this
property of the nuclear many-body problem at the fer-
mion level, it is desirable to have a basis which is
tailored to decouple the coherent S-D subspace from the
entire shell model space. The single-particle (s.p. ) pseu-
doorbit and pseudospin basis (k ibasis), -introduced by
Cxinocchio with the modification presented here to take
into account the abnormal-parity level in each major

I

Figure 1(c) corresponds- to the situation that the entire
angular momentum j is inert. In this case there are only
S pairs. From Table I it can be seen that, for the k-
active scheme, k must be 1 and k& ——kz ——k, since if k =0,
then only S pairs can be formed, and if k & 1, then pairs
with J~ 2 could occur. Likewise for the i-active scheme,
i must be —,

' and i, =i2 ——i (as illustrated in Table I).
It is important to emphasize that such S and D pairs

are actually highly coherent, i.e., of collective nature.
This can be seen after transforming the k-i basis back
into the shell model basis by using the normalized 9-j
recoupling coefficient:

~

(k~k2)K(i ~i2)I;rp) =[b&;,bI, , ]z
'"

~

0) = g
ji

i, j, [a a, ]„"~0).
I r

(2.2)

It is easily seen that the S pair, in either the k- or i-
active scheme, is precisely the Cooper pair in the pairing
condensate: 0„,=(2k+ 1)(2i+1)/2, II, =(2j+ I)/2 . (2.4)

where the pair degeneracies A~; and QJ are defined as

~
(kk)0(ii)0;00) = g QO, /Qg;[a, a, ]0 ~

0), (2.3) Thus we see that a highly coherent pair, which has very
strong configuration mixing in the shell model basis, can
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TABLE I. Allowed values of the total angular momentum J for different choices of k and i. The
absence of odd values of J when k I

——k2 follows from Pauli principle for identical nucleons.

kl
k-active scheme

k2
i-active scheme

l2

0
1,2

0,2

1,2,3

0,2,4

0,2

1,2,3,4
0,2,4

have a very simple, i.e., a pure configuration, structure
in the k-i basis. This is precisely the characteristics one
desires for a basis designed to describe the microscopic
structure of collective excitations.

To build a complete basis for a many-body system, ad-
ditional degrees of freedom associated with activating
the inert parts of the angular momenta of the pairs are
required. For example, in the k-active case [Eq. (2.1a)
and Fig. 1(a)], the restriction i, +i2 ——0 may be relaxed
while maintaining the coupling k&+kz=o 2. I.ikewise
for the i-active case the restriction k&+kz ——0 may be re-
laxed while maintaining i&+iz ——0, 2. This will physically
correspond to "breaking" S (D) pairs and allowing the
inert parts of their angular momenta to add vectorially
to that generated by the S-D condensate. Notice that we
use the terminology "broken" even for pairs of angular
momentum 0 and 2, if that angular momentum comes
from the inert parts of the single-particle angular
momentum. By "activating" the inert angular momenta
of nucleons, i.e., by considering all possible broken pairs,
the k-i basis becomes a complete many-body basis.
Defining a quantum number u, which we shall call "heri-
tage, "

u =the number of particles which

do not form coherent S and D pairs

[the coherent S and D pairs are defined in Eq. (2.1)], the
shell model space can be classified according to the heri-
tage number as shown in Table II. The advantage of us-
ing the k-i basis is that the S-D subspace can be easily
carved out from the entire shell model space by setting
the heritage number u=O. By including all possible u's,
one would span the entire shell model space as illustrat-
ed in Fig. 2.

The correspondence between the shell model basis
I
n(ll/2)jm ) (=al

I
0)) and the k ibasis-

TABLE II. The many-particle k-i basis. A broken pair
means a pair of nucleons with inert parts of the angular
momentum activated.

( =b„, 0) ) is generally many-to-one, i.e. , in Eq.
(l. lb) the choices of k and i are not unique since they
are only restricted by k+i=j. For the k-i basis to be
useful, it is prerequisite that each j in a major shell
should be decomposed uniquely into a definite k and i,
and all j's within a major shell should be reproduced, no
more and no less, from k+i=j, which implies that (i)
gk, Ql, ; ——g~ Al; (ii) bi = 3 for the k-active scheme or
b, k=4 for the i-active scheme, where b, i (b,k) is the
difference between two neighboring i's (k's). Require-
ment (ii) is necessary to guarantee that each j within one
major shell generated by k+i= j occurs only once.

It can be shown that two conditions ensure a unique
decomposition: (a) the normal-parity levels in a major
shell must be either totally k active (k= 1) or i active
(i =—', ); (b) the abnormal-parity level must be assigned
k=O, i.e., ho~ =aq.

Point (a) can be checked by trial and error, as illus-
trated in Table III for shells 6 and 7. Point (b) consti-
tutes a modification of the GInocchio scheme and its
proof is trivial: for the abnormal level, the choice of any
k other than zero will give rise to more than one
abnormal-parity level, j =

I

k i I, . .—. , k +i, in con-
tradiction to the fact that in a major shell there is only
one such level. Therefore, the only possibility is k=O,
i =jo as illustrated in Table III.

FDSM
F ERMIO
spAcE

System

Even

Odd

Building blocks

S and D pairs
S and D pairs plus 1 broken pair'

S and D pairs plus 1 odd nucleon
S and D pairs plus 1 broken pair
plus 1 odd nucleon

FIG. 2. Schematic illustration of the shell-model truncation
implicit in the FDSM. For no broken pairs (heritage u =0),
the coherent (S,D, A') subspace is decoupled from the remainder
of the shell-model space. By breaking pairs (u&0), a richer
basis of states may be constructed. Since the FDSM is for-
mulated entirely in the fermion space, it requires no
fermion~boson mapping procedure.
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TABLE III. (Upper) An example (shell No. 6) of k-i decomposition. (Lower) An example (shell No. 7) of k-i decomposition.
The numbers in each parentheses correspond to the possible values (ki) in either scheme. The (ki) values marked with an asterisk
are the only choice of (ki) where k +i =j which can reproduce all the normal parity levels. For the abnormal-parity level, the only
possible k-i decomposition is (0 '2' ) for the upper portion and (0 '2 ) for the lower portion of the table.

S 1/2

d 3/2

d 5/2

g7/2

h11/2

k-active scheme

(1 —,') (1 -')

(1 2) (1 2 )(1 2)
(1 —,') (1 —,')(1 —,')

(1 —,')(1 —,') (1 —,')
(1 —', )(1 —", )(1 —", ) (0 11 )g

i-active scheme

(1 -', ) (2-', )

0 2)(1 2 )(2 2
)*(3

2

2 2 2 2

( —,
' )'(3 —,') ( —,')(

(4 —,
' )(5 —', )(6 —,

' )(7 —', )

P 1/2

P3/2

5/2

7/2

h 9/2

i 13/2

—', )

9)(1 11)

(1 —,') (2 —,')
(0 —)(1 —) (2 —) (3 —)

(1 —,
'

) (2 —,
'

) (3 —,
'

)

(2-,') (3-,')
(3-)

(4 —')
(4 —,')(5 —,

'
)

(4 2)(5 2)(6 2)

The one-to-one correspondence between the k-i basis
and the shell model basis is shown in Table IV. It is
particularly intriguing that the different major shells are
found to demand a different coupling scheme. Physically
this means that the possible collective modes at low energy
are intimately related to the shell structure. We shall dis-
cuss this in more detail in the following sections.

Finally, we should note that the coherent nature of
the S-D subspace in the k-i basis implies that it is most
suitable for describing collective modes, or the coupling
of single-particle modes to collective modes, rather than
the pure single particle degrees of freedom. For the
latter, it is better to use the conventional shell model
basis. One should not expect that our D-pair wave func-
tions would have large overlap with the wave functions
of nuclei which have two nucleons outside closed shells,
since they are mainly of noncollective nature. On the
other hand, the conventional shell model basis has

difficulty in describing collective motion. Thus the k-i
basis used in FDSM and the conventional shell model
basis, which tends to emphasize the single-particle de-
grees of freedom, are complementary.

III. THE HAMILTONIAN OF THE FDSM

H = g eiaiaj+ V,
J

V= Vp+ Vg .

(3.1a)

(3.1b)

In (3.1), Vz and V& are the pairing and multipole in-
teractions, respectively.

In this paper, we will restrict ourselves to the case of
identical particles interacting by two-body residual in-
teractions in one major shell. The effective nuclear
Hamiltonian can be generally written as

TABLE IV. Reclassification of shell model single-particle levels. The column No. labels the shell ordering; n, k, i label the prin-
ciple, pseudoorbit, and pseudospin quantum numbers; Qp and 01 are the pair degeneracies of the abnormal-parity and normal-
parity levels for each shell. The number n means the maximum allowable nucleon number up to and including that particular ma-

jor shell. The symbols G6, G8, and G3 are shorthand notation for the symmetries: G6 ——(Sp6XSO3)X(+2X@3) (k a«ive);
8=(SOSXSO3)X(++2X03) (i active); G3 ——(SU3XSO6)X(W/2X$63) (k/i active). For details of these symmetries, see the

discussions in text. The script symbols in the definition of G6, G8, and G3 imply the symmetry for the abnormal parity level in
each shell. For the s-d shell, there is no 4'92 X $83 groups due to the absence of an abnormal-parity level in the shell.

No.

Con. S 1/2

1

1

2

P 1/2

P3/2

2
1
3
2

S 1/2

d 3/2

5/2

3
0
7
2

f7n

3
1
3
2

P 1/2

P3/2
fsn

4
0
9
2

g 9/2

4
2
3
2

S 1/2

d 3/2

d 5/2

g7/2

5

0
11
2

h 11/2

5
1
1

2

P 1/2

P 3/2

5
1
7
2fsz2

f7n
h

13
2

13/2

6
1
3
2

S 1/2

d 3/2

d 5/2

6
1
9
2

g 7/2

g 9/2
/ 11/2

7
0
15
2

j15/2

Sym.
Qp
01

0
6

20

G6G, G3
0
4

28

G6G8G3
5
6
50

Gs
6
10
82

G6
7
15

126

G6
8

21
]84
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(3.2a)

energy term embedded in V~, since V& can be rewritten
as

Vg ——gejaja,Q

J

+-.' r
(3.2b)

(3.3)

In (3.2b), the usual time-reversed notation ( —) is used
for the annihilation operator, a&

——( —)~ aj . The
particle-hole type matrix element of (3.2b) is defined in
terms of the regular two-body matrix elements by Eq.
(3.5). It should be noted that there is a single-particle

where

and the two-body matrix elements of V& are

(3.4)

J& Jz

&jij;&I Vg I
j~j2&)=&&jij~r

I Vg Ij ij~r)&(2r+I)/(2K+I) j i jz r

0

(3.5)

Therefore the single particle energies eJ should be under-
stood as the sum of eJ and eJ&:

(3.6)

It should also be noted that one term (either Vg or
V~ ) in Eq. (3.1b) is sufficient, since any two-body interac-
tion can be expressed as either a Vz-type or a V&-type
expansion. In practice, however, the V~-type expansion
is more suitable for the description of short-range corre-
lations. To describe long-range correlations with V~,
one needs to include high-rank (A, ) terms, while the Vg-
type expansion has precisely the opposite property.
Since practical calculations require truncation of the
multipole series, it is usually advantageous to expand the
short and long range parts of V in V~- and V&-type ex-

pansions, respectively.
One cannot go further without simplifying V in Eq.

(3.1). One such simplification is the pairing-plus-
quadrupole (P +Q) model where only X=0 and r =2 are
chosen. The relationship between the FDSM and P+Q
model will be discussed in Sec. VII. In the present mod-
el, we shall proceed differently. We introduce three as-
sumptions to simplify the full shell model Hamiltonian
(3.1) to the Hamiltonian of the FDSM. They are the fol-
lowing.

Assumption 1. The residual pairing interaction Vz is
dominated by the monopole (X=0) and quadrupole
(X=2) terms The im. plications of this assumption are
best manifested in the k-i basis which we have discussed
in Sec. II. In this basis, V~ of Eq. (3.2a) can be ex-
pressed as

V~ = —,
' p &(k&k2)K(i&i2)I;A,

~
V~

~

(k', k,')K'(iIt,')I'g)[bt . bt ] ~ '~ [b b ]{x' '~'
k lt l

k 2' 2
(3.7)

where the summation is over all the indices. There are
two possibilities which ensure that only A, =O and 2 con-
tribute to (3.7): either I=O and K=0,2 or K=O and
I=0,2. Any other choice of K and I will result in k hav-
ing values other than 0 and 2.

According to Table I, one can see that for the K=0,2
case, in the normal-parity orbi tais we must have
k&

——k2 ——1 and i& ——i2 since I=O. This is the k-active
scheme. Similarly, for the I=0,2 case, we must have
i] ——iz ———,

' and k& ——kz, since I| =0, which is the i-active
scheme. In the abnormal-parity orbitals, we have shown
in Sec. II that a unique reclassification of the shell model
in the k-i basis requires the assignment k

&

——k 2 ——0,
i, =i& ——jo. Thus, assuinption (1) is equivalent to requir-
ing the quantum numbers in the pairing matrix elements
to satisfy the following conditions. For all cases,

k) ——k2 =k, i ) ——i2 —=i,
k) ——k2—=k', i )

——iq=—i' .

(1) For the k-active normal levels,

k(k')=1, K(K')=A, , I(I')=0 .

(2) For the i-active normal levels,

i (i ') = —'„K(K') =0, I (I') = A, .

(3) For the abnormal level,

k(k')=0 K(K')=0, I(I')=O, X=O .

(3.8a)

(3.8b)

(3.8c)

(3.8d)

As mentioned before, the appropriate coupling scheme
depends on which major shell one is considering. For
example, from Table IV, shells 7 and 8 are k-active
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=2+Ok; Ilk; G (~ (3.9)

The superscript P (P') defines whether a pair belongs to
the abnormal level (/=a) or normal levels (p=nk, n; ),
while the subscripts k and i denote whether it is k active
or i active.

Inserting Eqs. (3.9) into Eq. (3.7), V~ becomes

V = g [Go~S (P)S(P')+Gf~D (P) D(P')] . (3.10)

The operators S (P)[s(P')] and D (P) [D(P')] denote
the S and D pair creation (annihilation) operators, re-
spectively:

(1) For the k-active normal levels,

S (P=nk)—:S = g Qf), i;/2[b i;bt, ]op, (3.11a)

(k= 1), and shell 6 is i-active (i =—', ). For shells 3 and 5

where both k and i could be active (i.e., k= 1 and i = —,
' ),

the situation is more complicated, since there now also
exist matrix elements with K &K' and I&I' (e.g.,
((11)2(—,

'
—,
' )0;2

~ Vz
~

(11)0(—,
'

—,
' )2;2) ). This coupling will

be denoted as the k/i active scheme.
Assumption 2. The two-body pairing matrix elements

are parametrized by assuming that they are proportional
to the degeneracy of the leuels participating in the pairing
correlations. In the present model, we take this to be the
degeneracy of a major shell,

((kk)K(ii)I;A.
~ V~

~

( k' k')K'(i'i')I';A, )

pair. Only the latter cases are considered in this paper,
and Eq. (3.10) is thus simplified as

V, = y G]~'S'(y)S(y')+ G,D'-D,

where P stands either for a or n to distinguishing abnor-
mal and normal-parity S pairs. More explicitly,

g G p~s (P)s(P')=G "os S+Go'(S 1+Sts)+Go'StS .

S t=—S +4 = g QQ, /2[a, a, ]o . (3.16)

Assumption 3. The terms involving the s.p. energies
and multipole interactions are approximated so that the
Hamiltonian is a simple function of the generators of a
tractable Lie algebra. This assumption is based on the
expectation that a dynamical symmetry of the Hamil-
tonian corresponds to a particular nuclear collective
mode.

In order for the Hamiltonian to possess dynamical
symmetries, the single particle energy terin [the first
term of Eq. (3.1a)] must be simplified. It can be rewrit-
ten as

(3.15)

By assuming that G0" ——G0' ——G0', and denoting it by
G0, the monopole pairing term can be written simply as
GOST~S, which is identical to the pairing part of the
pairing plus quadrupole model (see Sec. VII) with

D„'(y=n„)=D„=y &n,„/2[b „b„]„",. (3.11b) g e, a, a, =epnp+ g ek; nk;
J i

(2) For the i-active normal levels,

S (p=n; ):—S =QQk3/2/2[bk3/2bk3/2]oo 00

Dp(4 ni ) =Dp ++k3/2/ [bk3/2bk3/2 ]O~p

(3.12a)

(3.12b)

(3) For abnormal parity level, there are only S pairs
[and no D pairs, see Eqs. (3.8)]

S (/=a)=S =QQj /2[btpj boj ]op, (3.13)

where j0 is the angular momentum of the abnormal-
parity orbital. In general, the right-hand side of Eq.
(3.12) should be summed over k. However, as is seen
from Table IV, there is only one k value for each shell in
the known nuclei. Only for the shells higher than 8
could more than one k value occur. For example, shell
9 will have k = 1 and 5.

To simplify notation, throughout the paper we shall
use script letters to denote the quantities associated with
the abnormal level, as shown in Eq. (3.13). Further-
more, we shall suppress the indices p = nk and p =n; and
simply use S (S) and D (D) to denote the S(D) opera-
tors in normal levels. This will not induce confusion un-
less we consider the k /i active case (k= 1 and i = —,

' ), for
which we have two kinds of S and D pairs. As one can
see from Table IV, this situation happens only for shell 3
and shell 5. All the higher shells (corresponding to
medium and heavier nuclei) are either k active or i ac-
tive and there is only one kind of normal-parity S(D)

+ y y eke v 2IIk' [bk'bk' ]p
A, &0 i

where e0 is the s.p. energy of the abnormal-parity level,
n~; is the number operator of the particles occupying the
k-i orbit:

nk; ——V'20k; [bk; bk; ]po ——g bk; bk
m& m,.

k I j
eki g ej «j &&, /&k!

o

(3.17b)

(3.17c)

e/a~a~=ep~p+gek;n„
J l

(3.18)

and ek; (=ek;= ) can be regarded as the s.p. energy of
the normal-parity k-i basis. For most of the shells, e&; is
a constant since there is only one i value for the
normal-parity levels in each major shell except for shells
7 and 8 which have two i's (see Table IV). The last term
on the right-hand side of Eq. (3.17a) (termed the s.p.
symmetry-breaking term) does not close under commuta-
tions with the generators in V~ [Eq. (3.14)] and therefore
is neglected according to our assumptions. In fact, its
matrix elements within the (S,D, S) subspace (i.e. , heri-
tage u=O) are always zero. Thus, under the u=0 ap-
proximation, the s.p. energy term in the Hamiltonian
can be written as
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](KI) [b t b ](K'I')r
11 22

(3.19)

where the sum is over all indices. In order that the

%'e see that, in the zero-heritage representations of the
k-i basis, the normal-parity levels reduce to just one or
two degenerate orbits in spite of the fact that they are
not degenerate in the shell model s.p. basis.

It was shown recently by Kirson and Leviatan' that
introducing nondegeneracies of the single particle ener-
gies has only a small effect on the dynamical symmetry
of SQSDSO5&SU2, i.e., the seniority v is still approxi-
mately a good quantum number. This eft'ect can be in-
corporated via renormalization of the interaction
strength of the Hamiltonian without removing the s.p.
energy degeneracies. For other dynamical symmetry
cases, the importance of the s.p. symmetry-breaking
term remains to be studied. For the situation where
u&0 configurations are important (e.g. , for odd nuclei or
high-spin states) the s.p. symmetry-breaking term may
not be negligible. In any case the symmetric case is a
good starting point and symmetry-breaking terms can al-
ways be taken into account numerically if necessary.

In order to simplify the multipole interaction, we need
to first transform V& [Eq. (3.2b)] into the k-i basis,

V&
———' g ((kik2)K(i ii2)I;r

~ V&
~

(k)'k2 )K'(i ('i2)I';r )

Hamiltonian be a function of the generators of a tract-
able Lie algebra, we truncate V& by only considering
terms which satisfy the following conditions: (1) k) ——k2,
i, =i2, k) ——k2, i', =i2, (2) either K=O then r =I, or
I=O then r =K; (3) if the inert part of the angular
momentum is activated (K&0 for the i-active case and
I~O for the k-active or abnormal case), only odd-rank r
is considered. Furthermore, we impose for the V& an
assumption analogous to Eq. (3.9) for the pairing matrix
elements:

((kk)K(ii )I;r
~ V(2 ~

(k 'k')K(i 'i')I;r )

=2+Ok; Qk; B, . (3.20)

By inserting (3.20) into (3.19), the multipole interaction
V& becomes

V&
——g B„P"(a) P "(a'),

aa'r
(3.21)

where the index a(a') takes three possible values: k, i,
and a. The index k means that the total angular
momentum r comes from the k (pseudoorbital) parts of
the normal levels, i.e., r =K and I=O. The index i indi-
cates that r comes from the i (pseudospin) parts of nor-
mal levels, i.e., r =I and K=0, while the index a Js used
to specify the abnormal level. The multipole indices r
range over the following values:

(i) When a(a')=k,

0, 1,2 for k-active normal levels (k =1)
1,3, . . . , 2k —1 for k activated in the i -active scheme (i = —,') .

(ii) When a(a') =i,

0, 1,2, 3 for i-active normal levels (i = —', )

1,3, . . . , 2i for i activated in the k-active scheme (k =1) .

(iii) When a(a') =a,

r =0 or odd for the abnormal-parity level (k =0) .

The P "(a ) 's are defined as

PIr, (k) = g V +ki I2[bki bki l~o ~

Pp(&) )r fl'ki I 2[ski bki ]0~@

P„"(a)=P„"=QQ, /2[a a ]—„" .

(3.22a)

(3.22b)

(3.22c)

only one value except for shells 7 and 8, where there are
two variables of i ~ Therefore we shall further simplify it
by assuming that ek, ——e, (a constant), and Eq. (3.23a) be-
comes

HFDsM e0~0+e)B)+ g G0 S (p) S(( ')

+G2D D+ g B„P"(a)P"(a'),
r, a, a'

(Notice that the P„" defined here is one half of that
defined by Ginocchio. '

) No sum over k is required in
Eq. (3.22b) as noted in connection with Eq. (3.12). Thus,
with our three assumptions, the most general FDSM
Hamiltonian for either the k-active or i-active scheme is

HFDsM e0~0+ g ek'nk;+ X Gf S (p) S(p')
I tt), tt

'

+G2D" D+ g 8, P "(a) P "(a') . (3.23a)

As noted before, the s.p. energy e&; in the k-i basis has

(3.23b)
where the multipole operators are defined by (3.22) and
the pairing operators are defined by either (3.11) or
(3.12), depending on whether the shell being considered
is k or i active. In this FDSM Hamiltonian there are
two classes of multipole operators. The first class con-
sists of the multipole operators coupled from the active
parts of the angular momenta ("active" multipole opera-
tors); the other consists of those coupled from the inert
parts of the angular momentum ("inert" multipole
operators) Explicitly. ,
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For k-active normal

For &-active normal

For the abnormal level

Active multipole operators

P„"(k) r=0, 1,2
P„"(i) r=0, 1,2,3
P r=0

Inert multipole operators

Pz(i) r =1,3, . . . , 2i

P„"(k) r =1,3, . . . , 2k —1

Pp 1=1,3, . . . , 2 Jo

(3.24a)
(3.24b)

(3.24c)

(3.25a)
(3.25b)

(3.25c)

The active multipole and pair operators for the nor'mal-parity levels and those for the abnormal-parity level are sepa-
rately closed under commutation i.e.,

(a) k = 1: The 21 generators I S,S,D „,D&,P &, r =0,1,2 I form an Sp6 algebra,

(b) i = —,': The 28 generators IS,S,D&,D&,P„",r=0, 1,2,3I form an SO]] algebra,

(c) 4, 4, and P form an 4'M2 algebra.

Thus, neglecting the inert multipole operators, the
Hamiltonian has Sp6XSVlz (for the k-active case) or
SO]]X/'Mz (for the i-active case) symmetry. Including
inert multipole operators, it is easy to see the following.

(1) For the k-active normal levels, the multipole opera-
tors P„" (i ) with r = 1,3, . . . , 2i form an Sp2; + ] algebra,
which is commutative with Sp6. Therefore, the dynami-
cal symmetry group for the normal levels is enlarged to
SP6X Sp

(2) For the i-active normal levels, the multipole opera-
tors P„"(k) with r =1,3, . . . , 2k —1 form an SO2k+]
algebra, which is commutative with SO8. Therefore the
dynamical symmetry group for the normal levels is en-
larged to SOSXSO2k+&.

(3) For the abnormal level, the multipole operators P„"
with r = 1,3, . . . , 2jo form the algebra of 4&21 +] which

is commutative with 4%2, and the dynamical symmetry
group of the abnormal level is enlarged to
SVl, X SP„+].

The inert multipole operators are effective only in the
u &0 subspace. If r is restricted to 1, then Spz;+ „

I

H]DsM =eo~o+e]n]+ g Gp] S (P).S(P')

+G,D t D + g B~~ P "( P ).P "(P' ),
r, @,P'

where P(P') =a and n, and

(3.26)

I

SO2k+„and $+2i +] are reduced to SO3, SO3, and ]]'63,

respectively. These groups are associated with the angu-
lar momenta of the unpaired particles. Since the inert
multipole operators commute with S, D, and 4 pair
operators, they will not mix the S,D, S subspace (the
u =0 space) with the u &0 space. Thus the FDSM Ham-
iltonian has a very useful property that the (S,D, 4') sub-
space (heritage zero subspace) is completely decoupled
from the remaining fermion space. If we only consider
the (S,D, 4') subspace (this could be a reasonable approx-
imation for the low lying collective states of an even-
even system), the inert multipole operators will play no
role since their action on any state in the zero-heritage
space will always result in a null vector. In this case, the
Hamiltonian (3.23b) can be reduced to H&DsM

P„"(k) r =0, 1,2 (for k active)
P" ) —~5 (3.27)

For high-spin or odd-nucleon systems, where the bro-
ken pair or an unpaired particle become important, we
have to use the Hamiltonian (3.23b) and take the inert
multipole operators into account. In this manner, the
FDSM can naturally depict the coupling of unpaired
particles to the "core" constructed out of the S and D
pairs. Of course, the s.p. symmetry-breaking term, as
well as some symmetry-breaking terms in the multipole
interaction, which are not included in the Hamiltonian
(3.23b), may have to be considered in realistic calcula-
tions. This will be discussed in more detail in subse-
quent papers.

A summary of the generators and the associated alge-
bras of the FDSM for the k-active and i-active schemes
is given in Table V. For the scheme where k and i can
both be active (k= 1 and i =—,'), the situation is more in-
volved and we must consider the algebra SO24. This
group requires further study as to its implications in nu-
clear physics and will not be discussed here.

H];DsM ——e ouzo+ e ] n ] +& +H +H0

S+(Xo/4)rzo,

H„=G SoS+GpDt D+ gB„P".P",

(4. la)

(4. lb)

(4.1c)

H'=go(S 4+4 S)'+(bo/'2)~on] .

The operators g (g), S (S), D (D), and P„" are defined
in Eqs. (3.11)—(3.13), (3.22), and (3.27), and the number
operators are

n] 2P and rzo=2P—— (4.2)

IV. THE Sp6 X SVl2 AND SO8 X 4'Q2 SYMMETRIES
OF THE FDSM

In this section, the zero-heritage situation, i.e. , no bro-
ken pairs existing in either the normal-parity or the
abnormal-parity levels, is discussed. The FDSM Hamil-
tonian H];DsM of Eq. (3.26) can be rewritten as
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TABLE V. Generators of the k(i) active groups in the FDSM. A„'"(KI)=V Qq;/2[bk;bk;]„
P„"(KI)=+n„,/2[b, ', b„]„' " (K~O, I~O).

Scheme

k active

Cenerators Group

S S' Dp(k) D„'(k) P„"{k) (r =0, 1,2) Sp,
P„'(i) (r =odd) Sp2i + 1

[A„'"(KI), I&0],P„"(KI),[P„"(i)r =even] are neglected

i active

abnormal

S S' D„(i) D„'(i) P„"(i) (r=0, 1,2, 3)
P„"(k) (r =odd)

[ A „'"(KI), K~O],P„"(KI), [P„"(k)

4' O'P
P„" (r =odd)

SO8

SO2
r =even] are neglected

4'M2

In Eq. (4.1), &, is the Hamiltonian of the 4 pair in the
abnormal parity level, and H, is the Hamiltonian of the
S and D pairs in the normal parity levels. The cross
term H' represents scattering of pairs between the nor-
mal and abnormal parity levels. The parameters in

HFDsM are related to the parameters of Eq. (3.26) as fol-
lows:

Gp =Gp gp =Gp gp=Gp G2 =Gp

6„=B„, Xp ——Bp, B =B
(4.3)

[g', p„"]= [z',s]= [@",D] =0,
[g, 4 ]=—2go, go ——(~go —Ap)/2,

(4.4a)

(4.4b)

with G~' ——G~' and B„"=B„".The commutators for the
operators in the Hamiltonian are as follows:

P'=&3/[4t(t +1)]L, (4.6a)

where L is the angular momentum operator associated
with the angular momentum t, and t =k, i, or jp. Let-
ting t =k =1 or t =i =—', , we get

metry for the k-active scheme and SO8)&$'Mz dynamical
symmetry for the i-active scheme.

In order to explore the dynamical symmetries of this
Hamiltonian, it is expedient to rewrite it in terms of the
independent Casimir operators of the relevant sub-
groups. The group chain decompositions leaving the to-
tal angular momentum invariant are shown in Fig. 3.
The Casimir operators are summarized in Table VI. In
addition, using the second-quantized form of angular
momentum, one can show that

[s,s']= —2s, s, =(n, —II, )/2,

[A„",A', , ]=Qt6„,6„,,
(4.4c) &3/SL for Sp6

&1/5L for SO8 . (4.6b)

—2 g K„' „„,( —1)"P'

[P„",A', , ]= g K„'„,, A'

(4.4d)

(4.4e)

Using Table VI and Eqs. (4.6), the Hamiltonian (4. 1)
can be recast as follows.

(1) The Sp6XSVl2 symmetry (k-active scheme):

[P„",P', , ]=—,
' g [( —1)'—( —1)" ']K„„„,P' (4.4f)

U3 Ox M& ~ SU3

n„no
where

to.
+rp, sv =

r s
v'3r s(rpsv

~

to ) '1
1 1

', for k active

r s t—21 s (fpsv
~

trr ) 3 p 3 for i active
2 2 2

Sp&Qx Jg&
IJ~ f U

q
Ox gg Ox S03

n& no

SU& Ox SO3 Ox&g& ~ SU Qx SO ~ U Qx Sp2 3

SO6 Qx 0& Qxgg+ —SO6 Qx U& Qx Q'&

cr n& no

SO3
L

(4.5)

and 2 p
——S and 3„=D z. For the t-active scheme,

the commutation relationships of Eqs. (4.4) are identical
to those given by Eqs. (4.6a) —(4.6f) of Ref. 15.

According to Eq. (4.4b), &, has 4'Mz dynamical sym-

metry. The term 0„ in (4.1c) is essentially the Ginoc-
chio Hamiltonian [see Eqs. (6.4) and (6.6) as well as the
comment below Eq. (6.6) in Ref. 15], and exhibits Sp~ or
SO8 dynamical symmetries, depending on whether the
k-active or i-active scheme is in use. Summarizing, the
model Hamiltonian (4. 1) has Sp6XSVl2 dynamical sym-

SOB Qx/LCp

~o
Sp~ Qx SUpQxgll& = Sp& QxSU& —Sp Qx U„= SO —Sp

V' n 7' L

Spg QxduZ —Sp~ Qx U„Qx ~,
W &o

FIG. 3. (a) Group chains for the Sp6&(SVE2 dynamical sym-
metries. Quantum numbers are shown below the group re-
sponsible for them. Groups with italic symbols originate from
the abnormal parity level. The symbol SU2 denote the group
generated by (S,S,P ). (b) Same as for (a), but for the
SO» 4'M2 dynamical symmetries.
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TABLE VI. Casimir operators, eigenvalues, and quantum numbers of the groups in the FDSM.

+(~71~~~ ~3) z ~71&3+ 4 g [~i(~i + ) + iriTi ] i (( '92~ '93) ( 2( ( 2+ 3)+ z ()3(()3+4) + ()z()3
i=1,3

i))(p„pz,pz) = —'(p, +pz)+ —'(p, +p3)(pi+p, +4pz+ 12)+pz(pz+4); +(a, , az ) = —,'(a, +a z+iz iizz+3a, +3az ) .

For the u& ——0 case, all the above functions vanish. (Ap), (ceo), (o „o,o, ), tO;I, tp;), and fa; I are the Dyukin labels (Ref. 17) for
the irreps of SU3, SO5, SO6, SO7, SO8, and Sp6, respectively. The heritage number is defined by u =u 1+vp, and thus u 1 is called
SO& (Sp6) heritage. The SO7 quantum number w is the number of particles which do not form D pairs.

Group

SU2

SU

Casimir operators

S'S+SQ(SQ —1)

+~o(o —1)
S S +S (S —1)

Eigen values

—'(01 —v1)(A, 1
—v1+ 2)

o —vo)( Ao —vo+ 2)
—'{0,—v)(A, —v+2)

Vp

Quantum numbers

SU3

SO5

SO,

SO7

SO8

pr pr
r =1,2

g p'p"
r =1,3

PP Pl'
r =1,2, 3

D' D +Sp( Sp —5)+ X P" P'
r =1,3

S'S+D'D+S, (S,—6)+ g P" P"
r =1,2, 3

—'(A, '+p'+ Xp+ 3k+ 3p)

7(7+ 3)+ —,
' CO(v+4)+7'

0.(0.+4)+X(01,0,03)

—,'(fl, —w )(0,—w+ 10)+g(0„0,)

—'(0, —u, )(Qi —u i + 12)+P(pi,pz, pz)

(7,N)

(0 1,0,0 3)

(010203 )

01 —W 03
0 = —0 ——

2
'

2

(P 1 P2~P 3 ~P4 )

61—u1
P4= —

2 {P1+ P2+P3)

Sp, S'S+D'.D+Sp(Sp —6)+ $ P" P"
r =1,2

4(01—ul )(01—u1+12)+ P{al,a2) (a l, a2, a3 )

a3 = 01 —u
1 ——'(a1+ 2a 2 )

H6 =Ho+ Up:&''t'. (2+ U i Csv2+gpCsv,

+s3Csv +G2Csp +sL (4.7a)

p ="p+eMo+ein i+ ri~o(~o —1)/2

+riIn~(n, —1)/2+z)n (n —1)/2 . (4.10b)

Hp: iz p + e pn p + e
&
n i + ri pn p ( rz p

—1 ) /2

+z)~n &(n &

—1)/2+z)n (n —1)/2 .

(2) The SOs &&A'Vlz symmetry (i-active scheme):

H 8 =HO + U p 8,()' i/2 + U 1 C SU 2 +g 0 Csv & +g &
2

(4.7b)

+g 6Cso, +Gz Cso, +g L (4.8)

where Hp is the same as that defined in Eq. (4.7). The
generators of SUz are IS,S,P I, where S (5 ) is
defined in Eq. (3.16) and P =P +P . The relationship
between the parameters in Eqs. (4.7) and (4.8) and the
parameters of the Hamiltonian in (4. 1) are listed in Table
VII.

Note that

Cso, =Cso, —Cso, +Cso, —~ ~ +~o . (4.9)

+g gCso) +g 7Cso7+B2CsQ8+g L (4.10a)

Therefore, Eq. (4.8) can also be expressed in terms of the
Casimir of SO7,

H8 ——Ho+UpC & & +U1Csv +gpC2 2 SV2

The primed quantities in Eq. (4.10) are defined in Table
VIII, while the others are the same as given in Table
VII.

From Eqs. (4.7) and (4.8) and (4.10), it is seen that
HFDsM has the following limiting cases.

(1) For the k-active coupling scheme, zz&
——go=0, the-

SU3X cVS2 limit; s3 ——0, the SU2X SO3X SA'z limit.
(2) For the i-active coupling scheme, U, =gp ——0, the

SO6 X SS'2 limit; g6 ——0, the SO5 X SU2 X 4%2 limit;
U 1 =gp =0 the SO7 X SA'z limit.

These five limiting cases and their corresponding group
chains are shown in Figs. 3(a) and 3(b). The overall
group structure of the FDSM is shown in Fig. 4, which
is discussed in Ref. 16. For a full major shell the pairing
and multipole operators generate an SO4& algebra.
Specific choices of the Ginocchio quantum numbers k
and i then generate the Sp6 and SO8 group chains dis-
cussed here, and the SOz4 chain (0/i active) which is
neglected in this paper.

The physical conditions for the various symmetry lirn-
its to occur in the model can be understood as follows:
For simplicity, we shall assume the following FDSM
Hamiltonian:
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TABLE VII. Transformation between the parameters in Eqs. (4.7), (4.8), and (4.1).

Qp go
o=eo+ (2&0+ 1)+ 0&+ —+0

4 2 4

Gp go
ei=e&+ (2AI+1)+ OQ+ —Bo+ —G2

4 2 4 2

gp ———'(0 —bp —Qp+gp )

gl =
2 (BQ —bQ —Gp+gQ )

g=-(bp —gp)1

Uo=(~0 —gp)

U& =(Gp —gp —G2)

s3 ——BP —GP

s = —', (Bl —Bp)
g5 ——B3 —B2
g6=B2 —G2

g = —'(BI —B3)

(~o—go) (Go —go)
h p

————'gp A(Q+ 2) ——'Q
) G2—

2 4
Ao(QQ+ 2)—

4
0,I(B)+2)

HFDsM =GOS S +B2P 'P0 Tt' T 2 2 (4. 1 1)

H6=en —Gon (n —1)/4+Go[Csvr —A(0+2)/4]
2

+B2Csv, —(3B2/8)L (4.12)

Hs —en Gon (n 1 )/4+Go[Csv7 6(0+2)/4]

+B2Csg —B2Cso (4. 13)

This Hamiltonian is very similar to the pairing plus
quadrupole model which we discuss in Sec. VII, except
that the quadrupole operator P„used here is diferent.
In this case,

where @=Go(20+1)/4. We see clearly from the above
two equations that the dominance of monopole pairing
(obtained formally by setting B2 ——0) will lead to the SU&

limiting symmetry which is known to have a vibrational
spectrum. When the quadrupole-quadrupole interaction
dominates (i.e., Gz ——0), we obtain the SU3 limit and SO6
for the k-active and i-active schemes, respectively. The
SU3 limit is known to have the spectrum of an axially
symmetric rotor, while the S06 limit corresponds to y-
soft rotational nuclei. ' '

Notice that the parameters G~ and B, are residual in-

teraction strengths. If the model is to be self-consistent,
these parameters may only have small systematic varia-

Full Major Shell SO(4Q, )
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SD Subspace)
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(k-active)
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FIG. 4. The overall group structure of the FDSM. The symbols Gb and Gb denote the group structure associated with the ab-

normal orbitals ($63 )& SVL2) and the angular momentum of decoupled particles (SO3 or SO3) Gb —SO3 X $03 g 4 M2,

Gb ——SO3+ cVG3)C, cV MQ and Qo ——$03&$'M2. The designation CAP means Coriolis antipairing. The expectation values of Casimir

operators are denoted by (C„). a„denotes the corresponding strength.
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61=E1+ 4 (G2 —»2 )(201—1 )

n1 =g1+ -, (» —G2)
G2 —B2ho=ho—

4
Q2

U 1 (Go go»2)
g5 =»3 —G2

g7 =G2 —B,

TABLE VIII. Additional parameters used in Eq. (4.10). SO, X/8'z and SO&XSU, XSVlz (f«m SO8XSDz), and
SUzXSO3XSQz (from Sp6XS'Mz). For the SO6 limit of
the SOSXS'M2 symmetry we shall only give a brief sum-
mary, since it is many ways analogous to the SU3 limit
of the Sp6XS'M2 symmetry, and has been discussed by
Ginocchio. '

tion over an entire series of nuclei; in other words, they
must be nearly constants. Therefore the condition
GQ ——0 is actually a shorthand notation for the require-
ment

[Go(S S &]«[Bz&CsU, &l (4.14)

or

[G,&S"S'&]«[B,(C„&]. (4.15)

Hso, =Ho +(B3—Gz )Cso,

+(Gz Bz )Cso +(—B i B3)ISL—(4.16)

where H p' Hp & ~ z Cso——, + 90C@~ .
From Table VI:

Both of these equations imply the dominance of the long
range quadrupole (Q-Q) interaction over the monopole
pairing interaction. Physically, this is just the well-
known condition for the occurrence of rotational spec-
tra. Similarly, the condition B2 ——0 implies a require-
ment just the opposite to that of (4.14) and (4.15), name-
ly the dominance of the pairing interaction over the Q-Q
interaction, which is the well-known condition for the
appearance of vibrational spectra.

We now discuss the conditions for the occurrence of
the SO7 limit. From Eq. (4.10) and Tables VII and VIII,
one sees that if gp ——0 and GQ ——B2, so that U] ——0, the
Hamiltonian becomes

V. THE ROTATIONAL AND y-SOFT LIMITS
OF THE FDSM

A. The rotational limit

For heritage number u=0, the general FDSM Hamil-
tonian in the SU3XSS'z limit (SU3 for short from now
on) which describes collective axially-symmetric rota-
tional motion, is obtained formally from the Hamiltoni-
an (4.7) by setting go=0 and U& ——0 (i.e., Gp=Gz, see
Table VII):

HsU, =HsU, + 8(B1—Bz)L —(Gz —Bz)CsU, I

where

SU3 Q+ Q EVE +G2csp (5.2)

and Hp is defined in Eq. (4.7b).
This Hamiltonian is associated with the SU3 dynami-

cal chain of Fig. 3(a). We use

~
N0N, (A. ,p)KLM & (5.3)

to denote the irreducible basis of this chain. The mean-
ings of the quantum numbers are as follows: Xp=rzp/2
and N& ——n &/2 are the number of pairs in the abnormal-
parity level (k=O) and the normal-parity levels (k= 1),
respectively, K is the Vergados quantum number; and
L,M are angular momentum quantum numbers. Using
Eqs. (4.7b), (5.1), and (5.2) and Tables VI and VII, the ei-
genvalues of HsU, are

CSO, =D 'D+Cso, +Sp(SO —5)

Using (4.17), Eq. (4.16) can be recast as

(4.17) E [N, (lp )KL] =Eo(N, )+aL (L + 1)—pC(k. ,p),
(5.4)

Hso =Hp" + G zD 'D + g B'P"'P"
r =1,3

(4.18) where

a =( —', )(B, Bz ), P= —,'(G—z Bz ), —

C(&,p) =2Cs„(l.,p) =k +p'+Ap+31+3p,

Ep(N) ) = A 0N, —2B0N, +Cp,

(5.5)

(5.6)

(5.7)

and

(5.8a)A p ——2( gp+ zl ) ),
Bp ——6 e —(z)0 —zl, )/2+2gpN,

Co=eon +( l+zg, )n(n —1)/2,
(5.8b)

(5.8c)

where bE=60 —E, , and N =No+N, =n'l2. In Eq. (5.4)
as well as for subsequent discussions in this section, the
notation Cg(~) means the eigenvalue with quantum num-
ber (or numbers) i~ of the Casimir operator of the group
g (see Table VI). The Parameters Ep, E], 710, z)~, and g are'
defined in Table VII.

For each N~, the allowed values of (A, ,p) in (5.4) are

where H p" Hp' + (Gz Bz——)Sp(Sp —5 ),—G z
——Gz Bz, —

and B,'=B„—B2. The term Hp", in the absence of bro-
ken pairs, depends only on the particle number and
therefore has no effect on the spectrum for a fixed num-
ber of valence particles. Thus the SO7 mode corre-
sponds to the excitation of the quadrupole pairs in the
system. ' ' The condition for this to occur is that the
monopole pairing interaction between the normal and
abnormal levels is weak (gp(Stg+StS & =0), and that
the monopole pairing strength for the normal-parity lev-
els is equal to the quadrupole-quadrupole strength
(Gp Bz ). ——

The zero heritage SO8XS&z symmetry limit of the
FDSM is very similar to the SO8 model which has been
discussed extensively by Ginocchio. ' In the subsequent
sections, we shall mainly concentrate on the discussion
of the rotational limit of the Sp6)&SVl2 symmetry. Also,
we shall compare the three "vibrational-like" limits,
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(k,p)=(2N„O), (2N, —4, 2), . . . , (O, Ni) [or (2,Ni —1)],
(2Ni —6, 0), (2Ni —10,2), . . . , (O, Ni —3) [or (2, Ni —4)],
(2N, —12,0), (2Ni —16,2), . . . , (O, N, —6) [or (2,N, —7)], (5.9)

Let

Ko ——min(A, ,p}, K =&+@,
K=Ko Ko —2Ko —4,0or 1.

(5.10a)

(5.10b)

The ground state band of a strongly deformed nuclei be-
longs to the irrep(2N, ,O). On the other hand, the /3 and
y bands belong to the (2Ni —4, 2) representation. This
is the familiar situation for the IBM SU3 limit.

In fact, Eq. (5.4) is formally identical to the energy
formula for the interacting boson model (IBM) in the ro-
tational limit [cf. Eq. (2.8) of Ref. 10]. It can be shown'
that the y-transition rates in the SU3 limit are also iden-
tical to those of the IBM. However, there exist some
differences in details. In the IBM, the boson number N
is assumed to be one-half of all the valence nucleons,
whereas in the FDSM the SU3 representation is deter-
mined solely by N], the pair number in the normal pari-
ty levels. Furthermore, the parameters a and P in the
FDSM are now directly related to the parameters of the
effective nucleon-nucleon interaction. We expect that
usually the quadrupole-quadrupole interaction is attrac-
tive (Bz &0), and larger in magnitude than the dipole-
dipole and quadrupole pairing strengths (

~

Bz
~

&
~

B, ~,

~
Bz

~

&
~

Gz
~

). Thus from Eq. (5.5) we can immediate-
ly obtain the correct sign for a and P, i.e., a and P&0.
As a purely phenomenological model, the IBM is not
able, a priori, to determine the signs of these parameters.

It should be pointed out that, due to the Pauli restric-
tion, the reduction rule of Eqs. (5.9)—(5.11) is valid only
for N, &0, /3. When N, &0,/3, the irrep(k, p) with
k+p~2B]/3 is forbidden. This is diferent from the
IBM and has been termed the "fatal-Aaw" of the Ginoc-
chio Sp6 model. It has been discussed in Ref. 15 and
reiterated in Ref. 4, and which caused Ginocchio to re-
ject the Sp6 model as unphysical.

We shall discuss why the "fatal Aaw" is not a problem
in the Sp6 & SU& symmetry of the FDSM. For the
Csinocchio Sp6 model, the range of (Ap) is also given by
(5.9) but with the significant diff'erence that Ni is re-
placed by N (total number of valence pairs). When
N & II/3, the ground band SU3 irrep(2N, O) is forbidden!
This is seemingly at odds with the empirical fact that
many strongly-deformed nuclei are at or near midshell
(N —II/2). In the Sp6&&4'Uz symmetry of the FDSM,
for a nucleus with Ni (No) valence nucleon pairs in the
normal (abnormal) parity orbits, the highest SU3
irrep(2Ni, 0) is also not allowed when Ni & Bi/3 (instead
of II/3). On the other hand, since N =No +N, , even
when N —0/2, it is still possible that N] (0&/3, thus

The energy levels are grouped into rotational bands

K,K —2,K —4, , 0 or 1 if K =0,
L = '

(5.1 1)K,K+ I,K+2, . . . , K +1—K, if K&0 .

and

Ni ——Nl

=0 (5.12a)

Es, (Ni)=ED(Ni) —PC(2Ni, 0) .

Thus we obtain

Bo+3p
N)g ——

Ao —4p

Inserting Eq. (5.8) into Eq. (5.13), we obtain

N)g ——a +bN,

(5.12b)

(5.13)

(5.14)

where a and b are constants depending on interactions
and the separation between normal and abnormal level
single-particle energies

2b ~+g i
—rlo+ 6~ 2' ob=

4( n i+ '90 }—8P 2( rjl + r10 } 4P—(5.15}

The excitation energy AE of the states with N
&

——N &~+1
(with N =No+N, fixed) can be. calculated from (5.4) and
(5.13) to be

bE = Ao —4P=2(gi+gp) 4P . — (5.16)

Such an excitation corresponds physically to a redistri-
bution of pairs between normal and abnormal parity or-
bitals.

B. The y-soft limit

The SO6XSVlz limit (SO6 for short) of the FDSM
which describes the y-soft behavior of nuclei is obtained
from the SOs&& S'Mz Hamiltonian (4.8). The physical
conditions for the occurrence of this symmetry are simi-
lar to those of the SU3 symmetry, except that it can only
appear in SO, shells (see Table IV). The SO6 energy for-
mula for the u =0 case is

realizing a (2Ni, 0) ground band. Physically, this means
that the abnormal parity orbitals can serve as a "sink"
to absorb the nucleons driven by the Pauli principle
from the normal orbitals. Hence we see that it is the
SVlz of the abnormal-parity level in the FDSM which
plays the crucial role in reviving the Ginocchio Sp6 mod-
el.

The values of N& and No, i.e., the distribution of the
valence nucleon pairs in the normal and abnormal levels
in the ground state of a nucleus, can be roughly estimat-
ed from the deformation of the nucleus and the Nilsson
diagrams. Such an empirical analysis has been undertak-
en ' and the result shows that for most deformed nuclei,
N, is indeed less than or equal to II i/3 (see Table IX).

The value of N~ can be estimated theoretically by
minimizing the ground energy Es, (Ni ) of Eq. (5.4) as
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TABLE IX. Estimated distributions. The symbols No (No) and N [ (NI ) are the numbers of proton (neutron) pairs which occupy
the abnormal and normal levels, respectively, and n (n ) is the total number of protons (neutrons). For the actinides, the protons
and neutrons occupy shells no. 7 and 8, respectively, while for the rare earths, neutrons are in shell 7. The estimate of occupancy is
based on Nilsson levels with deformation e-0.3.

86
Estimated proton distribution of the actinide nuclei

88 90 92 94 96 98

N zr

Ni
Qi /3

n 128 130
Estimated neutron distribution of the actinide nuclei

132 134 136 138 140 142 144 146 148

No
Ni

01/3

84 86
Estimated neutron distribution of rare-earth nuclei

88 90 92 94 96

No
Ni
0) /3

E [N, (o r)nz, L) =ED(N, ) —A o (o+4).

+8r(r+ 3)+CL (L + 1), (5.17a)

0 =Ni, Ni —2, N& —4, . . ~, 0 or 1,
~=3n&+A, =~,a —l, o. —2, . . . , 0,
L =A., k+1, . . . , 2A. —2, 2A. .

(5.18a)

(5.18b)

(5.18c)

where

3 =Gz Bz, 8 =8—3 Bz, C =—(8) —83)/5 . (5.17b)

In Eq. (5.17a), o. and r are quantum numbers to denote
the irreps of the SO6DSO5 chain [see Table VI and Fig.
3(b)], while n~ is an additional quantum number. For
given N, ( (01/2) the allowed values of o, r, n z„and L
are

~Bz~ && ~B& ~, ~Bz~ && ~GzI, and Bz(0). The con-
dition A =8 is well known in IBM phenomenology.
The FDSM provides an immediate microscopic
justification.

C. The high-spin limit

The S and D pairs alone are inadequate to study
high-spin phenomena since broken pairs (u&&0 and/or
vo&0) play an important role. By including nonzero
heritage states, however, the FDSM can take into ac-
count such effects. This has been discussed in Ref. 23,
and will be considered in detail in the next paper of this
series. Here we present only a brief discussion of high-
spin physics in the SU3 limit of the FDSM. The Hamil-
tonian in this case can be obtained from Eq. (3.23) and
can be rewritten as

Es 8 (N& )=Eo(Ni ) —ANi(Ni +4) (5.19)

The N& value can also be determined by minimizing the
ground-state energy [Eq. (5.12a)] and can be expressed
using Eq. (5.14) with

0
HFDSM H FDSM + bro + coup

where

Hb„, —— g 8„"P"(i)P"(i')
ii ' (r =odd)

(5.21)

and

266+ 11 /0+4~ 2'g0b=
4(g)+allo) —2A '

2(zl, +r)0) —A
(5.20)

+ g 28„"P"(i ).P"+ g 8„"P".P",
i (r =odd) (r =odd)

H„„p——+BI'P' P'(i')+28,"P' P' .

(5.22)

(5.23)

Just as for the SU3 case, both the spectra and @-
transition rates are identical to those of the IBM's 06
symmetry, ' if the boson number is taken as Ni. The
geometrical analog of the SO6 limit is a y-unstable
particle-rotor model.

It is interesting to note that, according to Eq. (5.17b),
the parameters A and B in the SO6 energy formula
should have roughly the same magnitude and positive
sign since the quadrupole-quadrupole interaction is
expected to be dominant and attractive (i.e., Hb +H p &I +5R I (5.24)

The term HFDsM is the Hamiltonian without broken
pairs defined in Eq. (4.1). Hb„ is the interaction be-
tween the unpaired nucleons (those which do not form
coherent S and D pairs), and H„„~ is the coupling term
between the S and D pair "core" and the unpaired nu-
cleons. If we only retain the lowest order r =1 in Eq.
(5.22), by using Eq. (4.6) and neglecting the i dependence
of all the parameters Eq. (5.22) and (5.23) are simplified:
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where I is the total pseudospin of the broken pairs (in-
cluding the broken pairs in the abnormal level),

HH ot=Es. (Ni)+~sv, (~ p)+As (u, )+bz& (vp),

I =XI(i)+I(jo), (5.25a) (5.28)

and

I„(i) =&(4/3)i (i + 1)P„'(i),
I„(jo)=V(4/3)jo(jo+ I)&„',

R =v'8!3P '

(5.25b)

(5.26)

Hrot =Hrot +aR +yI +5R.I

where

(5.27)

is the total pseudoorbital angular momentum which we
shall refer to as the core angular momentum. This inter-
pretation follows from comparing Eq. (5.1) to the spec-
trum of a rigid rotor. (Note: to better conform to the
notation prevalent in high spin physics, we have re-
placed L in Eq. (5.1) by R in this section. )

With these simplifications, the FDSM Hamiltonian in
the SU3 limit becomes

and

Eg, (N, )=Eo(N, ) —PCsv (2N„O),

~sv (A, ,p)=P[C(2N, , O) —C(k,p)],
As' (u&)=G2[Csp (u]) —Csp (0)],

,( )=G [C (v ) —C (0)] .

(5.29)

(5.30)

(5.31)

(5.32)

In the above expressions, Ez, (N& ) is the ground state
energy, b, sv (A, ,p) is the band-head excitation energy for
the SU3 representations (A, ,p), b, s~ (u&) is the energy re-

quired to break u&/2 S or D pairs of nucleons in the
normal parity levels, and b, @~ (vp) is the energy required

2

to break v0/2S pairs of nucleons in the abnormal-parity
level. The Hamiltonian of Eq. (5.27) has the following
dynamical symmetry:

( Sp6 D U& X SU3 ) X (+&2& &~ X $83 ) X SO3 & SO3 X SO3 D SO3 .
u& n& Xp vo no Io Il R I J

(5.33)

Using this symmetry, one can obtain analytical solutions
which contain most of the important physical features of
high-spin physics. These include rotational alignment,
Coriolis antipairing, multiple band crossing, and the as-
sociated backbendings. That this is so should not be
surprising, since Eq. (5.27) is similar to the particle-rotor
model. However, the FDSM Hamiltonian (5.27) is ful-

ly microscopic, and has been derived without the explicit
use of macroscopic concepts such as deformation. It is
the S and D pairs in the normal-parity levels which play
the role of a deformed core. This suggests that the basic
concepts of the geometrical models (e.g. , deformation)
may be derived via the FDSM from the spherical shell
model. It should be noted that the quadrupole coupling
between the "core" and the decoupled nucleons
[P (k =1).P (i)] is beyond the dynamical symmetry of
Eq. (5.27). Its effect can be incorporated as a
symmetry-breaking term. Clearly, the treatment we
have outlined here for the broken pairs can be applied
equally well in other symmetry limits (e.g. , SO6) of the
FDSM.

VI. THE THREE VIBRATIONAL LIMITS OF THE FDSM

There are three vibrational limits within the FDSM.
They are the SU2 limit of the SP6)&SVl2 symmetry and
the SO5)&SU& and SO7 limits of the SO8XSVf2 symme-
try. We now discuss these cases.

A. The SU2 limit

The SUz limit stands for the SUzXSO3X SS'z dynami-
cal symmetry chain shown in Fig. 3. The general Ham-
iltonian follows for this limit by setting s 3

——0 (i.e.,

B~ ——Gz) in Eq. (4.7). As we have previously mentioned,
this physically corresponds to the dominance of pairing.
Analytical solutions result for the two following situa-
tions (see Table VII and Fig. 3).

(i) For gp
——0, then

Hsv, Hvib+(Go ——G2)Csv + s(B) B2)L—
b HO+ ~OC~'9 +G2

(6.1a)

(6.1b)

The difference between (i) and (ii) is the following: In (i),
np and n

&
(the pair number of nucleons in the

abnormal-parity level and normal-parity levels, respec-
tively) are both good quantum numbers, while in (ii) nei-
ther are good quantum numbers (the sum n =np+n~ is
a good quantum number in both cases). From Eq.
(4.1d), the requirement gp

——0 is a short hand notation
for gp(S 4+4'tS)-0. Thus, situation (i) corresponds
to a neglected of pair scattering between normal and
abnormal-parity orbitals. This is justified physically
when there is a large energy gap between these orbitals.
Situation (ii) is the opposite of (i), since in this case the
normal- and abnormal-parity levels are assumed degen-
erate. The eigenvectors of the Hamiltonian in the SU2

where Ho is defined in Eq. (4.7b).
(ii) For Ep=E, and go ——g) ——0,

H sv, Hb+ r iu ) Csv ——+g o Csv r + —', (B ) B2 )L—0
2

(6.2a)

Hvib =ho+eon+ rin (n —1)/2+UoC@e, +GzCsp, .

(6.2b)
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limit are as follows:

~
u((vol)NoN((v(o (L );JM) [case (i)],

~
u, (vol)Ncr(v(v, o (L );vJM ) [case (ii)],

(6.3a)

(6.3b)

(FDSM)
~
Sp6OSU&XSO3) =M(

~
Sp6DSU3DSO3)

tl (one to one)
(6.7)

(IBM)
~
U6DU5&SOg&SO3) —M2

~

U6&SU3&SO3)
where N is the total number of nucleon pairs, v
(=vo+v() is the seniority of SUq, and crz and o

&
stand

for additional quantum numbers. In the (S,D,S ) sub-
space, we have u

&

——vo ——0, I=0, L =J, and v= v&. Let

where M] and Mz are unitary matrices. Therefore, the
listing of the possible angular momenta for the
Sp6DSUz)& SO3 limit can be taken over from that for the
IBM U5 limit. More precisely, suppose that

Vi =2K (6.4) fx, (.n, )IM(s' d„")
I
o)

Ess. (N()=Eo(N()= AoN( 2BoN(+Co (6.5)

which is the same as that defined in Eq. (5.7) and (5.8).
For case (ii), Es, is just a function of N since eo ——e( and

go ——g( ——0 (and therefore Ao Bo ——0). Fo—r—(i), similar
to the SU3 case, the N& value of the ground state N&g is
determined by minimizing the ground state energy and
has the same form as Eq. (5.14), i.e. ,

In this case, the labelings (6.3) can be shortened as
~

NoN((lro&);.LM ) for case (i) and
~

No~(Kcr();LM ) for
case (ii). In both cases, the expression for the energies is
given in Table X with the parameters listed in the
column labeled SU&)&SO3 limit. The formula shown at
the top of Table X is, in fact, the IBM formula for U5
limit but now with a microscopic fermion basis, the d-
boson number Nd should be replaced by one-half of the
seniority I~ [see Eq. (6.4)]. The ground state energy in
this limit is

is an irreducible basis of the IBM U& D SO5 0SO3, where
r is the SO& quantum number, and n& counts the triplets
of d bosons coupled to angular momentum zero. Then

fx, (.n, )LM(S»„)
1
o),

where ND is the number of D pairs, will be a basis for
the Sp6 FDSM which has the same angular momentum
content as the basis ~Sp6ZSU2XSO3). However, it is
not an Sp6DSU2)&SO3 irreducible basis, since it does not
have a definite SU2 seniority. This is due to the failure
of Sf(D„)

~

0) to vanish, where f(D„) is a function of
D . We can introduce "dressed" D pairs denoted as D'P'
by requiring Sf(D„' ) 0) =0. It can be shown that

D„':D„+2S—(0, n() —'P„—(S ) (0( —n (
—1)

X(Q( n, —2) '—
( —)"D (6.8)

which satisfies the following commutation relationship
with S:

with

N, g
—a,lb+ b„bN

2he+ g) —go go

4(rll + r)0)
"'

(nl +no)

(6.6a)

(6.6b)

[S,D„' ]=—(S ) (0( n, —3)—

Now the basis

(6.9)

Some B(E2) formulas for this limit are given in Table
XI.

The allowed angular momenta for a given SU2 seniori-
ty can be decided in the following way. Here we take
case (a) as an illustrative example and consider only the
situation where N

&
(Q

&
/3. For this case, there is a

one-to-one correspondence between the IBM and the
FDSM basis' which can be understood as follows:

f~D(,„~)LM(S,Dp )
l
»

K=(ND )

By analogy to the IBM U5 limit, the angular momen-
tum range in the SU2 limit for given N& (0&/3 is

(6.10)

has definite SU& seniority v=2~, but not definite D pair
number. Instead, it is a mixture of states with different
ND and

TABLE X. Energy formulas for the vibrational limits. The following energy formula,

E=Eg, +eNd+aNd(Nd —1)/2+p(Nd —r)(Nd +v+3)+y(L(L +1)—6Nd ),
is for the IBM U5 limit. For the SO7 limit, Nd should be replaced by the quantum number a =Nl —~/2, where w is the number of
nucleons which do not form D pairs. For the SU»SO3 and SO5)&SU2 limits, Nd should be replaced by ~ (=v/2), where v is the
SU2 seniority.

Parameter SUp)& SO3 limit

Q I ( Gp —Gp ) —Qpgp
+9(B,—B,)/4

2(Gp —Gq )

8 (B& —B2)

SO5)& SU2 limit

1( G2 —Gp ) —Apgp
+6B)/5+ 14B3/5 —4B2

2(Gp —G2+B3 —B2 )

B2 —B3

—(B I
—B3)

SO7 limit

[Q((Gp —Gp ) 4B2-
+6B ( l5+ 14B3l5] —2( G2 —Gp )(N( —1 )

2(B3 —B2)

G2 —B3
—'(BI —B3)
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TABLE XI. Some vibrational B(E2) formulas. BL =B[E2,L~ ~(L|—2)]; Bp'=B(E2, 22~2~); B&y:B(E2,Op~2~). The quad-
rupole transition operator is qP for the FDSM and q(d 's+s 'd ) for the IBM U5 limit.

B(E2) U5 SO5 )& SU2 SU2 &( SO3 SO7

B,/q'

B4/q

B,. /q'

Bp /q

2(N —1)

2(N —1)

2(N —1)

Al —Nl
N[ 0) —1

Ai —1 —Nl
2(N[ —1)

Ql —3

0[—1 —Ni
2(NI —1)

0, l
—3

Ql —1 —N) 0[+4
2(N[ —1)

At —3 0[—1

Q, i
—Nl

N[ 0[—1

Bi —1 —Nl
2(Ni —1)

A[ —2

Ql —1 —Nl 2A[+ 3
(Nl —1)

Ai —2 Qi —2
0, [ —1 —Nl 2Al+3

(Ni —1)
Q[ —2 Q, i

—1

Q, [+6—Nl
N[ 0[+7—2N[

2(N, —1)
0[+7—Nl

0i+9—2NI

2(N, —1)
A i+ 7—Nl

0,1+9—2N l

Bi+2—2Nl 0[+7—Nl
2(N, —1) 0 1 +7 —2N I 0, I +9—2N I

~=N), N) —1, . . . , 0,
z=~, ~—2, . . . , 1 or 0,
X=~—3n&, nz ——0, 1,2, . . . ,

L =A, , A, +1, . . . , 2k —2, 2A, .

(6.1 la)

(6.11b)

(6.1 1c)

(6.11d)

The quantum numbers (r, nz, A, ) are now the additional
quantum numbers cr| of Eq. (6.3). It should be em-

phasized that for the SU2 vibrator, ~ is merely an addi-
tional quantum number rather than the SO& seniority
(because Sp6 has no SOq subgroup). This reduction rule
may also be applied to case (ii) by replacing N~ by N in

(6.11a) since

~

Nrr~(rro ~);LM ) =gC~"
~

NpN~(Krr ();LM ) .
Ni

(6.12)

B. The SOq & SUq limit

The SO5&SU2 limit stands for the SO5&SUz&4'A'2
dynamical symmetry chain in Fig. 3(b). By setting
B2 ——Gq in (4.8) we also obtain a vibrational limit (see
Table VII). As for the SUq vibration, two cases may be
distinguished (see Fig. 3(b)]:

(i) For go
—0, then

When N» Q&/3, by arguments similar to the SU3 case
discussed in Sec. V, some high-seniority states (i.e.,

Ir ) II, /3) are forbidden. Nevertheless, the low-lying
states have low seniorities which satisfy the restriction
~&A&/3, and for those states the reduction rule of Eq.
(6.11) is valid.

H, ;b ho+——Eon +rjn (n —1)/2+vpC~ y +G2Cso, .

(6.14b)

Thus, this Hamiltonian is similar to Eqs. (6.1) and
(6.2), but with an additional term proportional to Cso

5

The energy formula for this limit is given in Table X
with the parameters given in the third column and the d
boson number Nd replaced by ~. The reduction rule is
as that in the SU2 limit [Eq. (6.1)] except now there is no
restriction ~(A, &/3. The ~ value can go up to 0, &/2.
The ground-state energy and the value of N& can be ob-
tained as before by Eqs. (6.5) and (6.6). Some B(E2)
formulas are given in Table XI for this limit.

C. The SO7 limit

The SO7 limit stands for the SO7X 4'A'z dynamical
symmetry shown in Fig. 3(b). The general Hamiltonian
is obtained by setting gp ——0 and Gp ——Bz. This condition
is diAerent from the previous two vibrational limits
where the pairing interaction is always dominant and gp
need not be zero. Here, the strengths of the monopole
pairing and quadrupole-quadrupole interactions must be
identical and the pairing interaction between the normal
and abnormal parity levels must be weak.

The Hamiltonian in this limit is given by Eq. (4.16).
For the zero heritage case, the irrep of SO7 is classified
by the quantum numbers [(Il& —tv)/2, 0,0] (see Table
VI), where tv is the number of nucleons which do not
form D pairs. For the ground state, w=2N[, which
means no D pairs, i.e. , D„SO7, g.s. ) =0 [note

N,D„(S )
'

i
0)&0]. Defining v=N, —tv/2, the eigenvec-

tors can be expressed as

Hso& Hv)b + ( Gp Gp )CSU2

+(B3 B2)Cso + ,'(B& —B3)L——
H vib =H + QpCg~ +G~ Cso8

(ii) For up =E, and qp ——rl~ ——0,

Hso& H vib + U ]. CsU2 +gp CsU T
0

+(B3 B2)Cso + —,'(B, B3)L— —

(6.13a)

(6.13b)

(6.14a)

~
NpN, (lro ));Lm ),

where ~1 stands for (r, n~, A. ) as before. The energy for
mula is

Eso, ——Es, +(G~ Bp)lr(A) —2N—, +lr+5)

+(B&—G, )r(r+3)+-,'(B, —B, )I.' . (6.15)

The reduction rule is the same as that in the SO&XSU2
case [Eq. (6.11)], except a now is replaced by a. Equa-
tion (6.15) can also be written in the same form as the
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energy formula of Table X with the parameters given in
the fourth column, Nd replaced by ~ and

Es ~ =Ep(Ni ) —5(Gp —Bp )Ni (6.16)

The Ni value can also be obtained from Eq. (6.6) except
the constant a.„b is different:

2be+ r) i
—r)o —5(G2 —8 p )

4(ni+ no)
(6.17)

The B (E2) values for some low-lying transitions in the
SO7 limit are shown in Table XI.

D. Distinguishing features of the three fermion
vibrational limits and the IBM U& limit

As we have seen, all three fermion vibrational limits
can be described by an energy formula (which is formal-
ly equivalent to that of the IBM U& limit). However, the
fermion and boson dynamical symmetries differ funda-
mentally due to the Pauli principle. Firstly, some of the
allowed boson states are forbidden in the FDSM.
Secondly, the electromagnetic transition rates for the
three fermion vibrational limits differ from the IBM U5
limit by Pauli correction factors (see Table XI). Furth-
ermore, the Pauli factors for all three limits are different
and approach unity when the normal-parity shell degen-
eracy A&~ oo. It will be interesting to see whether these
limits can be experimentally distinguished. Obviously,
finding evidence for any of the three fermion vibrational
limits will be independent evidence for the dynamical
symmetries discussed in this paper.

Among these three vibrational limits the SO7 limit is
the most interesting since there is no counterpart in the
IBM. The conditions for the realization of the SO7
symmetry require that monopole pairing between nor-
mal- and abnormal-parity levels be suppressed
(go($ 5+S 4) =0). The physical realization of this
condition is most likely for medium-mass nuclei where
the spin-orbit interaction has not pushed the abnormal-
parity orbital deeply into the lower shell. The signatures
for SO7 are that (1) it occurs in SO& shells, (2) it has a vi-
brational spectrum which is compressed linearly in N&

(note: Ni is proportional to N), and (3) there are some
crucial 8 (EA, ) ratios which distinguish it from the SO&
and SO6 limits. A recent survey of systematic energies
and transition probabilities in Ru and Pd isotopes sug-
gests the occurrence of SO7 symmetry. Details of this
study have been published separately.

Vp
——GpS S

where

S =QQQ)/2[a, ajt]o .
J

(7.2)

(7.3)

On the other hand, in the spirit of assumptions (2) and
(3), Eq. (3.2b) can be approximated by

As is well known (summarized by Kirson ), the EI is
intimately connected with the truncation of the Hilbert
space. In this section we shall discuss the meaning of
the FDSM from the EI point of view. Also, we shall
compare the FDS-EI with the more traditional ones,
such as the pairing plus quadrupole (P+Q)-EI (Ref. 27)
and the shell model (SM)-EI.

In principle, given a truncated basis, the effective in-
teraction can be calculated from the bare nucleon-
nucleon interaction using many-body theory. In prac-
tice, it is difficult to obtain effective interactions which
can accurately reproduce data, especially in heavy nu-
clei. Therefore, one has to either resort to a simple
model based on physical considerations for the effective
interaction; or simply treat the two-body matrix ele-
ments of the effective interaction as parameters and
determine them empirically. The latter scheme,
pioneered immediately after the inception of the shell
model theory by Talmi, is now a standard procedure to
obtain the shell model effective interaction (SM-EI). On
the other hand, both the FDSM and the P + Q interac-
tions are models of effective interactions which may be
regarded as different simplifications of the "real"
effective interactions.

First we shell discuss the FDS-EI and (P +Q)-EI. Be-
fore proceeding, it is instructive to brieAy review the
main assumptions of the P +Q model. The Hamiltonian
of the P+Q model can be obtained from the general
Hamiltonian of Eq. (3.1) with the following
simplifications. (1) Assume that the higher-order terms
in V~ and V& can be neglected; (2) assume that V& is a
separable residual interaction which has only a spatial
(no spin) dependence; (3) assume that the matrix ele-
ments in Eq. (3.2) can be parametrized (see the following
discussions). For example, by retaining only the lowest
order of Vz (monopole pairing) and assuming that the
two body matrix element of V~ is proportional to the
level degeneracy A~,

(J'0~ V, ~q'0)=2&@,n, G, , ' (7.1)

Eq. (3.2a) becomes

VII. EFFECTIVE INTERACTIONS FOR THE FDSM
Vg —— g X„Q"Q', (7.4)

It is well known that some truncation procedure is im-
perative in microscopic nuclear structure physics since
solving the full shell-model Hamiltonian (infinite Hilbert
space with bare residual interactions) is impossible. To
find a truncation scheme which renders the nuclear
structure problem tractable and still possesses the pri-
mary aspects of the physics is a central problem of nu-
clear structure physics. Such efforts will necessarily lead
to "effective interactions" (hereafter designated as EI) in
nuclei.

, ~'i, 'J, 4
J J + (7.5)

In Eq. (7.4), parity conservation demands that r must be
even. Therefore, the lowest order nontrivial term of V&

where 7„ is a parameter representing the strength of the
r multipole of V~ and Q" is a multipole operator defined
as
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is the quadrupole term (r =2), since the monopole term
is a constant, and therefore the P +Q Hamiltonian is

Hpg =pe&QJ 0& +GoS S +XiQ Q
J

Although the P +Q model has been applied successfully
to many problems, it suffers the usual difficulties of stan-
dard shell model theory when a large number of in-
teracting valence nucleons is present in the system.

The FDSM can also be derived from the general Ham-
iltonian of Eq. (3.1), as we have demonstrated. There
are some similarities between the two models: (1) each is
based on multipole expansion of the nuclear force and
the EI's are expressed in terms of the pairing plus mul-
tipole interactions; (2) they have the same monopole
pairing interaction; (3) each truncates the multipole ex-
pansion and parametrizes the matrix elements.

The main difference between these two models is the
manner of truncation and parametrization of the matrix
elements. In the P+Q model, the assumption of spin
independence, separability, and a special form of the ra-
dial part of the interaction are introduced in order to ob-
tain a simple Q.Q interaction. The reduced matrix ele-
ment of Q can then be expressed as

(7.6)

(J i IIQ IIJ z ) = Qo~ 5J i (1&o 2 0
I
12o) U(j,2 —' I„.g21& ),

(7.7)

(jillP (i)llj2)=r ji«j i«i j2i»

(j, PII"(k) II')=rj ~ U(j, rik;g, k) .

(7.8a)

(7.8b)

In the k-active coupling scheme, for example, the re-
duced matrix element of the quadrupole operator P is

(j, IIP (k)IIj2) =&51', U(J, 2'I;jz 1) . (7.8c)

Comparing Eqs. (7.7) and (7.8c), we see that the two ex-
pressions are quite difterent. The Clebsch-Csordan
coefficient (which is a result of the assumption that the
P +Q interaction has only spatial dependence) of (7.7) is
not present in (7.8c), and the Racah coefficients are not
the same. These differences are the primary reasons that
the operators of (7.8c) do not couple the truncated k i, -

S-D shell model space to the rest of the space. As a re-
sult, the FDSM is the first model which can provide an-
alytic solutions for the shell model Schrodinger equation

where Qo is a parameter, and all higher multipole in-

teractions are neglected.
In the FDSM, none of the above assumptions for the

(P +Q)-EI are made. In the pairing interaction, mono-
pole and quadrupole terms are retained, and the trunca-
tion of the multipole expansion and the parametrization
are achieved by symmetry consideration, namely the
basic assumptions (2) and (3) as discussed in Sec. III.
Under these assumptions, the FDS-EI also has a
quadrupole-quadrupole interaction which is denoted as
P .P . In addition, there are other multipole interac-
tions P"(a) P "(a') with r =1 and 3 [see the discussion

preceding Eq. (3.21)]. It can be shown that the reduced
matrix elements of P "(a) are

in a system with a large number of valence nucleons out-
side the closed shell. On the other hand, we see that
(7.7) strongly couples the S D-space to the rest of the
shell model space. Thus, a straightforward application
of the (P +Q)-EI in a shell model calculation (i.e., diago-
nalization of the EI within a spherical shell model basis)
for a system of many valence nucleons is beyond reach
at this stage. In fact, most applications of such an in-
teraction are carried out via theoretical schemes such as
the Hartree-Fock-Bogoliubov (HFB) method. '

Since the FDS-EI and the (P+Q)-EI are different, a
natural question is which EI is more realistic? To
answer this question, one should first note that the trun-
cated space as well as the methods of application for
these two EI's are very different. Because the EI is
directly a result of the truncated space, different trunca-
tions can result in different wavefunctions and effective
interactions. Consequently, as emphasized by Kirson,
it is not always meaningful to carry out a direct compar-
ison of the wave functions and the EI's when these EI's
exist in different truncated Hilbert spaces. Seen in this
light, it is not surprising that the (P+Q)-EI and the
FDS-EI are different. The only relevant test is whether
the effective interaction within the truncated space
reproduces the appropriate physical observations. As we
have seen in the previous sections, the FDS-EI within
the k-i truncated basis does describe the well known low
energy collective modes of even-even nuclei, suggesting
that such an EI is a good caricature of the realistic one,
even though in form it differs from the more convention-
al EI's.

We now turn to the question of the relations between
the FDS-EI and the shell-model effective interaction
(SM-EI). There are several reasons why this compar-
ison is of interest: (1) unlike the (P +Q)-EI, the truncat-
ed space for the SM-EI is well defined (i.e., one major
shell); (2) the SM-EI is empirically obtained and closer to
the realistic effective interaction than the (P +Q)-EI
(certainly true in the s-d shell and at least for the begin-
ning of the shell for heavy nuclei); (3) the FDSM is also
a shell model in a (further) k itruncated -basis in one ma-
jor shell. Thus the FDSM and the shell model with an
effective SM-EI share a common foundation.

In comparing the SM-EI and FDS-EI we should recall
two points.

(i) If the space left out by the FDSM is not negligible
then, as emphasized by Kirson, the SM-EI and FDS-EI
could be quite different and still describe the same phys-
1cs.

(ii) The shell model EI is obtained empirically only
near closed shells (except for the s -d shell where a
smooth change of the EI through the shell is demanded
by the data). Contrary to the shell model EI, the FDS-
EI is expected to be valid for describing low-lying collec-
tive states of nuclei, where there are many valence nu-
cleons. It is not obvious that the EI which is appropri-
ate for the beginning of the shell should be the same as
that in the mid-shell, although this is the most economi-
cal assumption. Of course, the FDS-EI presented here
may be oversimplified, since its details remain to be stud-
ied. It is hoped that, by comparing the SM-EI and the
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FDS-EI, a better EI for heavy nuclei in midshell may
emerge. This work is now in progress.

VIII. SUMMARY AND DISCUSSION

In this paper we have proposed a microscopic nuclear
structure model called the fermion dynamical symmetry
model (FDSM). By assuming that coherent S and D
pairs are the most important building blocks in low-
energy collective states, we find that a variety of dynami-
cal symmetries exist due to the nuclear shell structure in
nuclei.

Several important ingredients of the FDSM have been
emphasized.

(I) The FDSM is deeply rooted in the shell structure
of nuclei. It is, in fact, a prescription for solution of the
shell model through a radical symmetry-dictated trunca-
tion.

(2) The FDSM is a model of nucleon-nucleon effective
interactions. As discussed in Secs. III and VII, we be-
lieve that the Hamiltonian for the FDSM is potentially
more useful than that for the pairing plus quadrupole
model since it allows a more general residual interaction,
and can have benchmark dynamical symmetries with
analytical solutions, even in regions of strong deforma-
tion.

(3) The crucial interplay between the normal and the
abnormal parity levels allows the Sp6DSU3 symmetry,
which Ginocchio was compelled to discard in his model,
to be resurrected. Thus the model has an axially-
symmetric rotational limit.

(4) All the nuclear dynamical symmetries exhibited
phenomenologically by the IBM are recovered by the
FDSM from a more fundamental fermionic level without
the necessity of boson mapping. The energy formulas
for each limiting case in the FDSM with no broken pairs
(u

&

——v0 ——0) are similar to the IBM ones. However, due
to the Pauli effects and the shell structure, there are
some differences: (i) The boson number N is replaced by
N, (i.e., the number of nucleon pairs in the normal-
parity levels); (ii) the A, +p&20&/3 representations of
SU3 and the v) 20&/3 representations of SU& are not al-
lowed due to Pauli eff'ects; (iii) the matrix elements of
some physical quantities like electromagnetic-transition
rates, and transfer operators, may difFer from the IBM
expressions for the same quantities by a Pauli factor.

(5) A new vibrational symmetry limit (SO7) has been
predicted, and observed. This symmetry is a transition
symmetry, lying between the SO& and SO6 limits of SO8.

(6) The FDSM suggests a systematic connection be-
tween dynamical symmetries and shell structure. Al-
though the n-p interaction has yet to be included, Table
IV already rejects global nuclear systematics. For ex-
ample, rotational nuclei often occur in a region where at
least one type of valence nucleons (neutrons or protons)
occupies the Sp6 shells. This is in agreement with the
fact that only the Sp6 symmetry has an SU3 limit (see
Table IV). Thus the widespread occurrence of axially-
symmetric rotation in the actinides is understood as a
consequence of fermion shell symmetry since both
valence neutrons and protons have Sp6 symmetry. On

the other hand, in the regions where neither valence neu-
trons nor protons possess Sp6 symmetry (e.g. , in shell 6
and shell 4, see Table IV), nuclei rarely behave as good
rotors (the few exceptions may be regarded as due to the
symmetry being broken).

It is widely believed that the n-p interaction is respon-
sible for nuclear deformation. This is not necessarily
in contradiction to the idea expressed here that the oc-
currence of rotational motion is strongly related to the
symmetry of the valence shells. Actually, both must
play a role. The symmetry of the valence shells deter-
mines the possible collective modes, while the effective
interaction determines which ones are actually realized.
For example, an Sp6 shell has a propensity to collective
rotational modes because of the SU3 subgroup, but un-
less the quadrupole-quadrupole term dominates the pair-
ing in the eff'ective interaction the SU2 (vibrational) sub-
chain of Sp6 will be realized instead. For an n-p system,
even through both neutrons and protons possess SU3
symmetry (SU3 and SU3), the whole system need not
have SU3 symmetry (denoted as SU3+'), unless there is a
strong quadrupole-quadrupole n-p interaction. In this
sense, one can say that it is the n-p interaction which
determines the occurrence of deformed nuclei. Howev-
er, if both neutrons and protons are in SO8 shells, even
strong n-p interaction will not lead to SU3+ modes. In-
stead, we may expect SO6+ which corresponds to a @-
soft rotor. For example, this is in agreement with the
experimental observation of SO6 nuclei in the A =130
region. Axial-symmetric rotors can occur in such re-
gions only if the effective interaction severely breaks the
SO8 symmetry. The fact that very few nuclei ('~8 '32Nd

and ' ' Ce are examples) are found to behave rota-
tionally without having valence nucleons occupying Sp6
shells, indicates that in most cases the shell symmetry
(Sp6 or SO8) is not seriously broken, and that it plays a
crucial role in determining where different collective
modes can occur.

(7) The model can accommodate states with broken
pairs, and thus encompasses important aspects of nuclear
structure which are not accessible within boson models.
A particle-rotor model Hamiltonian which can describe
high-spin physics is obtained microscopically from the
FDSM.

(8) Although we have emphasized even-even systems
in this paper, odd-mass and odd-odd nuclei are naturally
described within the FDSM by the odd-heritage (or spi-
nor) representations. Therefore, the model provides a
unified description of high and low spin states of even-
even, odd-even, and odd-odd nuclei.

Several approximations employed in the FDSM re-
quire further elaboration.

(i) The n pinteraction -The symmetry . limits presented
here are the symmetries of the shell structure for valence
neutrons and protons. The implication is that one may
choose the shell model truncation scheme in accordance
with that dictated by the symmetries of Sp6 or SO8. In
practical applications, the n-p interaction should be ex-
plicitly introduced. It is worth emphasizing, however,
that in some cases the basic features of the symmetries
remain the same in the presence of n-p interaction. For
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example, SU3 and SO6 symmetry limits can still be ob-
tained when neutrons and protons possess the same syrn-

metry and interact via, say, a quadrupole-quadrupole
interaction P z P z (the group chains will be
SU3XSU3DSUi+' and SO6XSO6&SO6+ ). More gen-
erally, the symmetries will be broken by the n-p interac-
tion but this can be handled by numerical diagonaliza-
tion within the direct product space of the neutron-
proton k-i bases. It is particularly important to under-
stand the situations, such as for the rare-earth nuclei,
where neutrons and protons would possess different sym-
metries in the absence of n-p interactions. The details of
this study will be published in the next paper of this
series.

(ii) D pairs in the abnormal parity-level In t.his model
we assume an S condensate for the abnormal-parity lev-
el. The component of the abnormal-parity level in-
coherent D pairs (in the conventional sense) is neglected
because it breaks the symmetry. However, this may not
be a bad approximation. Due to parity conservation,
there is only one component associated with the abnor-
mal parity level in the wave function of a coherent D
pair (i.e.,

~
(jo),2), where jo is the angular momentum

of the abnormal parity level), but there are many com-
ponents from the normal-parity orbitals. Because of the
collectivity, the amplitude for each component should
not be large. An estimate can be made from the D-
pair wave function obtained by Bonsignori et al. where
the probability of this configuration is found to be
roughly one-tenth. Therefore, ignoring the component
of the intruder orbital in coherent D pairs may not affect
the results very much. It should be stressed, however,
that this does not mean that the abnormal level plays no
role for the low lying states. In fact, it is precisely the
existence of the abnormal level which allows nuclei near
midshell able to have large deformation and rotational-
like behavior. ' The effect of the abnormal level is to ab-
sorb the excess nucleons so that the highest SU3 repre-
sentation can exist near midshell without violating the
Pauli principle. Moreover, it should be noted that the
FDSM neglects the contribution of abnormal parity level
to the coherent D pairs. Noncollective pairs with all

possible J's (J &2) in the abnormal-parity level are in-

cluded if the configurations with vo&0 are taken into ac-
count. Likewise, the higher angular momentum pairs in
the normal-parity levels are considered if configurations
with u i&0 are taken into account. These configurations
play important roles in high-spin physics and will be dis-
cussed in more detail in a separate paper of this series.

(iii) Symmetry breaking terms. R-ealistic nuclear Ham-
iltonians do not have perfect symmetries. The symmetry
limits are the idealized mathematical representations of
the physical collective modes. There are symmetry-
breaking terms such as the single-particle energy split-
ting term, and the quadrupole-quadrupole interaction be-
tween the S-D pairs ("core") and the decoupled particles
[P (k) P (i)] which may be important. This is especial-
ly true for the odd-mass system and high-spin states.
Nevertheless, the symmetry limits can be used as start-
ing points, and provide a natural and systematic way to
truncate the shell model space. Their main advantage is

simplicity. One can use the analytical formulas to test
for correct physical trends without having to carry out
complicated calculations. These limits provide broad
classification schemes which are useful in understanding
the global systematics of nuclear structure, and the rela-
tionship of the phenomenology to the underlying shell
structure. It is this aspect which has been emphasized in
the present paper. If the simplest limiting cases (corre-
sponding to the pure k-i configuration) are already cap-
able of describing the basic feature of collective motion,
we may conclude that the corresponding symmetry
basis, which is a severely truncated shell model, is a
good basis for describing collective motion. We can
then take the most reliable effective interaction, which
includes all the necessary symmetry breaking terms, and
carry out the numerical diagonalization within the limit-
ed basis. Since the k-i' basis is severely truncated and is
just a generalization of an L-S coupling scheme, existing
shell model codes appear to be capable of making these
calculations with minimal alteration. By this procedure,
it should be possible to carry out microscopic shell mod-
el calculations for strongly collective modes in heavy nu-
clei. This aspect is currently being pursued.

Although the initial testing and applications of the
FDSM hold considerable promise, there are several open
questions which require further study.

(i) What is the effective interaction which is appropri-
ate for the truncated k/i basis? As we have argued in
Sec. VII, this effective interaction may be different from
the interaction appropriate for the entire shell. Estab-
lishing such an effective interaction is crucial for apply-
ing the FDSM to realistic nuclei.

(ii) Although essentially neglected in this paper, a new
symmetry G3 is predicted by the FDSM for shells 3 and
5 (Table IV). This symmetry should be investigated.
Since in this mass region neutrons and protons are in the
same shell, the FDSM must be extended to incorporate
the isospin before it can be applied quantitatively to
these cases.

(iii) Since the shell structure and Pauli effects make
the fermion dynamical symmetries different from the bo-
son dynamical symmetries [point (4) above], it would be
desirable to see if this could be tested experimentally,
particularly the N[ dependence and the Pauli factors in
the transition probabilities of different vibrational limits
(see Table XI).

(iv) The FDSM as presented here is based on sym-
metries for a single valence shell. How stable are these
symmetries and their associated collective modes against
subshell closures? For example, the rare-earth neutrons
are expected to exhibit SP6 symmetry based on the struc-
ture of the full shell. However, if the subshell closure at
N=114 is taken seriously, the three orbitals being filled
for N & 114 (p3/p f5/p pi/2) can form an SOs algebra
with an SO6 subgroup. This, in conjunction with the ex-
pected SOg symmetry for rare-earth protons, would pro-
vide a convenient explanation of the y-soft (SO6) behav-
ior of this region.

(v) Can this symmetry scheme, or a related one, be ex-
tended to incorporate multiple major shells within a sin-
gle "supershe11, " thereby providing a dynamical symme-
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try description of giant resonances, superdeformations,
and low-lying negative-parity collective states?

In summary, although several features of the FDSM
require further study, the preliminary indications are
that it is a powerful method for describing the micro-
scopic structure of collective excitations in heavy nuclei.
Perhaps the most attractive feature of the model is that
since it is fully microscopic, it is fully testable. If the
method survives the detailed scrutiny to which it is
currently being subjected, we may expect it to provide
important insights into the nature of collective motion in
nuclear physics.
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