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Isovector pairing collective motion is treated by means of the generator coordinate method. In
this scheme, the isospin and number projection is performed analytically by the recognition of
symmetry properties in the generalized Bardeen-Cooper-Schrieffer wave functions. Among the re-
sults obtained, our generator-coordinate-method values of energy and spectroscopic amplitude are
shown to be comparable to those of shell model calculations. This is indeed encouraging, especial-
ly in view of the fact that they were reached using a simple approximation. The great simplicity
of the present method, as compared with earlier complicated versions, suggests that they might
prove useful in the study of isovector pairing collective states which are strongly populated by pair
transfer reactions in medium weight nuclei.

I. INTRODUCTION

The main purpose of the present paper is to present a
simple, although powerful, tool to deal with the isovec-
tor pairing collective motion. ' A natural way to treat
this kind of collective motion in a microscopic approach
is to use the generator coordinate method (GCM). Fol-
lowing the simple phenomenological picture which was
first formulated by Bohr and Mottelson, who described
the pairing vibration states as harmonic vibrations
around the minimum of a pairing potential, one uses
BCS states with different pairing correlations as generat-
ing wave functions. Since the BCS wave functions are
not eigenfunctions of the particle number operator, one
has to perform a particle number projection in order to
get a reliable description of the physical states for a
specific nucleus. If, in addition, the effect of isovector
(neutron-proton T= l ) pairing correlations is included,
one has to perform an isospin projection in order to de-
scribe the correct charge states.

As is well known, the simplicity of the BCS scheme is
lost when one includes the charge degree of freedom.
If, additionally, one wants to do isospin and number pro-
jection simultaneously, one has to perform an integration
in four angles (three Euler angles and one gauge), and in
this case the treatment becomes more complicated than
number projection. In fact, the number projection was
first performed about 25 years ago and the isospin pro-
jection was calculated only seven years ago. The calcu-
lation is also more involved than the angular momentum
projection for deformed nuclei, where the well known
simplification of axial symmetry is made. Thus one is
tempted to seek a possible counterpart of such axial
symmetric in the isospin space. These axial symmetric
wave functions must conserve the third component of
the isospin. On the other hand, the generalized BCS
wave functions are superposition of all isospin com-
ponents and therefore they are not axial symmetric.

Despite this diSculty, there is one way to construct axi-
ally symmetric wave function.

In the case of a charge independent pairing potential,
the ground state energy is degenerate with regard to the
isospin multiplet. For example, the ground state of the
nucleus Cr with T =4 has the same energy as the T =4
of Ni, which is a self-conjugate nucleus. In other
words, we may obtain the ground state of X&Z nuclei
from the yrast isospin state of the N =Z nuclei. In the
present case this is done breaking the symmetry in the
isospin and gauge space. The wave function which
shows these characteristics, and, additionally, are axial
symmetric wave functions, in the isospin space, is the su-
perposition of self-conjugate nuclei. Due to the projec-
tion of axial symmetric BCS wave function in definite
isospin and number of particles, we can describe not
only the ground state of the self-conjugate nucleus, but
all the seniority 0+ states of any nucleus in considera-
tion. Another advantage of our procedure is that we ob-
tain the isospin projection analytically and we can recov-
er the simplicity of the number projection BCS descrip-
tion in the treatment of the isovector pairing collective
motion. Furthermore, our analytical approach to iso-
spin projection allows us to get also the spectroscopic
amplitude, which is a relevant physical quantity for the
analysis of two-nucleon transfer reactions.

It is worthwhile to mention here that the analysis of
experimental data from two-nucleon transfer reactions
suggests that the T= 1 pairing force plays an important
role in the description of the strongly populated 0+
states in medium weight nuclei and that these 0+ states
can be understood in terms of pairing vibration and pair-
ing rotations. Bes and co-workers have had success in
describing these new collective motions. On one hand,
in analogy with the Bohr-Mottelson collective model of
nuclear rotation, they consider the pairing deformation
taking place in the four dimensional isospin and gauge
space. On the other hand, they' succeeded in describ-
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ing the pairing vibration in analogy with the shape vi-
bration of nucleus. They also describe these nuclear 0+
states microscopically using the generalized quasispin
formalism of Hecht. This formalism has been employed
to perform the exact model diagonalization in the space
of only the 0+ states. Even in this limited space, howev-
er, the size of matrices becomes very large if one wants
to go beyond the three-level model. To overcome this
kind of difficulty, the equation of motion technique has
been used recently to treat the 0+ states, and good ac-
curacy, when compared with exact results, was obtained.
This led to the renewed interest in the neutron-proton
pairing problem in which one of the major difficulties,
recognized long ago, ' was to know whether the BCS ap-
proach was an adequate tool to deal with it or not. In
the present paper we show that the BCS formalism can
be easily used to treat the isovector pairing collective
states by means of GCM.

The next section contains a review of the GCM ap-
plied to the isovector pairing collective motion. In Sec.
III we present the axial symmetric approximation.
Second IV is devoted to the derivation of the analytical
kernels of the GCM equations. The spectroscopic am-
plitude for two-nucleon transfer is derived in Sec. V and
numerical results and the comparison of diFerent solu-
tions are presented in Sec. VI. Finally, some conclusions
are drawn in Sec. VII ~

II. THE GCM APPLIED TO THE ISOVECTOR
PAIRING COLLECTIVE MOTION

If one wants to describe the isovector pairing collec-
tive motion in the GCM scheme with a BCS-type gen-
erating wave function and a set of collective coordinates
5&, . . . , b, ; with f(b,; ) a weight function of GCM, one
has to solve the following Hill-Wheeler (HW) equa-
tions,

a~ w
— 8~

Here, PT and P& are, respectively, the projection opera-
tor for isospin and number of particles (2N). Both are
written in the framework of Peierls-Yoccoz' projection
technique.

In the present paper we consider the usual T =1 pair-
ing Hamiltonian, given by

H = g eJcJm, cpm, —6 g g A&},AJq .
jmt s=o+& jj'

(2.4)

In the above formula Aj =j+—,
' is the half-degeneracy of

the level j and cJ, (c, , ) is the particle creation (annihi-
lation) operator in the single particle angular momentum
j, the magnetic number m, and the isobaric index t.

As we mentioned before, the adequate generator wave
function for treating isovector pairing collective motion
should be the BCS wave function, and b =b,„,b, „„,A
are the three generator coordinates which stand for the
pairing energies for proton (m. ) -proton, neutron (v)
-neutron, and proton-neutron pairing, respectively. This
BCS state is given by the product of quasiparticle an-
nihilation operators acting on the vacuum

I
@(4))= +a, ~0) .

Jm7
(2.6)

The quasiparticle operators aj, are defined in terms of
the basis states by a Bogoliubov transformation,

( ~ J ( . . Jjmr Z, (Cjm&Qgz+Sf mcj mgUgr )
t =n', v

(2.7)

Here, sJ are the single particle energies; A,„(AJ„)are
pair creation (annihilation) operators in a spacial state j
with total J=0, T =1, and T, =p explicitly written as

A~„=( ,'Q~ )'—g( ,'t ,'t' —~ 1—p)(jmj—m
~
00)c~,c&

tm

(2.5)

(2.1)

where H '
( hs, b, q ) and I '

( b.s, 6 z ) are the kernels of
the GCM equations, given by

H ' (b,s, Aq ) = (4(b,s )
~

H PTP~
~

4(b q ) ), (2.2)

I ' (b,s, A„)=(4(b,s)
~
PTP~ 4(Aq )) . (2.3)

Here, ~= 1,2 reveals the existence of two kinds of quasi-
particles. u J and U J are the generalized coefficients of
the Bogoliubov transformation and, finally,
s, = ( —)~ is a phase factor.

With all these considerations the energy and overlap
kernel given in (2.2) and (2.3) can be written as

H ' (bs, b „)= g f dQD~~ (0) f dOexp( iNO)h "(Q,O)—
16m.

(2.g)

and

I ' (bs, b, „)= g f d AD+~ (Q) f dO exp( iNO)n "(Q,O—),
16' (2.9)

where Dzz(fl) is the Wigner D function and
Q = (a,P, y ) are the three Euler angles in the three di-
mensional isospin space.

Due to the isomorphism between isospin and angular
momentum, the overlap functions h (A, O) and
n "(0,8) can be derived in analogy to the angular
momentum and particle number projected Hartree-

ns"(0, 8}=(C(b, }~R(Q)S(8)~N(b„))
=[detX "(0 8)]' (2.10)

and

I

Bogoliubov method, and need some length calcula-
tions, ' and are given by
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h (A, O)=(@(hs)
~

H R(A)S(9)
~

@(&g)),
h "AO = g e&fP'„"(A,O)]' ——g [P„"(A,O)]j[P, r"(A, O)]j

jm

(2.1 1)

—G g [p„"(A,O)]'[p, , (A, O)]' 6—g [~„"(A,O)]j[cr, r" (A, O)]j .

j'm'

The most convenient form of expressing the
matrix [X (A, O)]', the generalized density
matrix [p "(Q,O)], and the pairing tensors
[K "(A,O)]~, [o "(A,O)]~, for our purposes, are'

[X "(A,O)]'= U~"(b jl )R *(A)U,*(A~ )

Je&= g [e4Cj mn jrn Cj mvCj—mv+~+AjmCj: mvrCj—mm.
jm &0

tBJ+ vv jm Cj —mv~jmv

+ ~rrv jrn (Cj —mn jmv +Cj —mvCjmn )+A] I
0 &

j

+ V,"(As )R (A) V, (b, „)e'

fp "(A,O)]J=K(A)

Vj*(Ajar

)

&& exp(iO)[X "(A, O)] 'V,"(b,~ ),

(2.12)

(2.13)

[a- "(A 9)]'=—fR(A)V,*(&s)

&( exp(iO)[X "(A,O)] 'U,"(&g ) I"
(2.14)

where

P4 V n. lU v2 V vl U rr2

~0 rr 1 v2 u vl rr2

~ vv= & ~1V v2 V v1& n2 ~
PJ J J l J

J J J JPn~ = V ~1M v2 Q v]V m2

and

=Vv1Q v2 Q v1Vv2
~J J J J J

(3.1)

(3.2)

and

f (Q 9)]'= —R*(A)U*(& )[X (A, O)]

(2.15)

Here, UJ" means the transposed of UJ. The Vj and UJ
given in Eqs. (2.12)—(2.15) are the Bogoliubov 2 )& 2
transformation matrices and the R(A) matrix follows
the Edmonds convention. '

From here, we follow a prescription different from the
traditional numerical method used to treat the angular
momentum or isospin projection. In the numerical cal-
culations, Chen et al. approximate the integrals (2.8)
and (2.9) by appropriate summations after calculating
the matrix elements of (2.12) and (2.15) numerically.
However, the integrand of (2.8) and (2.9) may present a
highly oscillating behavior and the choice of mesh points
to get an approximate four dimensional integral may not
be very satisfactory. Hence, in this work we shal1 show
that it is possible with certain approximations to per-
form the projection analytically after obtaining explicitly
the matrix elements (2.12)—(2.15). This calculation is
quite simple, as will become clear in the next section.

III. THE AXIALLY SYMMETRIC
GENERALIZED BCS WAVE FUNCTION

In order to perform the isospin projection analytically,
the first step is to look for axially symmetric wave func-
tions in isospin space. For this purpose, we present the
generalized BCS wave function (2.6) in the extended
form

The above expression (3.1) shows, quite obviously, that
the wave function

~

4&) can neither be an eigenstate of
T, nor of T, since it is constructed out of pairs of nu-
cleons coupled to T= l and T, =+1 or 0. Its properties
have been analyzed mainly by Ginochio and Weneser
and by Camiz, Covello, and Jean. ' They concluded that
the quasiparticle ground state wave function has no
neutron-proton correlations. Then it reduces to the
product of two BCS wave functions. In other words, the
BCS ground state has C j =0 with b,„,&0, b, &0, and
6„=0.

This BCS ground state wave function does have axial
symmetry. However, if we use the fact that all the parti-
cles are in pairs (n n, v —v, an—d vr v), then due —to
charge independence they have the same energy, and the
ground state of seniority, 0+, is degenerate with respect
to the isospin multiplet. For example, the ground state
of Cr with T=4 has the same energy as the T =4 state
of Ni, which is a self-conjugate nucleus. Therefore
each self-conjugate nucleus is a representative of all nu-
clei within the same isospin multiplet, and we can use
this fact in order to find an axially symmetric wave func-
tion.

In the case of a self-conjugate nucleus there are only
two possibilities: one of them is that the nondiagonal
terms of the 2~2 matrices UJ and Vj vanish. Then the
coefficients C of the generalized wave function (3.1) be-
come

C'J4 u, C)=u2, CJ„——=C', =ujuj, and C'„=0, (3.3)

where, from (3.2), u J
l

——v~2 ——vj and u j
l
——u j2 ——uj. The

wave function (3.1) then takes the form
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=0 and 6 &0.
The corresponding coefficients are

(3.5)

C$= —v,', C4=u,', C'„=C'.„=0, and C' =u, v, ,

(3.6)

and the generalized BCS wave function (3.1) becomes in
this case

~

C&n(b )) =Q (u, +v, s, c, c, , )
~

0) .
Jm

(3.7)

This wave function was suggested, long ago, by Baner-
jee and Parikh' to treat the T= 1 pairing problem. If
we apply the rotation operator R (a) = exp(iaf', ) to this
type of wave function with any value of 6, we find
R

j hatt(b ) ) =
~

@n(b, ) ), which implies that this class of
I

~

&P&(b, ) ) = + (u) +vis) cJ c) )
jm )0

&((u, +v, s, c)t c, )
~

0) . (3.4)

The generalized BCS wave function (3.1) is here re-
duced to a BCS product form for neutrons and protons
separately. It is obvious that this wave function is not
axially symmetric. Furthermore, it describes only even-
even nuclei, and then there must be another solution
which applies to even-even as well as odd-odd nuclei. It
is easy to prove that this solution does exist and is
characterized by

wave function does indeed have the symmetry properties
we were looking for.

Of course, for nuclei other than self-conjugate ones
(T,&0), these properties are not good. However, due to
the charge independence of the Hamiltonian, the fact
remains that there are degeneracies in energy among the
members of the isospin multiplet, and so it is sufficient
merely to calculate the energy of one of its members,
namely T, =0, the self-conjugate nucleus.

As for the reaction transition rates, due to the
Wigner-Eckart theorem, it is enough to calculate the re-
action rates for a proton-neutron pair transfer from one
self-conjugate nucleus to another. For these reasons we
do not lose any generality if we formulate the theory of
the collective motion by considering only self-conjugate
nuclei. In doing so, we are fully utilizing the symmetry
property of the class of wave functions which we have
found.

IV. ANALYTICAL FORMS FOR THE ISOVKCTOR
PAIRING GCM KERNELS

By using the axially symmetric wave function (3.7) de-
rived in the preceding section, we can obtain analytical
forms for the GCM kernels (2.1) and (2.2) through the
matrices [p "(A,8)], [ic (Il, 8)]J, [o. (Q, 8)], and
[X (Q, 8)]J, which are easily derived. If these matrix
elements are substituted in (2.10) and (2.11), we get the
following simple results for the overlap functions,

a AGJ())aAaAB2
AB, u u'U U-

2G ~ J J J J J J [( 8 A 8 A+ 8 A 8 A) 2ia+( 8 A 8 A+ 8 A Bv A 2ia) osp]~BA ~ ~rrBA J J J J J J J J J J J J J J
J )J' detXj detXJ

(4.1)

n (P, 8)= Q [detX, "] ',
J

(4.2)

with

detXJ =(u) u,") +(v) v)"e' ) +2u, u,"v) v,"e' cosp .

(4.3)
We may notice that h "(0,8) is suitable for expan-

sion in a binomial form because of its obvious depen-
dence in the Euler angle P and the gauge angle 8. Some
question may be raised because the third term of (4.1)
for hBA (p, 8) is proportional to

[detXBA ]n) [detXBA]nj —2

j&J

and hence cannot be expanded in terms of e'8 and cosp
in the case of Aj =1. However, the presence of the fac-
tors fl)(Q) —1) removes this difficulty.

We now may use the procedure of repeated applica-
tions of Newton's binomial formula to the energy func-
tion h "(0,8) and obtain a polynomial in the angular
variables e' and cosP. The way to get this polynomial
form is presented in Appendix A. Here we simply give
the final result

h'"(n, 8)= g [Q,',"(«sp)'+Q'" («sp)
k, l

(4.4)

where

BA
Qkl k, . . . , k

I m

1 ~ ~. . . , I ~

I m

+ F " g[(4e) —G) —4G(Q) kl )](k, —1,)—
+(2e, —GA) )I)+Gl) —1)—G g 8 A 8 A

J&J i i
(4.5)
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and

Jmg'"'= — y ~ F"
k, . . . , J J=J]

Jm

1, . . . , 1'
Jm

U.Au B UAu B
J J J J
~ a+ ~ a 'i'iJ+JUJuJUJuJ

(4.6)

with

0 k
1 =+ lj, k= ski, and Fj =

k I (u u ) ' ' (U,~u,") ' ' (2u~u 4U,~U")' .
2(Q —k j B A 2(k. —l. ) B A B A 1

J J J . . J
(4.7)

From (4.6) we can easily see that Qi, i =0 when I &2, which guarantees the polynomial form for hs~(p, 9) in (4.4).
Finally, we can make the last manipulation to get the energy kernel (2.8) and the overlap (2.9) of the GCM equa-

tions. The overlap (2.9) can be rewritten, after the binomial expansion and performing the integration over the gauge
angle, as

8n k, . . . , k.

I- +1 + - +1 =2k —NJl J2 Jm

QF " I (2k N), —
L

(4.8)

with

Izz (2k N)= f—dQDzz (Q)(cosP) "

Using the signer D matrix

&~/ (fl ) = exp(i«)d/x (P) exp( —K'y ),

(4.9)

Vr(n ) =Ioo(n )

the above integral has a nonzero value only if
K=K'=0. Then, dao(i3)=Pr(cosP), where Pr(cosg) is
the Legendre polynomial. Consequently, the integral
(4.9) becomes

the traditional BCS treatment. These yrast states are to-
tally charge symmetric; in other words, the isospin is in-
variant under the exchange of charge coordinates be-
tween two pairs with T=O and 1. Therefore, the BCS
axial symmetric wave function is the superposition of the
lowest charge symmetric states of the neighboring self-

conjugate nuclei. This fact puts the limitation on our
model that we cannot describe states with other charge
symmetries. For example, the T=1 states of Ni can-
not be included in our work.

Using (4.8) and (4.10), we get the following expression
for the overlap kernel in the axially symmetric case,

n —T+1n~I
2

(4.12)

2T-1(n T)i(n+ T l)Ir ~ +
2

where

(4.10)
( BA

Jm
FBA

Here, n =2k —X. From the existence condition for the
integral, we have two restrictions, namely n ) T and
n —T even. Hence the overlap Ioo (b,z, b, q ) does not
vanish only if

n =T, T+2, T+4, . . . . (4. 11)

At this point we may notice that GCM kernels [(2.2)
and (2.3)] exists, only if the values

n =T, T +2, T +4, . . . , % are allowed ones. This means
that axial BCS wave function does not contain com-
ponents with parity ( —)

+ =( —1). This selection rule

means that we have components just with
T=%, X—2, X—4, . . . , 0 or 1 in the axial symmetric
HCS wave function, and have only a mixture of yrast
states of the self-conjugate nuclei instead of a superposi-
tion of wave functions of all the neighboring nuclei as in

1- +1 + . +1 =n
~l jr Jm

k +k + +k. =(n+N)/2J2 Jm

The upper limit for n is determined from the binomial
expansion which implies 0) lJ (kJ. As by definition

g l = n and, due to the gauge angle integral,
n =2+ kj —N, we conclude that n &¹

The calculation of the energy kernel (2.8) is easily to
perform if we follow the procedure used to get the over-
lap kernel (4.12). The result is

H'(b, 5 )=
2

X g [A„"Vr(n )+X„Pr(n —2)],

(4.13)
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where

~BA
n

k =(n+N)/2
I=n

QBA and +BA
k =(n+N)/2

1=n

QBA'

(4.14)

Since (4(bB)
I I j )PTPN I

@(AA )) was obtained ana-
lytically, it is possible, in principle, to solve the HW
equation analytically. ' However, in this work we solve
the HW equation numerically following the traditional
discretization prescription, and the numerical results are
given in Sec. VI.

V. ANALYTICAL EXPRESSION FOR THE SPECTROSCOPIC FACTOR

Apart from the energy spectrum, another important quantity to test our model is the spectroscopic amplitude (p, )

of the two nucleon transfer reaction, which is discussed elsewhere' and is given by

A'T JUT

p, =
2~ f f f(&f )j(&; )(QT N+((bf )II A, II(bT N(b, ;) )dbfdb, ;, (5.1)

where f(b,f ) and f (b,; ) are the weight functions for the final and the initial nuclei obtained by the GCM calculation,
A'T (JUT ) is the normalization factor, and

I QT N+, (6f)) is the projected BCS wave function. Finally, AJ is the ir-f i f +
reducible tensor of the operator given in (2.5).

In order to get an expression for the spectroscopic factor, we need to obtain the reduced matrix element of (5.1).
This calculation begins with the computation of the matrix element of the two projected states,
(QT N+, (5f )

I Aj„ I
(I)T N(b, ;)). The details of the calculation of these reduced matrix elements are presented in Ap-

pendix B and the following results are obtained before the integration over the Euler angle p and the gauge angle 8:

( ~Tf N + 1(~f )
I I

~j I I
(t' Tf N ( ~ i ) ) cTfcT 4~+ flj uj u j (

X '
T 1 T; 2 2n (P 8) f f Bd8e ' d(cosp)PT(cosp) '

. (ufu'+vfv'e' cosp)
2 1 detX,~'

Tf 1 T,

0 1 —1

T+1
2Uj Uj

l

dOe ' d cos cos PT cos —PT+1 cos
2' ~ (N 1 )9 —1 n f'(P, 8)

0 1 I d m~'e
(5.2)

with CT CT given in Appendix B.f i

Expanding all the terms in the above expression in terms of a polynomial in 8 and p, and by the same index rear-
rangement used at arrive of the energy expression, we can perform the above integration exactly, and the 6nal result is

( 0Tf N + ( ( ~f )
I I
~j I I 0T, N ( ~i ) & =4~ 0 0

Tf 1 T;
+(v„"'(j )

O 1
V'T, (T, +1) PT (n ) . (5.3)

n —T
ST+i(n —1)= 9T(n) .

n
Here,

(5.4)

To obtain the above expression, we have made use of the
following identity for the isospin function (4.11):

[2(Qj —kj )+lj ](v„"'(j)= g g (F, )f;
k=(n+N)/2 j

l=n

(5.6)

Tf(T, )

2T + 1 N(N+1)f —1

(F )f;9T(T (n)
n = T,. ( Tf ) j

(v„"'(j)=—— g g (F, )f;
k =(n+N)/2 j

I =m

(5.7)

(5.5) where (FJ )f; is the same as (4.7) with the exchange
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2 ~f and B~i
Substituting the reduced matrix element from (5.3) in

(5.1), we have the final value for the spectroscopic ampli-
tude of a two nucleon transfer reaction in the GCM
scheme.

If the u~'s and U~'s are known, we can obtain the tran-
sition rates from (5.1). Although in our scheme it is easy
to perform the calculation, it suffers from one restric-
tion; that is, we can get the spectroscopic amplitude only
in the charge symmetric states. This is due to the fact
that our BCS wave function is axially symmetric and the
transition T~T is not considered in the present work.
Therefore the transitions that will be treated here are
only Tf ——T;+1 and Tf ——T; —1.

VI. RESULTS AND DISCUSSION

We shall now discuss the several ways in which we
tested the advantages and limitations of the present
model. First, we compare our results with the exact re-
sults for the two level model. After that, we shall com-
pare them with results obtained by shell model calcula-
tions in the fp shell. Furthermore, we shall present
some results with five active levels, where the exact diag-
onalization cannot be handled. It is also necessary to

say some words about the "discretized" method to solve
HW equation (2.1). We use the prescription of Faessler
and co-workers' for three points 0.55, 5, and 1.56.

In order to show the simplicity of the present model,
we shall compare our results in the system of two equal-
ly degenerate levels with pair degeneracy 0 =20 separat-
ed by a distance of @=10.0 MeV and the total number
of particles is 2N=40. This system is well known as
the symmetric two level model and is also considered a
possible course of testing the approximate solution of the
pairing Hamiltonian. Using 6 as a generator coordinate,
we get the ground state (T=0) and excited energies for
several values of G; for each value of the energy we sub-
tract the ground state (T=0) energy and we obtain Fig.
1, very close to the results obtained by Dussel and co-
workers. Therefore we see that the present scheme
reproduces the exact results in the symmetric two level
model. It is particularly interesting to notice that the
present scheme gives similar results of the excited state
of T=4, which means an excess of eight neutrons over
protons, of the exact diagonalization method.

20—

7 2 2

T*O

A

V

l5—

IO-

.-T 2

~ O ~
—(2.0.0)

(
T'0

FIG. 1. The 0+ energy spectra calculated by the GCM in
the symmetric two level model as a function of pairing strength
G divided by G, . The ordinate gives the total energy relative
ground state T=O divided by the level spacing a=10.0. The
total number of particles is N=10 and the pair degeneracy is
0=10. T', where a denotes the first, second, etc. , is the time
that a state with isospin T appears.

FIG. 2. The absolute value of the reduced transition matrix
elements between N =2 and 21 as a function of G /G, in a
symmetric two level model with A = 10 and level spacing
@=10.0 are presented in the several approximations calculated
in this work. A level scheme clarifies the transitions that are
considered. The double full arrows are allowed-allowed transi-
tion populations and the dotted arrows are the allowed-
forbidden transition populations of the pairing vibrations for
N =20.
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i
NTKMr, b, ) = 2T+1

16~

&& exp(iN8)DM x(apy)
~

BCS,b, ;K ),
(6.1)

where a, p, y, (9, and b, are the generalized coordinates
of the rotational model. Our projected wave function
will be the solution of the Hill-Wheeler integral equa-
tion, if we use a, p, y, and 5 as generator coordinates
and the above wave function (6.1) with correlation be-
tween the intrinsic wave function and that of the rota-
tional model adequately introduced by the operators
R,S. The deformation of our system is measured by 6„,
where p=(1,0, —1) mean (mm. , harv, vv), and has the
same meaning of the intrinsic deformation in the collec-
tive model. The pair transfer operator in (6.1) could be
the same as that of the traditional rotational model, i.e.,

p„=e' g b.„D„'„(apy) .
P

In our case, we have 6 „=6 =0 and the pair transfer
operator connects the states with same K=O. For the
ground-ground transition we trivially get

(6.2)

(TfN+l~i~P~|T;N) =+2T g Q, ulv,

1/2
Gcrit

(6.3)

After comparison with the numerical results, we are
convinced that the results obtained from our method are
similar to those of the exact solution. We are now going
to discuss the transition rates (5.1). In Fig. 2 the abso-
lute value of the matrix element

) (f~ig /I~+ ~~i )
~

is

plotted against the pairing strength G/G„;, . The final
state

~ f ) and initial state i ) are obtained by the
LCM. For the transitions considered the states have
been labeled by ( T, m, a ), where a denotes the number of
times that the state with isospin T and number of pairs
N =20+m has appeared. The double arrow means the
allowed-forbidden transition which populates the pairing
vibration state with N=20. In Fig. 2 the solid curve
means that both

~

i ) and
~ f ) are GCM states and, as

can be seen, it almost reproduces the exact results. In
the same figure the results from vibrational and rotation-
al states are also presented. In the weak coupling limit
G/G„;, «1 the GCM results are the same as those for
the vibrational model. But in the other limit, that of the
strong coupling limit, the difference between the GCM
and rotational models is around 10%. The reason for
this difference wi11 be explained later. As expected, in
the region of G„;, both the rotational and vibrational
model fail. For G„;, the transition rates in the rotation-
al model go to zero, while in the vibrationa1 model it
goes to infinity. This transition, however, is smooth in
the GCM description. The physical meanings of GCM
curves are the following: If we take the one point limit
of the projected BCS wave function, and also take the
rotation operators R(Q) and S(6) as unitary operators,
we get the following wave function for the rotational
model:

where T is the largest value among the isospin transi-
tions. Therefore it is easy to realize that the GCM curve
is proportional to T, meaning that if we have a large T
we have a large transition rate. It is interesting to note
that if we take the one point limit in the expression (5.3)
and consider a=P=y=8=0 and, if additionally we
take u~~u~+v~~v~ =1 and finally sum over the single parti-
cle levels, we get simply

g (f ~~
~ ~~& ) =+2T g IIJ u~~ul',

J J

(6.4)

E( MeV )

(a) EXPERIMENTAL RESULTS

(b) SHELL MODEL ( BCS AND CO-WORKERS)

(c) GCM WITH AXIAL SYMMETRY ( PRESENT WORK )

Cr —.
2

I

Fe—'

Cr —--—-;—3
I

3
Fe—--

5-Cr—'
Ni —-.

-—0
Fe —---—-.--—2

,—---—0
e—-- ---—

I
F

N

A%52 A ~ 56 A~ 58 A 60
AD 56

(a) (b) (c ) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

FIG. 3. Theoretical and experimental spectra of 0+ states in
the 52& A &60 region. The numbers to the right of each cal-
culated level stand for the isospin. All the theoretical calcula-
tions are performed in the three active levels (1f7/2 2p3/2,
1f~/2 ) with single particle levels (0.00, 3.97, 4.22 MeV), and the
pairing strength is G =30/A.

which is the expression (6.3) of the rotational model if
we approximate v~~ by v~. The above expression for the
one point limit explains the 10% difference between the
rotational model and the GCM for G/G„;, ))1. Since
in the GCM we do not replace v~f and v~ and we consid-
er all the points in (5.3).

Finally, we are going to apply our formula to actual
nuclei. Since our purpose it to establish the validity of
the present method for studying the pairing isovector
collective motion, we first compare our GCM results
with the diagonalization of Bes and co-workers. The
calculated energy spectra for the region of 52 & 3 & 60 is
presented in Fig. 3 and compared with the exact results
of Bes and co-workers and with the experimental data.
From the spectra one can see that our results are quite
satisfactory, in addition to the simplicity of our approxi-
mation, which maintains the axial symmetry for excited
states. The main reason for the present approximation's
validity for the excited T =0 states and for those states
near the double magic nucleus is easily understood due
to the fact that these states lie in or near the self-
conjugate nuclei, where the axial symmetry ought to pre-
vail. However, further investigation of the present ap-
proximation in all cases is needed to draw some definite
conclusions about the symmetry properties of excited
seniority zero states. One also can be surprised that this
wave function may give a such result obtained in Figs. 1
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TABLE I. Results of "experimental" energies of isovector pairing collective states compared with
present calculations in the five- and three-level models in the fp shell, where the inert cores are those
of Ca. The first column indicates the isotope in which the state is found. The second column is the
isospin or isotope. Columns 3 and 4 show, respectively, the excitation energy (taken from Ref. 1) and
the total binding energy (from Ref. 24) of the state. Column 5 displays "experimental" energies ob-
tained from Eq. (6.5). The energies are calculated in the present work for the five-level model with
values of —4.0, 0.00, 0.78, 1.08, and 4.00 MeV for the single particle energies modified for another
nucleus according to Kisslinger and Sorensen {Ref. 23); the pairing strength is G =24/A. Column 7
displays the energies of Fig. 3 slightly modified to adjust the ground state levels of ' Fe and "Ni.

Ni
'4Fe

Ni
s2F
s2C
' Ni
56Fe

Zn
Ni

'4Fe
54cr

58Fe
s2F
s2C

52T1

56F

s&C

Ni
60Fe

E {MeV)

g. S.

g. S.

g. S.

g. S.

g. S.
5.23
g. S.

g. S.

g. S.
5.68
g. S.
3.55
g. S.
4.63
5.74
g. S.
5.63
g. S.
3.53
g. S.

E& (MeV)

484.01
471.78
506.48
447.72
456.36
478.78
492.28
515.02
526.87
466.10
474.02
502.93
509.97
443.09
450.62
451.98
486.65
488.50
523.34
525.39

E, (MeV)

0
2.75
2.30
2.38
5.62
5.23
5.02
2.36
5 ~ 15
8.43
8.67
5.80
8.63
7.01

11.36
12.71
10.65
13.50
8.68

13.18

E, (MeV)

0
2.90
2.48
4.55
7.01
6.36
5.07
3.93
6.15
9.36
9.08
9.00
8.7

12.64
13.31
14.03
12.73
12.69
12.42
13.44

E,, (MeV)

0
2.88
2.46
4.77
7.30
5.94
4.95
4.01
6.22
8.91
9.01
8.48
8.63

12.20
13.11
14.68
12.01
14.68
12.01
13.52

and 3 and also in Table I due to the fact that simple an-
satz such as (3.7) seems to contain only neutron-proton
pairs. In reality this wave function contain all of
Cooper's pairs due to the subtle fact that the magnetic
number goes to I: —j, . . . ,j instead of m & 0, . . . ,j
as is usual in the BCS formalism; see formula (3.4).

Last but not least we should mention that in the real-
istic (N =Z) nuclei, unless we are dealing with isovector
pairing collective states, the J=0+ pairing does not
dominate the spectrum and the T=O pairing should be
included and treated along with the usual like pairing as
shown by Goodman. '

Next we present the GCM calculation for a system of
five active levels. We do not expect crucial changes with
the addition of two levels since the energy of these states
are dominated by the lowest levels of the configuration.
This fact can be verified in Table I, where in the first
column we have listed the nuclei considered along with
their mass number, isospin, and binding energy. This
binding energy is used for the calculation of E„

E,(k, A, T,MT ) = [E~(56,0,0) Eq~(56, 0,0)]—
—[Eg (k, A, T,MT ) E~~( A, T, MT )] . —

(6.5)

Here, Ez is the experimental binding energy associated
with the states J=0+ with isospin T for the ( A, MT ) nu-
cleus. The ground state energy is labeled without the in-
dex k. Ez~ is the semiempirical Weizsacker formula,

Eaw:b, oiA 17A 2b
y T(T+1)/A

—0.7Z (1 —0.76/Z )/A '/3, (6.6)

with b yp]: 10.43 MeV and bs„m =25.0 MeV. The last
two columns refer to the five active level and three ac-
tive level calculations, respectively, where, as we see, the
differences are small. In the five level calculation we
choose the following values: ( —4.0, 0.0, 0.78, 1.08, 4.0)
for the single particle levels (lf7/2 2p3/2 lf~/2, 2p&/2,

lg9/2) of Ni, as considered earlier by Bayman and
Hintz. These values are slightly modified for other nu-
clei according to Kisslinger and Sorensen. The pairing
strength G =24/A is selected in such a way that it
reproduces the experimental data of the first T=2 state.
This kind of choice is adequate for the detailed study of
the region 40& 3 &70. But for the moment the present
calculation in the region of 52 & 2 & 60 does not give
any new characteristics. However, the importance of
our method lies in its simplicity and this becomes obvi-
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ous if we remember the rapidly growing complexity of
shell model calculations when we increase the model
space and include the isospin as a dynamic variable. In
the present scheme, on the other hand, the projection
can be performed within seconds on a normal computer.

The last step is to calculate the transition rates which
connect the collective states of the isovector pairing
states. Perhaps this kind of calculation is the most
stringent test for our method. Then, by using the GCM
wave functions we get spectroscopic amplitudes in the

Ni region. The results obtained are compared with
those of an exact diagonalization of Bes and co-workers
and of the rotational model. In Taole II, in the first
column, we list the nuclear reaction considered; the en-

ergy of the state is given in the second column. In the
third column we can see the spectroscopic amplitude of
the GCM that reproduces the exact diagonalization re-
sults. As expected, we do not find any agreement with
the rotational model because we are in the transition re-
gion.

VII. CONCLUSION

In this paper we present a new model with which to
describe the collective 0+ states in the medium weight
nuclei. This model uses axially symmetric BCS-type
wave functions in the charge space with a mixture of
odd-odd and even-even nuclei as generating functions of
the GCM. This axially symmetric wave function implies
that we take only T, =O as being representative of all
nuclei in the same isospin multiplet. This wave function
also allows us to perform the isospin and number projec-
tion analytically. We, furthermore, show that in our for-
malism we recover in the isospin projection the simplici-
ty of the number projected BCS theory.

The ground state of 0+ isospin yrast states is obtained
with the GCM for the two level model and in the Ni
region. The results are quite satisfactory compared with
the exact results and experimental data. The same con-
clusion can be drawn with respect to the energy of excit-
ed states. It is worth mentioning that we assume the ax-
ially symmetric wave function to be good for the excited
states. The spectroscopic factors have also been ob-
tained by the approximation mentioned above, and simi-
lar conclusions were obtained.

The weak point of the present model is that we can
describe only states which are totally symmetric in the
isospin of the pairs of particles (they have even T for an
even number of pairs and odd T for an odd number of
pairs).

In the end we may hope to apply the results obtained
here to treat the challenging problem which involves
more than one shell. We can also apply this technique
to the description of 0+ states in real nuclei using more
realistic interactions than a pure pairing force.

This work was partially supported by the Financia-
dora de Estudos e Projetos (FINEP) and the Conselho
Nacional de Desenvolvimento Cientifico e Tecnologico
(CNPq), Brazil.

0

cd

V

0E.~
C$

0 cn

9 2o

~ w '4

0

cA

o
P

Z A

c
c5o

0
c

C .
p„
Q

cA

0

2o

0

c
~ W Q

~ W y5a5

y)

g
E
a5

KQ
o Q

Ck ~
Ch

g
C6

a5

0
q5

0 o

~ W
a5

Oo

0
C

oo

0 0 0
ooVO&t OnOuDt0~00

rV

O 0
oo

00

0 0 0
0 n O
0 0 0 0

tV

0 0 0 0 O O O O

C oo
Oo

Oo0 0 0 0 0 0
oo t t

0 W ~ Ch0 0 0 ~ 0 0

~8~0 0 0

0
~ let

a5

0 '40 ~ W t ~ M t
m oo ~ M M ~ eV Ch 0
'40 W ao W 0 Oo 00 0 0 0 0 0 w 0 0

W oo 0 oo Do eq O N & N ~ ~0 Q 0
40 t t~ 0 m m ~ m ~ oo0 0 ~ 0 0 0 0 0 0 0 0 0

ao Dooooo~r r wwO0 ~ ~ ~ W ~ O W ~ ~ 00 0 0 0 0 0 0 0 0 ~ 0

ao t M M Ch Ch M t Ch, M 00
t oo W 0 oo 0 Oo oo0 0 0 0 0 0 0 0 0 w 0 0

0~M I MME
oo t ~ ~ t t 0 ~ ~ ~ ChMoot OWWW~W~~W0 0 w 0 0 0 0 0 0 0 0 0

OOHOOO&0

QO Oo Oo0 & 0 0 0 & 0 0 0 00 H 0 & 0 0 0 & 0 0 0 0

Z w

C4 Q

Z w

Vl Vi & Vl

Q ~„ ~„ 0

oZZu. Z



1154 MAURO KYOTOKU AND HSI-TSENG CHEN 36

APPENDIX A: DERIVATION OF THE OVERLAP FUNCTION h (P, 8)

yBA(p 8)
(A 1)

We present in this appendix the method used to obtain the overlap function h(p, 8) in the polynomial form of
( e '

)"(cosp) '.
Expression (3.2) may be replaced by the following form:

8 AB& 8
h B~(p 8) BA(p 8) g j

/det, "i idetX

where

I" "(P,8)=Qjvjuj[(4ej —3G)uj uj e ' +2(2e —GA )u u "cosP],

AjB (P, 8)=GQj(Qj —1)(uj uj u& vj") e ' sin P,
hajj"(p, 8) =GQjQj uj uj"u&. vj" [(u,'v,"u, uj" +u&'u, ' v, v, )e ' +(u& uj"uj'u&" +vj uj"uj'v, "e ' )cosp] .

(A2)

(A3)

(A4)

Let us derive the third term, which we call h3 "(p,8); h, "(p,8) and h2 (p, 8) may be derived using the same
BAmethod. Considering that n "(p,8) = + [detXj "] ', we have, for h 3 "(p,8),

h3 "(p,8)= g [detXj "] ' g [detX~- ] ' ltpjj"(p, 8) . (A5)

The binomial expansion may be written as

g [detX, ] ' = g y F,'"e '' '" (cosP)'",
j" k . , I -.

J

(A6)

where

BAF-
0- k-

(uBu ~
)

j" i" (VBV."„) j" j" (2u Bu ~UBV ~
)
j"2(O ' —k '. ) 2(k „—I „) I'

J J J J J J J J

Then, (A5) becomes

h', "(P,8)= 4G y g— F,'„"'
J&J .J =J J

k
8 A ( j ] 8 A ( j j(ujuj )

' '(ujuj )
J

k'
8 A ' j' 8 A ' j'

(uj'uj' ) ' ' (uj vj )
J

Qj —1

X (2u,Bu,"v,BU,")&

J

8 A 8 I +lj, + gr „ 1

X(2uj uj v'uj )' exp i 2(kj+kj ) —(1j+lj )+ QXj" 8 (cosp)'
J

X fI, Qj'uj uj v, vj [(v, vj"uj uj" +uj'u, "Uj vj" )e ' . +(uj u,"uj'uj" +uj vj"v, vj"e ' )co'sP],

with g -- =2k -—I --.J J J
With the help of some algebraic work and by using some binomial identities as below,

QJ +1 kJ Oj —1 kJ

IJ kJ I,'
kJ+1 ( +1 Aj

lj+1 ~., lj +1
kJ'+ 1

and also by some rearrangement of indices, we get a clear separation between angular variables and the coefficients in
the following way:

8 A 8 A 8 A 8 A 8 A A A

h, (P8)= —G g gF, " „„1'+— +BA vj Uj 1lj llj (Qj kj )+Ilj 1lj U& Uj (kj 1j ) 1 uj vj Uj 1lj 1j lj

J&J . J UJ uJ. uJ'UJ Uj Uj' uj Uj COS P

X exp i 2(k, +k,') —(1, +1,')+ QXj' (cosp)' (A7)

The other two terms are obtained using the same technique, and here we only present the final results,
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hi "(P,8)=

h2" (p, 8)=

Jm

g F " [(4e& —G)(k —l )+(2el —GQ )lj]cospe' "
k, . . . , k. j=j)
1, . . . , 1.

I m

Jm

+ F " [—4G(l, —k, )(k, —l, )+ Gl, (l, —1)]cos'Pe' "
k, , k.

1 , . . . , 1
1 m

(A8)

(A9)

APPENDIX B: DERIVATION OF THE EXPRESSION OF THE REDUCED MATRIX ELEMENT
OF THE TWO NUCLEON TRANSFER REACTION

To calculate the matrix element (Pz- ~+&(hI )
~ A~„~ Pz z(b &) &, which is denoted by S,(TIN+1, T;N), we use the

projection integral (2.9) and (2.10) to obtain

S~.(TIN+ I, T N)=Cz. Cz g f dA' f d8' f dA f d8DQ, (Q')DM' z(Q)e' +" e
f t

with

X(pj ~R (Q)S (8)AJ„S(8)R(Q)
~ p;&, (B1)

(B2)
2Tf+1 2T;+1

Cr, Cr =, , I ~4y I I'r, ~~+i I lI &~4
I
~r Ix 14' & I

Notice, that to obtain SJ(T~N+ I, T;N ), the operator A,„, as the Hamiltonian operator, does not commute with
R (0) and S(8). If we use the following properties,

S t(8')At„=e 'eA „S(8'), R (Q)A~„= g A,~ „(&)~(&), (B3)
@=0,+1

and with help of the properties of the Wigner D matrix R (0) and S(8) operators, we have simply

$, (T~N+1, T;N)=Cz. Cr g f dQ" f d8"( —) v M,f

Tf 1 T;

—K p,

)&D~~(Q")e ' (pj ~

A.„R(Q")S(8")
~ p; & . (B4)

This result can be identified with the reduced matrix element of 4 (TlN+ I, T;N) and, with the help of Clebsch-
Gordan coefficient properties, we have

Tf 1 T,N(~, )&=C,,C, y f d8 f doe '( )'-

Then, using the definition (2.5) of the pair creation operator, we have

(B5)

& 0 r, ~+i(~g )l~lAj Ilk'(~; ) &

rf —I(.
. T 1 T;

=Cr Cr g Ql/20 ( —) ~

KK'v

X f d8e ' f dQD&' ( l)fn~'(Q, )8(oI' )J5, +(o~'„)J6„&+ —[(oI' )~ +(o~ )l] '. , (B6)

where (o'~')~ are the matrices from pairing tensors given in (2.15).
As in the case of energy, we are going to treat in the present paper only the axial symmetric case. Substituting in

the above expression the matrix elements of (o ~')~, after little algebraic manipulation we may get expression (6.7).
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