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Momentum-space second-order optical potential for pion-nucleus elastic scattering
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For use in applications such as pion photoproduction and inelastic exclusive pion scattering
studies, a first-plus-second-order pion-nucleus optical potential is constructed by fitting the phe-
nomenological p -dependent term to the m

+—-' C total and differential cross sections. It is demon-
strated that such a potential is A universal (A is the atomic mass number) and well describes all
available (total and elastic differential) pion scattering data for the He, Li, ' 0, Si, and Ca tar-
gets in a broad energy range 14( T (250 MeV.

I. INTRODUCTION

Presently, the theoretical models used to describe
simultaneously the pion-nucleus scattering data at low
(T„(80 MeV) and b, -resonance energies are inspired by
the 6-hole excitation idea' or by the multiple-scattering
expansions. In both cases a truly microscopic ap-
proach has not yet been achieved since the pion interac-
tion with two- (and possibly also more than two) nucleon
clusters is treated only on the phenomenological level.
That is, this important part of the interaction mechanism
is only revealed by fitting both in the 6-hole work
("spreading potential"; see e.g., Hirata et al. ) and, e.g. ,

by Liu and Shakin in their optical model.
Our work is most similar in spirit to that of Ref. 6,

where a microscopically constructed first-order pion-
nucleus optical potential has been supplemented by a phe-
nomenological second-order term which contains free pa-
rameters. The latter are energy dependent as indicated al-
ready in an earlier calculation, and in Ref. 6 they have
been obtained by fitting the scattering data for the indivi-
dual nuclei. Unfortunately, the parameters which came
out from the fit change rather unsystematically both with
the mass number A of the target nucleus and with the
charge of the incoming pions even for the pion scattering
by the isospin-zero nuclei. One can hardly believe that
such features can consistently be explained in any micro-
scopic calculation.

Here we would like to present another model of the
pion-nucleus interaction inspired by the multiple-
scattering theory. The model is rather simple and trans-
parent in the parameter-free construction of the first-order
optical potential. A nice feature is that the model then
possesses a gratifying consistency: Being supplemented by
a phenom enological term of the form
(Bo+Q''QCp)G(

i Q —Q i ), where G(q) is the Fourier
transform of the nuclear density squared, the model has

allowed us to find energy-dependent parameters Bo(E)
and Co(E) that are, however, universal with respect to the
charge of pions and the atomic number of the target for
nuclei up to 3 =40.

Our expectation is that the present work can be useful
not only as a practical tool of the data analysis of the in-
elastic processes [inelastic (~,~') scattering, (~, y') pho-
toproduction, etc.],but also as a guide for a further micro-
scopic construction of the second-order optical potential.
The numerical values of the parameters 80 and Co as
given in Table I and Fig. 1 are to be considered an
extension —towards higher energies —of the threshold
values extracted from the mesoatomic data, which are
usually only discussed when microscopic models of the
second-order terms are developed. '

We shall work in the momentum representation. Such
an approach affords definite technical merits; namely, it is
computationally easier to control several features, such as
the off-shell continuation of the ~N amplitude, the trans-
formation between n-nucleon and ~-nucleus c.m. systems,
the nucleon Fermi motion, and relativization of the equa-
tions. Similarly, the momentum-space methods are, by
now, widely used also in the applications which we
foresaw, e.g. , in the pion photoproduction analysis. ' "

In the construction of the first-order optical potential
(Sec. II) we follow the multiple-scattering approach of
Ref. 7. We do not introduce any free parameter at this
level, with the possible exception of the off-shell parameter
of the mN amplitude. After the first-order potential is
constructed, we add to the potential the above-mentioned
term proportional to the Fourier transform of the square
of the nuclear density p(r). At low energies of pions such
a term is mainly due to the true pion absorption. Histor-
ically, Ericson, and Ericson' were probably the first who
considered the p term in the pion-nucleus optical poten-
tial. Landau and Thomas have considered the form
(Bo+CoQ. Q')G (q) and have taken the parameters Bo
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and Co from the pion-deuteron absorption data. This has
allowed them to improve considerably the description of
the ~-3 scattering below 50 MeV. The parameters Bo
and Co adopted in Ref. 5 change by 20—33 % in the ener-

gy range 0—100 MeV. On the other hand, Chai and Ris-
ka foresee for them a strong energy dependence. We
therefore consider Bo and Co as free parameters and shall
fix them in Sec. III from data on pion-' C scattering. The
second-order potential thus obtained is then, in Sec. IV,
applied to the low-energy and resonance energy scattering,
taking He, Li, 0, SI, and Ca as targets. The ap-
proximations adopted in the present work are summarized
and discussed in Sec. V, and, finally, in Sec. VI, we give
some conclusions on the results and significance of the
present work.

p; p'; = ——+ (Q' —Q),,tr Q A —1

2A

pf =—.n Q'
(Q' —Q) .

Simultaneously, the ir-nucleon matrix t(E) is taken at an
energy E, actually shifted by the amount

the operator P projects onto the nuclear ground state,
P=

~

0)(0
~

. The parameter S distinguishes between the
Watson (S=0) and KMT (Ref. 4) (S= 1) formulations
of the multiple scattering theory.

The nucleon Fermi motion is treated here in the factori-
zation approximation: Instead of averaging over the nu-
cleonic motion, we use the effective values of the nucleon
momenta (in the ir-nucleus c.m. system)

II. FIRST-ORDER OPTICAL POTENTIAL
IN THE MOMENTUM SPACE

We use a simple variant of the multiple scattering
theories developed in detail in an earlier paper. Here we
merely summarize the main features of the model.

Using the free-nucleon matrix t (E) instead of the r(E)
appropriate for the bound nucleon (impulse approxima-
tion) and the nuclear optical potential U(E) in the form
U(E) = At (E) (coherent scattering approximation), one
has to solve the equation

T'(E) = U(E)[1+G (E)PT'(E)]

for the auxiliary matrix T (E), which is connected with
the pion-nuclear matrix T(E) as T'(E)=(A S)T(E)/A-.
In Eq. (1), G(E) is the pion-nucleus Green function and

AE = —" (Q'+Q)',

where Q (Q') is the pion momentum of the initial (final)
state calculated in the ~-nucleus c.m. system and the re-
duced mass of the pion-nucleon and pion-nucleus system
is denoted by p and A, , respectively.

The factorization approximation is indeed used for its
simplicity. Still, the approximation is rather effective: In
Ref. 13 it has been demonstrated that via factorization
one actually takes into account a large portion of the
medium corrections. This is probably due to the Galileo
invariance of the potential resulting from our procedure
(see Mach' ), since then the effects left out are only of the
order (m /m N ) = ( —,

'
) .

Technically, for the pion-nucleus system we solve the
equation

&Q ~F(E) ~Q&=&Q
~

V"'(.) ~Q& —,f ' d'g",
2772 Q —Q" +if

(4)

(Q'
~

I'"'(~)
~
Q) =( A —S)

p(Q', k')p, (g, k)

1/2

where the first-order optical potential for the elastic
scattering on the spin-zero, isospin-zero targets is

resonating partial wave l =1 a=( —', , —,').
The amplitude F(E) obtained from Eq. (4) is connected

with the needed T(E) matrix via the relativistic expres-
sion

(Q'
~

F(E)
~
Q) = — [A(g')A(g))' (Q'

~

T(E)
~
Q) .

Xfp(k' k z)Fp(Q —Q) (7)

Here, k (k') is the pion momentum in the nN c.m. sys-
tem in the initial (final) state, fp is the scalar-isoscalar part
of the irN scattering amplitude, and Fp(Q' —Q) is the
Fourier transform of the appropriate nuclear density dis-
tribution. A separable form of the pion-nucleon ampli-
tude was used in each partial wave (l, a), where l stands
for orbital momentum and a for spin and isospin quan-
tum numbers. The pion-nucleon form factors

ui~(p) =p'u(p), u(p) = [I+(rpp) j

characterize the off-energy-shell behavior of the ampli-
tude. When the choice rp=0. 47 fm was made, our ui (p)
is very much like the ~N separable potential in the

For the details of calculations we refer once again to Ref.
7. There, also, one find the extension of Eq. (5) necessary
for the spin-nonzero nuclei like Li considered in the
present paper. Let us only note that Eq. (4) has been
solved via the matrix inversion method, ' and the
Coulomb interaction effects are treated as suggested by
Vincent and Phatak. '

III. PARAMETRIZATION OF THE SECOND-ORDER
POTENTIAL

Exploration ' ' of the above-described first-order opti-
cal model has shown that one obtains in this way a fair
but unquantitative description of the data for the scatter-
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where R„„,~ is the two-body correlation length. The con-
tribution of such a term should be strongly energy depen-
dent due to the resonance character of the pion-nucleon
amplitude fo(z).

Taking together the above-mentioned suggestion of
Landau and Thomas and the just discussed approxima-
tion by Eisenberg and Koltun, ' and in the absence of any
trustworthy derivation of the second-order potential, we
opted for a semiphenomenological approach, taking

x d Bo(E)+Co(E)
d2

v (Q')v(Q) G(Q, Q)
v (Qo)

G(q)= rp (r) sinqr dr,4~
q

(8)

with the energy-dependent complex coefficients Bo(E) and
Co(E) to be determined from the data. The meaning of
v(Q) is the same as in Eq. (6). The kinematical factor
d =1+m„/2mN, where mN(m„) is the nucleon (pion)
mass, has been introduced so that the parameters Bo and
Co in the low-energy limit coincide with the definitions
usual in the mesoatomic studies. ' Actually, a very simi-
lar form of the second-order potential has been adopted by
Liu and Shakin, the only differences being rather arbi-
trary kinematic factors and the shift in energy E at which
the coefficients Bo(E) and Co(E) are taken in the actual
calculations. Assuming the dominance of two-nucleon
processes in the second-order optical potential and having
in mind the approximation of "independent nucleon
pairs" (see. Ref. 20), the energy E is shifted by the amount

Pz 3 —2 (Q, Q)2 Pz 3 —2 g2]~ g 4~ (9)

where p2 is the reduced mass of the vr-2N system, and the
simplified expression on the extreme right of Eq. (9) has
been used in the numerical work.

The term —AE stands for the energy of the center-of-
mass motion of the ~-2N system, provided the effective

ing of pions on the light nuclei. Definite disagreement (cf.
dashed lines in Figs. 2 —8) is observed between experimen-
tal and first-order theoretical results both at low and reso-
nance energies. Clearly, a new dynamical input is needed
to understand these features. It has been repeatedly sug-
gested recently ' that such an input may have a form of a
p -dependent term. Physically, such a term may receive
contributions from several processes. We mention here
the true pion absorption (two-body or "deuteron-like"
mechanism) and the processes left out when the impulse
and coherent approximations have been adopted. Actual-
ly, for the last two corrections, Eisenberg and Koltun'
have derived an approximate form

f (z) A ( A —1)G (Q —Q')&„„„,i .

values are used for the momenta of the 2N system,

P2 3+ 2A
(Q, Q)

2Q 3 —2

a 2Q'
P2y

=— (Q' —Q) .
(10)

The procedure adopted here is completely analogous to
the factorization approximation which leads to Eqs. (2)
and (3) in the case of the first-order optical potential. The
only difference is that the kinematics of the ~-N system is
now replaced by that of the ~-2N system.

As for the nuclear dynamics, it is fully contained in the
nuclear density distribution p(r) which enters into both
Eqs. (5) and (8). It is clear that G(q) of Eq. (8) is more
sensitive to the details of p(r) than the form factor F(q)
entering into Eq. (5). It is important, therefore, to use in
the calculations an expression for p(r) as realistic as possi-
ble. We have chosen for p(r) the model of symmetrized
Fermi density ' which correctly describes the nuclear elec-
tromagnetic form factors up to large momentum transfers.
Our density psi:(r) corresponds, by construction, ' to the
distribution of the nucleons with respect to the nucleus
center of mass. The experimentally observed form factor
is F,„„t(q)=fN(q)Fsi:(q), where Fsp is the Fourier trans-
form of psi:(r) and fN(q)=(1+q /0. 71 GeV ) stands
for the nucleon form factor. Further details concerning
the calculations with the symmetrized Fermi density are
given in the Appendix.

Investigation of pion single- and double-charge-
exchange reactions on nuclei indicate strongly the pres-
ence of isovector and isotensor terms in the complete
second-order optical potential. Such terms are not con-
sidered here and we refer the reader to the recent
coordinate-space analyses on this subject.

A. m.-' C scattering

To establish the form of the energy dependence of Bo
and Co, we have used all available data on the elastic
differential (do /d 0) and total (cr r ) cross sections for the
sr+-' C and vr -' C scattering at energies T„&250 MeV.
On the low-energy side we have paid attention to get the
fitted results close enough to the values
Bo ———0.043+i0.043 and Co ———0. 10+i0.10 extracted
from the mesoatomic data. ' This is indeed only a very
weak reference point, since these last values of Bo and Co
have been obtained using an optical potential' very
different from ours. Fortunately, as we shall see below,
the do /dO at T =14 and 20 MeV are not very sensitive
to the small changes of Bo and Co. The results of the best
fit for Bo and Co are given in Table I and Fig. 1.

In Fig. 2 we show the differential cross sections of the
m.—-' C elastic scattering calculated with the first-order
(dashed line) and first- plus second-order (solid line) po-
tentials described above and compare them with data.
The corresponding total and integral elastic cross sections
are shown in Fig. 3 ~

Before discussing the form of the energy dependence
obtained for the coefficients Bo(E) and Co(E), we wish to
comment shortly on the results for do. /dQ shown in Fig.
2.



1108 M. GMITRO, S. S. KAMALOV, AND R. MACH 36

14
20
30
40
50
67.5
80

100
120
135
150
162
180
200
215
230
240
260
280

ReBp

—0.05
—0.05
—0.05
—0.05
—0.05
—0.045
—0.020
—0.01

0
0.05
0.15
0.30
0.50
0.40
0.25
0.15
0.07
0.02
0

ImBp

0.05
0.04
0.025
0.01
0.005
0
0
0
0

—0.01
—0.08
—0.10
—0.12
—0.06
—0.01

0.02
0.04
0.04
0.03

ReCp

—0.14
—0.14
—0.14
—0.145
—0.15
—0.16
—0.185
—0.20
—0.25
—0.27
—0.30
—0.35
—0.35
—0.17
—0.075

0
0.025
0.05

—0.05

ImCp

0.12
0.10
0.05
0.02
0
0
0
0
0

—0.03
—0.10
—0.15
—0.20
—0.20
—0.13
—0.07
—0.03
—0.01

0

TABLE I. Numerical values of the parameters Bp (in units of
m ) and Cp (in units of m ) as obtained from fitting the
diAerential cross sections and total cross sectons of the ~—+-"C
scattering.

QOC

X

X~

Im BqX~ ~
g

Re

0,12

0.08

0.04

X

X

Im Co
X~ X X

- 0.04

-0.08 .

described in a model like ours, where e.g. , the angle
dependence of some auxiliary quantities has been disre-
garded; see Sec. V for a more detailed discussion. Still we
wish to stress that the inaccuracies only appear for the
scattering angles beyond the second minimum; again, pre-
cisely the same feature has been observed in the 6-hole
calculation by Horikava et al. , see Fig. 4 of Ref. 2 for
the 160 MeV pion scattering off ' C.

(i) In Fig. 2(a) we compare the results obtained with Bo
and Co from Table I with those (dashed —double-dotted
line) calculated using the above quoted mesoatomic esti-
mates of Bo and Co. It is clear from this comparison that
the last ones fail to reproduce the elastic scattering data
above T =20 MeV.

(ii) The sr+ 'C different-ial cross sections as measured
at T =65 MeV (Ref. 28) and T =67.5 MeV (Ref. 27)
seem to be in mutual contradiction: only the latter result
can be described by a smooth variation of the fitted pa-
rameters. To match the T„=65 MeV data, one would
need ReBo ———0.01, a value very far from the values
—0.05 and —0.045 appropriate at the energies T =50
and 67.5 MeV, respectively. Our choice will further be
supported by the results obtained for the 68 MeV pion
scattering off He shown in Fig. 4 and discussed in Sec.
IV.

(iii) The ir+ 'C data at -T =100 MeV near the first
minimum go substantially higher than our calculated re-
sult. We have preferred not to force the fit here at the
price of abrupt changes of Bo and Co at these energies. It
is interesting to mention that Antonuk et aI. in their
very detailed analysis of the 100 MeV ~+-elastic scatter-
ing on ' C within the 6-hole model have met a completely
analogous difficulty. The deep minimum as calculated
both in our approach and in Ref. 29 at 0=120 is inti-
mately connected with the minimum of the nuclear form
factor. Surprisingly, in the case of sr+-' 0 scattering the
data in the same energy region support the appearance of
such a minimum, see Fig. 6. This brings in an additional
difficulty, since one should look for a mechanism which
may help filling in the minimum in the case of ' C and,
simultaneously, leave the ' 0 calculation intact.

(iv) The large-angle scattering at higher energies
(T & 160 MeV) is probably too delicate to be accurately

-0.12

-0.16

-0.20
I . I . i . I . i . I . s

0 10 20 30 40 50 60 70 +WeV)

0.

0.4

0.1

-0.1

-0.1 .

-0.2.
-O3

-0.4.

80 1QQ 120 140 160 180 200 220'(MeV)

FICx. 1. Parameters Bp in units of m and Cp in units of
m „as functions of the pion kinetic energy.
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FIG. 2. Comparsion of theoretical calculations with the data for m scattering from ' C. The dashed curves represent the results for
V" ' and the solid curves include the effects of V' ' with B0 and C0 taken from Table I, while the dashed —double-dotted line is obtained
with V' ' calculated for mesoatomic values (Ref. 19) Bp= —0.043(1—i) and C0 ———0. 10(1—i). Data are from the following refer-
ences: (a) T =14 MeV (Ref. 22), 20 MeV (Ref. 23), 30 MeV ( f Ref. 24; $ Ref. 26), 40 MeV (Ref. 25), 50 MeV (Ref. 24), 65 MeV
( $ Ref. 28), 67.5 MeV ( f Ref. 27); (b) T = 80 MeV (Ref. 28), 100 MeV (Ref. 29), 162 and 226 MeV (Ref. 30); (c) 120( T„&200MeV
(Ref. 31), 226 MeV ( (Ref. 30;fRef. 31).
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B. Energy dependence of the parameters Bo and Co

To start the discussion of the results obtained for Bo
and Co, it is worth stressing that both positive- and
negative-charge pion scattering on ' C have been de-
scribed by a unique set of Bo and Co.

An inspection of Fig. 1 reveals that both ImBO and
ImCo decreases rapidly with increasing reaction energy
(15 5 T„S50 MeV) and are nearly zero in a broad interval
between 50 and 120 MeV. Then, a deep valley appears
with a minimum near the 6-resonance energy. The behav-
ior of our ImBO and ImCO near the resonance energy and
those of Ref. 6 are rather similar. For the argument below
it is important that the two phenomenological analyses ar-
rived at large negative values of ImBo and ImCo around
the resonance.

The interesting part is indeed the comparison with the
earlier microscopic calculation of the parameters Bo and
Co in the resonance region, which has been attempted in
Ref. 8. There, the authors assume that Bo and Co receive
their dominant contributions from the two-body absorp-
tion processes mediated by the exchange of ~ and p
meson s. The calculation was performed within the
Fermi-gas model and for infinite nuclear matter. In Ref.
8, ImBo, ReCo, and ImCO are all positive and a clear
maximum of both ReCo and ImCo has been obtained
near T„=170MeV.

To understand the signs of the calculated and fitted (in
Ref. 6 and the present results) values of ImBo and ImCo,
one should consider an intrinsic feature of the first-order
optical potentials: Tandy, Redish, and Bolle have
shown that the imaginary part of the first-order optical
potential is mainly responsible for the escape of the pions
from the elastic to the quasielastic channel. Further, once
the impulse approximation is used in evaluating the opti-
cal potential, the quasielastic contribution is treated only
in the plane-wave approximation. According to general
belief, the role of the quasielastic channel is then grossly
overestimated. Our fitted values obtained for ImBO and
ImCo (and indeed those of Liu and Shakin as well) seem
to confirm such an interpretation of the imaginary part of
the first-order optical potential: they are negative since
ImBp+Q Q'ImCp, first of all, should compensate for-
especially in the resonance region —the overestimated (by
the first-order potential) contribution to the total cross
section of the quasielastic channel, rather than reflect the
true absorption processes alone. On the other hand, the
latter should apparently be considered the main source of
ImBO and ImCO in the calculation by Chai and Riska.

If the argument above is correct, it actually means that
the microscopically calculated Bo and Co, like those of
Ref. 8, are inappropriate for use with the first-order opti-
cal potentials constructed on the basis of the free mN ma-
trix t. They can only be used together with the optical
potentials constructed without reference to the impulse
approximation.

IV. APPLICATION OF THE V'"+ V' ' MODEL

The model developed in Secs. II and III has been ap-
plied to the calculations of the total cross sections and
elastic integral and differential cross sections of the posi-

(a} 2000
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300 . ,
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200
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200
/
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40 80 120 160 200 240 Tp(M@V)

FICx. 3. Comparison with the data of calculated charge-
averaged total cross sections (o r =

2 [a r(n+)+sr T(m )]) and

elastic cross sections (o.,l). The dashed (solid) curves represent
the result for V "(V"'+V' '). Data are taken as follows: (a)
Ref 32 ( O Hey Lip C)y Ref 33 (' Lip Cy 0)y Ref 34
('7: ' 0, and Ref. 35 (~: Ca); (b) Ref. 36 (o: He), Ref. 37 (:
Li, ' C), and Ref. 38 (0: ' 0).
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tive and negative pions on He, Li, 0, Si, and Ca.
The corresponding results are shown in Figs. 4—8. %'e
have consistently used the KMT formulation (Ref. 4,
S = 1) of the multiple-scattering theory

In view of the standard good agreement between calcu-

lations and data, and for the economy of space, we mainly
show the results for one charge of pions. The alternative-
charge results are shown if some new feature can be
demonstrated.

The total o. z- and elastic integral cross section o.,~ are

(a)
10

10

4He
25M@V

(b)
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30'

220M@V

-10

60' 90' 120' 8

FIG. 4. The same as in Fig. 2 for m- He scattering. For the data see Ref. 40 (c: 25 MeV), Ref. 41 (V: 24 MeV), Ref. 42 (51 and
68 MeV), Ref. 43 (98 MeV), Ref. 44 (120, 145, 174, and 208 MeV), and Ref. 36 (110, 150, 180, and 220 MeV).
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shown in Fig. 3 for the cases where data are available.
Inspection of the figure shows that a really important im-
provement of the theoretical description is achieved when
including the p -dependent term of the optical potential.

In some cases o T are measured individually for positive
and negative pions. The corresponding calculated results
(for the V"'+ V' ' case) not shown here always correctly
reproduce the observed difference of the ~+ and ~ data.

Going into more detailed discussion, one sees definite
disagreement between theory and the data for the ' C to-
tal cross section O. T at lower energies. This is the only in-
stance where we were unable to improve the theoretical
description of o.T by any smooth change of Bo and Co not
deteriorating the fit for the differential cross sections. On
the other hand, it is gratifying to see that the calculations
of o.T and a,~ for the A =4, 6, 16, and 40 nuclei, both at
low and resonance energies, which were performed
without any free parameters, agree so nicely with the ex-
perimental data.

We now proceed to the discussion of the differential
cross sections of the individual nuclei.

10

10

A. He

The differential ~- He cross sections calculated includ-
ing (solid line) and omitting (dashed line) the V' ' term
are compared in Fig. 4 with the data. One easily observes
that the lower-energy (T~ & 120 MeV) theoretical results
are in almost ideal agreement with the data over the entire
measured range 10 &0&160' if indeed the V' ' term is
taken into account.

The resonance-energy m - He scattering has been ex-4

perimentally studied by Binon et al. and by Falomkin
et al. In our calculation we reproduce these data very
well for 0(60', see Figs. 4(b) and 4(c). There are definite
discrepancies between the theoretical and experimental re-
sults near the first minimum for 145 & T &210 MeV and
at large scattering angles for the energies T =174 and
T =180 MeV. For further discussion, see Sec. V.

B. Li ' Oand Si

The calculations for those three nuclei and the compar-
ison of the theoretical results with the experimental data
performed in Figs. 5—7 fully support our expectation of
the universality of Bo and Co and illustrate the high
predictive power of the model developed in Secs. II and
III.

The only serious discrepancy observed in this group of
results concerns the 100 MeV ~+ scattering on Li. The
calculated differential cross section is much too low by a
factor of about 1.5, even at small scattering angles. We
do not understand this discrepancy. The total cross sec-
tion o.T at T =100 MeV is obtained in agreement with
the data, see Fig. 3. Note that Germond encountered
similar difficulties with the 100 MeV differential cross sec-
tion in his eikonal-type calculation, where the nucleon
Fermi motion has been considered explicitly. Since Ger-
mond uses an eNN cluster model of Li, several many-
particle effects, which we just simulate by the p term, are
in his approach taken into account explicitly in terms of a

30' 60' 90' 120' 8

FIG. 5. The same as in Fig. 2 for the ~- Li scattering. The
data are from Ref. 45.

phenomenological ~- He scattering amplitude.
The differential cross sections for the ~— scattering on

' 0 and Si at 80& T~ (225 MeV shown in Figs. 6 and 7
as calculated in our V"'+ V' ' model are surprisingly
close to the data.

C. "Ca

In Figs. 8(a) and 8(b) we show our calculated do. /dQ
for the ~+- Ca scattering at low and near-resonance en-
ergies, respectively. Their comparison with the data,
which are also shown, demonstrates very clearly that the
V' ' term again greatly improves the model used. It
brings the theoretical do. /d0 into almost quantitative
agreement with the experimental data, with the exception
of the intermediate-angle (50'&0&90') interval for the
50, 60, and 80 MeV sr+ scattering. Let us discuss this
case in more detail.

The Coulomb interaction in the Ca nucleus is already
strong enough and this may bring about a considerable
difference of the ~+ and ~ differential cross sections.
The experimental work reported in Ref. 48 for Ca has
shown that the difference is largest at T =60—80 MeV
and for the scattering angles 50'& 0& 80: The m cross
section is in this interval 3 times as large as that for the
m+ mesons.

According to the estimations we have performed, the
strong dependence of the cross sections on the charge of
incoming pions is probably connected with the difference
of the proton and neutron distributions in Ca. As a
matter of fact, the neutron rms radius of Ca as extracted
from the 100 MeV a-particle- and 1 GeV proton-
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scattering data seems to be by 10—20% lower as com-
pared with the corresponding proton rms radius. In our
calculations we have assumed that the proton and neutron
distributions are identical.

To check further our V"'+ V' ' model independently
of the just mentioned difficulty, we decided to analyze
also the mean differential cross sections,

d(T 1 dG + dg
dQ 2 10 dQ

which are indeed less sensitive to the Coulomb effects.
The mean differential cross sections at T„=64. 5 and 80

(c)) 12
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FIG. 6. The same as in Fig. 2 for the m.-' 0 scattering. For
data see Ref. 23 (20 MeV), Ref. 24 (30 and 50 MeV), Ref. 25 (40
MeV), and Ref. 46 ( T )80 MeV).

FIG. 7. Comparison of theoretical calculations with the ex-
perimental data (Ref. 47) for (a) sr+ scattering on ' Si; (b)
charge-average n.— Si scattering (do /d 0= —'[du(n +

) /d 0
+do(n )/dQ); see also caption for Fig. 2.
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MeV as shown in Fig. 8(c) are rather reasonably repro-
duced by our calculations. This strongly supports the ar-
gument above. Unfortunately, the data for ~ - Ca
scattering at T = 50 MeV are not available and we can-
not therefore extend our analysis to this case.

In the resonance-energy region the Coulomb efFects are
less important. In this situation we observe in Figs. 8(b)
and 8(c), similarly to the cases of the lighter nuclei dis-
cussed above, a very close agreement of the results calcu-
lated with V"'+ V' ' potential with data.

1Q'

I
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I l / I ~ [
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( )
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Ul 1QO

E
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Q ~

30MeV
x)o

10

~ 10'

E
c, 10

~10)

10

30' 60' 90' 120' 150'8, 30' 60' 90' 120' g

100

1Q

~ 1Q
E
C'
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FICx. 8. The same as in Fig. 7 for ~- Ca scattering. For the data see Ref. 23 (20 MeV), Ref. 24 (30 and 50 MeV}; Ref. 48 (64.8
MeV), Ref. 49 (80 MeV), Ref. 50 (130, 180, and 230 MeV), and Ref. 51 (116, 163, and 241 MeV).
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V. DISCUSSION

Originally, we introduced the p -dependent term with a
very modest motivation: we just needed a better descrip-
tion of the pion distortion in our pion photoproduction
work. To our pleasant surprise we have observed the
striking A universality of the V' ' term derived through
fitting the data for a single nucleus —' C. Nevertheless,
in the preceding section we have seen that the universality
of the model for A & 40, though spectacular, is indeed not
complete: On one hand, we wish to stress that the poten-
tial V' ' constructed in Sec. III always guarantees a
correct reproduction of the forward-angle data at all ener-
gies and for all nuclei studied, with the exception of the
100 MeV scattering off Li. On the other hand, the agree-
ment between calculations and data deteriorates some-
times at larger scattering angles and for the lightest nu-
clei ~

If the general success of our model is due to the mutual
cancellation of several correction terms omitted here, as
we suppose, it is useful for the further analysis to
enumerate the main approximations which we have used.

(i) The nucleon Fermi motion is taken into account
only via effective nucleon momenta (2).

(ii) The p term is actually a remnant of the pair corre-
lation function,

C(r', r)= g (0~5(r' —x„)6(r—x;) ~0)
A (A —1),.

—p(r')p(r) .

One actually follows the argument by Feshbach et al. :
Due to the repulsive nature of the NN potential at short
distances, it is expected that, for small internucleon dis-
tance,

C(r', r)~ p(r) as
~

r'——r
~

~0 .

The long-range correlations are almost fully neglected by
such a choice.

(iii) The energy shift (9) depends also on the angle be-
tween Q and Q'. In the calculation we have disregarded
this dependence, taking

the choice appropriate for the forward scattering Q=Q'.
[To avoid a misunderstanding, let us stress that the angu-
lar dependence of the energy shift (3) of the first-order po-
tential V'" is always taken into account in our calcula-
tions. ]

(iv) The forward-scattering approximation was also
used in Eq. (7): To obtain the Co(E)Q.Q'/d term, we
have assumed the model of independent nucleon pairs,
which leads to the p-wave part of the p term in the form
Co(E)p2. p2, where

1+m /AmN A 2 m„
p2= Q — (Q' —Q) .

1+m„/2mN 2A m +2mN

Now, assuming m„/AmN=0 and Q=Q', we arrive at
pq--Q/d and at Eq. (7).

It is indeed tempting to connect the difficulties men-
tioned above in Sec. IV in describing some cases of the
backward-angle scattering on the lightest nuclei with the
last two approximations. In the future work, which must
indeed be directed towards a more accurate treatment of
the nucleon Fermi motion, it will definitely be useful to
avoid approximation (iii) and (iv).

From a purely empirical point of view, it seems that
introducing a single additional energy-independent pa-
rameter in V' ' (take, e.g. , exp[ —2 q /(A —1)]G(q) in-
stead of the present G(q)) would allow us to get an al-
most perfect fit in all cases considered. Our numerical
experience strongly supports this conjecture. Such a
form does not change the presently obtained results at
low energies and for the forward scattering at any ener-
gy. Simultaneously, the agreement reached here for o.z
and o.,] is not spoiled. Also, the results for the scatter-
ing on nuclei with A & 12 remain unaffected. The net
effect of the correction factor is then the needed im-
provement of the differential cross sections at backward
angles for the lightest nuclei. For the time being, we do
not see, however, any possibility of a microscopic ex-
planation for such an ad hoc factor.

Before concluding this section one should mention that
the use of the KMT approach has proved to be decisive
for the success of our model. Though no systematic
search has been attempted, we must say that we have
failed in looking for similar 3-universal functions Bo(E)
and Co(E) within the Watson formulation of the
multiple-scattering theory.

VI. CONCLUSIONS

We conclude the following.
(1) In the present work we have constructed an optical

pion-nuclear potential in the momentum space. The po-
tential contains two complex free parameters Bo and Co
in the p -dependent term. This term was introduced phe-
nomenologically and is intended to imitate the true pion
absorption and the second-order optical potential effects.
Numerical values of the parameters Bo and Co were ob-
tained from the ~-' C scattering data and turned out to be
independent of the atomic number of the target nucleus in
the interval 4& A &40 and also independent of the pion
charge.

(2) Using the above potential model, we succeeded with
one exception (100 MeV ~+ elastic scattering on Li) to
describe at a very good level of accuracy all available total
and forward elastic differential cross section data for the
He, Li, ' 0, Si, and Ca nuclei and T &250 MeV.

For the last three nuclei, very good results extend to the
full observed angular range. This success shows that the
A-dependence of the p term has been correctly chosen as
corresponding to the dominance of the two-body effects
among other many-particle contributions left out in the
first-order potential.

(3) It seems to be generally accepted that one cannot
simultaneously reproduce the observed total and
differential cross sections using only a first-order pion-
nucleus optical potential. Earlier, it was shown that the
assumption of pion propagation modified by the medium
corrections can adequately explain the total and elastic
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TABLE II. Parameters of the symmetrized Fermi density distribution, taken from Ref. 21.

Nucleus 4He Li 12C 160 28si Ca

b (fm)
c (fm)

0.300
1.251

0.566
1.342

0.393
2.275

0.404
2.624

0.477
3.134

0.493
3.593

scattering data provided a "spreading potential" fitted to
the total and forward-elastic cross sections is introduced.
From the results presented here it is seen that the phe-
nomenological p term serves the purpose similarly well
since it introduces the needed corrections which go
beyond the impulse approximation inherent in the poten-
tial V'".

(4) The parameters Bo and Co are energy dependent
and strongly enhanced near E =170—180 MeV. This
type of the energy dependence indeed shows the impor-
tant role of the resonance mechanism of the pion absorp-
tion which proceeds via creation of a 6 isobar.

(5) At low pion energies the parameters Bo and Co are
close to the value obtained from the mesoatomic data via
the optical potential of Stricker, McManus, and Carr. '

(6) The optical potential constructed in the present
work can be successfully used, not only in the forthcom-
ing analysis of the elastic scattering data, but also for the
theoretical work on inelastic pion scattering and pion pho-
toproduction in the distorted-wave impulse approximation
approach in the momentum space, which, by now, has be-
come most popular. Simultaneously, the existence of the
universal coefBcients Bo and Co as obtained in this work
should stimulate further microscopic studies of the two-
body mechanisms of the pion-nuclear interactions, partic-
ularly the true pion absorption.
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sinh(c /b)
cosh(c/b)+ cosh(r/b)

2 —1

~b3
po

—— 1+
4mc

(A 1)

and is known to reproduce well the nuclear charge form
factors for 4 ( 3 (40 in a broad interval of the
transferred momenta, 0&q (4 fm '. The parameters b
and c of Eq. (Al) were obtained in Ref. 21 from an
analysis of the electron-scattering data and are listed in
Table II.

The form factor corresponding to (Al) is '

2
~sF 4rr bc

0 q =po
q sinh(m. bq )

coth(m. bq) sin(qc)

—cos(qc) (A2)

To derive the Fourier transform G(q) of the density
squared defined in Eq. (8), we use the identity

2

rpsF(r) sin(qr)dr =posinh (c/b) I(a, q, ), (A3)
0 Bq Ba

APPENDIX

In the construction of the potentials V'" [Eq. (4)] and
V' ' [Eq. (7)], we have used the symmetrized Fermi densi-

ty psF(r). It has the form
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yanov for supplying us with their results on the sym-
metrized Fermi density. We wish to acknowledge grate-
fully numerous discussions with and comments by R. A.
Eramzhyan, M. K. Khankasayev, and M. G. Sapozhni-
kov. One of us (M.G.) thankfully acknowledges inspiring
conversations with F. Lenz and M. Locher and their hos-
pitality at SIN.

where a = cosh(c/b), and

cos(qr)
0 a + cosh(r/b)

mb sin[bq arcos(a)]
(a 1)'~ sinh(rrbq )

Combining Eqs. (A3) and (A4), we find

(A4)

G "(r)= (2mpob) C C
cos(qc) 1 vrbq coth(rrbq ) ——c—oth

q sinh ~bq
(A5)+ sin(qc) vr coth(irbq)coth — qc—C
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