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A complete set of Lorentz invariant nucleon-nucleon amplitudes, based on a meson-exchange mod-
el and on-mass-shell kinematics, is used to construct the impulse approximation optical potential for
use in the Dirac equation. Relativistic nuclear densities are also used in the construction. No free
parameters enter. The analysis provides a dynamical basis for the virtual pair couplings which are
implicit in the Dirac equation for proton-nucleus scattering. A momentum space potential and a lo-

calized potential suitable for coordinate space analysis are developed. Initial numerical calculations
are presented for proton scattering by Ca at 200, 500, and 800 MeV. The generalized impulse ap-
proximation provides a successful description of the elastic scattering data for these cases. Low ener-

gy results are improved substantially in comparison with the original form of Dirac impulse approxi-
mation based on using five Fermi amplitudes to represent nucleon-nucleon scattering.

I. INTRODUCTION

Several years ago, an impulse approximation was sug-
gested in which the optical potential in the Dirac equation
is calculated from nucleon-nucleon (NN) scattering data
and the nuclear density. ' No fitting parameters are used
in the impulse approximation. However, the general char-
acter of the Dirac optical potential reproduces the main
features found by fitting phenomenologically the proton-
nucleus cross section and analyzing power using the Dirac
equation. The impulse approximation in its original form,
which is referred to as IA1 in this paper, replaced the 12
fitting parameters of Dirac phenomenology. IA1 also
provided an explanation of the large scalar and vector po-
tentials in terms of the relativistic NN amplitudes. More-
over, the experimental data for scattering of 500 MeV
protons by Ca, particularly the spin observables, were
much better described by the Dirac impulse approxima-
tion ' than by the traditional Schrodinger impulse ap-
proximation. Further analyses ' showed that IA1 pro-
vided superior descriptions of most proton elastic scatter-
ing data above about 300 MeV. However, it was also
found that IA1 predicted overly large scalar and vector
potentials at lower proton energies.

The essential difference between Schrodinger and Dirac
impulse approximation calculations was identified by
Hynes et al. to be the implicit incorporation of virtual
NN pair effects in the Dirac approach. When large scalar
and vector potentials are used in the Dirac equation,
significant virtual part contributions arise in low momen-
tum transfer processes such as elastic proton scattering.
Due to the diffractive nature of elastic scattering, these
effects become quite prominent in the predictions of spin
observables. However, the specific manner in which the
virtual pair effects are predicted by the IA1 approach is
questionable. The critical point is that one needs to know
the coupling potential connecting positive-energy and

negative-energy basis states of the free Dirac equation, the
+ to —coupling. Experimental data for NN scattering

fix the matrix elements between positive-energy basis
states, the + to + coupling, but a model or assumption
is needed to predict the + to —coupling. IA1 is based
on using five Lorentz invariant NN amplitudes with
Dirac structure assumed to be given by the standard Fer-
mi covariants: S, V, T, 3, and I'. Thus the questionable
assumption of IA1 is the use of just the Fermi covariants
to extend the positive-energy NN data to the full Dirac
space of two nucleons.

Fermi covariants are natural from the point of view of
meson exchange models of the NN interaction, ' and they
do provide a definite prediction for the Dirac optical po-
tential. However, other choices for the representation of
the Lorentz invariant amplitudes cannot be excluded. "
Other representations generally predict different + to-
couplings even when the + to + couplings are held
fixed. In principle, one needs a complete set of NN am-
plitudes on the Dirac space of two nucleons in order to
construct unambiguously the Dirac optical potential.
Physical NN data are insuScient since they fix the ampli-
tudes in just one sector of the Dirac space, namely when
initial and final states are positive energy. Amplitudes in
the remaining sectors involving negative-energy states can
only be specified in a dynamical model. Since it is pre-
cisely these latter amplitudes which control virtual-pair
couplings, it is essential to adopt a dynamical model for
the NN amplitudes to have a well-founded approach.

Perhaps the best example of the type of ambiguity
which can arise is provided by the choice of pseudovector
~N coupling versus the choice of pseudoscalar ~N cou-
pling. ' The two are indistinguishable in positive-energy
matrix elements (on mass shell), but they provide radical-
ly different predictions for the + to —coupling. IA1
naturally embeds pseudoscalar coupling due to the as-
sumption of Fermi covariants and this has been shown to
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cause overly large scalar and vector potentials at low pro-
ton energy. ' A related difhculty is overly large virtual-
pair contributions to proton-nucleus scattering at low en-

ergy. A similar situation exists for NN scattering where
meson theoretical analyses' indicate a need for pair
suppression. This is obtained most simply by adopting
pseudovector ~N coupling. The need for pair suppression
also arises for proton-nucleus scattering. Therefore it is
very desirable to incorporate pseudovector mN coupling in
the NN amplitudes to remove the most obvious flaw of
the IA1 impulse approximation.

A provisional improvement over the IA1 assumption is
to adopt a simple five-term representation of the NN am-
plitudes which forces the one-pion exchange contribution
to be pseudovector. ' ' Essentially one replaces the pseu-
doscalar covariant with a pseudovector one. It is impor-
tant to realize that this assumption does not remove the
essential ambiguity of extending the NN amplitude
defined on positive-energy states into an operator for the
full Dirac space. References 12 and 14 present ine-
quivalent ways of replacing the pseudoscalar covariant by
a pseudovector one. In principle, the ambiguity which
one encounters can only be removed by use of a dynami-
cal model for the NN amplitude on the full Dirac space.

The problem of constructing complete sets of Lorentz
invariant NN amplitudes has been addressed in some re-
cent papers. ' ' There are two parts to the problem.
First, one needs a complete set of kinematical covariants
suited to expansion of the NN amplitude on the full Dirac
space of two nucleons, with proper regard for parity in-
variance, time-reversal invariance, charge symmetry, and
the generalized Pauli principle. The covariants selected
must be linearly independent and the associated ampli-
tudes must be free of kinematical singularities. ' Second,
one must determine the Lorentz invariant amplitudes
which multiply the kinematical covariants. In Ref. 15, a
complete representation is developed which naturally
embeds the IA1 assumption plus new terms which act to
control to + to —couplings. All desired symmetries are
incorporated. However, the Lorentz invariant amplitudes
of Ref. 15 do not have simple symmetry with respect to

The Pauli principle is obeyed, but in a way
which requires complicated combinations of amplitudes to
be even or odd when 6~~—6. This occurs because
some of the kinematical covariants of Ref. 15 do not
transform into themselves when particle exchange opera-
tors are applied. A more symmetrical representation is
developed in Ref. 16, where symmetrized covariants are
developed which are even or odd with respect to particle
exchange. Since the covariants are symmetric, each
Lorentz invariant amplitude of the representation is even
or odd when 6~~—8, for on-mass-shell kinematics. In
this case, all amplitudes have been calculated in terms of
44 independent amplitudes. The analysis uses a dynami-
cal description of the NN interaction based on the meson
exchange model of van Faassen and Tjon. ' The
meson exchange model provides a good reproduction of
the NN phase shifts in the 0—1000 MeV range for both
isospin 0 and isospin 1 states.

In order to treat exchange contributions to the optical
potential in a reasonable fashion, it is necessary to

separate the NN amplitudes into direct and exchange
parts. In the symmetrical representation of Ref. 16, this
separation has been effected by the device of fitting each of
the 44 independent amplitudes as a sum of Yukawa terms
which explicitly is symmetric or antisymmetric with
respect to t~u, where t and u are Lorentz invariant
Mandelstam variables. In the c.m. frame for NN scatter-
ing, t = —2p [I—cos(8)] and u = —2p [I+cos(8)],
where p is the c.m. momentum. Thus when 8~~—6,
t~u and vice versa. Symmetry with respect to t~u is a
Lorentz invariant manifestation of the 8~~—8 symme-
try which holds in the c.m. frame. Economical and accu-
rate Yukawa fits as functions of t and u are given for each
independent amplitude at proton energies of 200, 500, and
800 MeV.

Related work on the representation of the NN ampli-
tudes is given in Ref. 17. Particularly simple covariants
are used in this case. However, the corresponding ampli-
tudes do not have simple symmetry when 6~~—8 and
therefore are not as well suited to separating exchange
contributions from direct ones. In principle, many
different representations of the NN amplitudes are possi-
ble since the choice of covariants is not unique. All such
representations are equivalent, in principle, provided one
expands in a complete and linearly independent set of co-
variants and the associated amplitudes are determined
completely.

In this paper, the symmetric, Lorentz-invariant ampli-
tudes of Ref. 16 are used to construct a generalized im-
pulse approximation which is called IA2. The main point
is to employ a complete set of NN amplitudes from a
meson-exchange model in order to provide a dynamical
basis for the + to —couplings of the optical potential.
Taken together with the relativistic Hartree model wave
functions of Horowitz and Serot, the complete set of NN
amplitudes allows a parameter-free calculation of the opti-
cal potential. Thus in IA2, a dynamical model replaces
the assumption of five Fermi covariants used in IA1 with
the result that + to —couplings of the Dirac optical po-
tential are given a foundation in the meson-exchange
description of the nuclear force. Complete sets of NN
amplitudes are obtained from the one-boson-exchange
model of van Faassen and Tjon. Coupled integral equa-
tions are solved for NN, NA, and AA channels using a
quasipotential reduction of the Bethe-Salpeter equation.
The meson exchange model utilizes vertex cutoff functions
and pseudovector ~N coupling.

Section II of the paper develops a general form
of the impulse approximation potential, namely
O'= —

—,'Tr2[A, pI, where A is the Feynman amplitude
for NN scattering and p is the relativistic nuclear density
matrix. Conventionally, particle 2 is considered the target
nucleon and the trace is over Dirac indices of particle 2.
Wave functions of Horowitz and Serot ' are used to con-
struct the particle 2 density matrix, p. Section III devel-
ops the generalized impulse approximation potential, IA2,
based on complete sets of NN amplitudes. The analysis is
done in momentum space. A coordinate space form of
the potential is developed in Sec. IV. Utilizing the Yu-
kawa fits of NN amplitudes to separate direct and ex-
change terms, a local approximation is used for the ex-
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change contributions to the optical potential. In Sec. V,
initial numerical calculations are presented for proton
scattering by Ca at 200, 500, and 800 MeV. A sum-
mary of this work and some concluding remarks are
presented in Sec. VI ~

II. IMPULSE APPROXIMATION POTENTIAL

Elementary ideas of multiple scattering theory are
sufficient to suggest the "tp" optical potential appropri-
ate for use in the Dirac equation. Following Ref. 1, con-
sider the fixed energy Dirac equation at a given energy
E =(P +m )', p being the on-shell momentum. It
has the form

[y p —m —U(r)]g, (r) =0, (2.1)

where p"=(E,p) and y.p =y~". Scattering from initial
momentum p and spin projection s to final momentum p'
and spin projection s is described by the scattering ampli-
tude

f, , (p', p)= —m ( n. ) 'u,'+)(p')(p'
~

r~ p)u, '+'(p), (2.2)

where the t matrix is defined by

3

f(,"(p', p)/(»p) =I,g u, +'(p')P (k+ —,'q)
(2n )

XF(p, k ——,
)
q ~p ', k + —,

' q)

X P (k ——,'q)u, '+'(p), (2.8)

where I' is an invariant NN scattering amplitude,

q =p —p' is the momentum transfer, and P (k) is a
bound state wave function for a nucleon with quantum
numbers a. Figure 1 illustrates the single scattering pro-
cess. The eigenenergy e includes the nucleon rest ener-

gy, i.e., e =(m +k )' . Conservation of 4-momentum
requires q =0 and k =e in the NN amplitude and thus

p =p' =E, where E is the proton energy. All occupied
states are included in the sum over a. The factor (2ip)
is needed to be consistent with our normalization conven-
tion for the invariant amplitude I', as discussed in Ref. 1.
This is the same factor seen in (2.6) which relates the for-
ward scattering amplitude to Lorentz invariant quantities.

Equality of (2.7) and (2.8) implies that the optical po-
tential is

d k0(p', p)=a.f 3 g (k+ —,'q)F(p, k —) q~p', k+ —,'q)

T= U+ 0(y p —m +is) '1' . (2.3)

A caret, as in 0 or f', is used to denote operators on the
Dirac states. Plane wave Dirac spinors used here are
given by

u(+)(p)

u( —)( )

Ep+m
2m

1/2

O' 'P
Ep+m

0 P
E +mP

+S

(2.4)

(2.5)

where the superscript ( + ) or ( —) is used to denote
positive- or negative-energy solutions of the Dirac equa-
tion.

Note that the optical theorem fixes the imaginary part
of the forward scattering amplitude in terms of the total
cross section o.~ and the real-to-imaginary ratio a. In the
p-nucleus c.m. frame, this constraint may be written as

f„(p,p)/(2ip) =ar(1 —ia)/(8m. ), (2.6)

and it follows that f„/p is Lorentz invariant since o r and
u are physical observables.

Although iterations of the potential in Eq. (2.3) are
essential to a correct description, it is sufficient to consider
the Born approximation, f(,", in order to deduce the po-
tential 0,

where

Xf (k ——,'q),

—47Tlp

(2.9)

(2.10)

(2.1 1)

where A, has the Dirac matrix elements corresponding to

(E, p) (E, p-q)

Positive energy spinors present in (2.8) are stripped away
to obtain the potential in the Dirac space. Therefore ofT'-

shell and negative-energy matrix elements arise when 0 is
iterated to obtain a solution to (2.3). Moreover, the
bound state wave functions in (2.8) are not free Dirac spi-
nors. Consequently, it is necessary to have the NN
scattering amplitude as an operator in the full Dirac space
of two nucleons in order to ensure that U is well defined.
One needs the Feynman four-point function, A, , for NN
scattering in the language of quantum field theory.
Indeed, the kinematic factor ~ in the optical potential re-
lates the invariant NN amplitude to a Feynman ampli-
tude, JM, as follows:

Af(p, k (q~p', k+ —,'q—)=— aF(p, k —) q~—p'. , k + —,'q),

f,',"(p', p) = —m (2vr) 'u,'+'(p')U(p', p)u, '+'(p) . (2.7)

In the impulse approximation, the lowest order scattering
amplitude is due to coherent scattering by individual nu-
cleons of the target nucleus, regarded as free but distribut-
ed in space according to the nuclear density. For exam-
ple, if the nuclear wave function is an antisymmetric
product of single particle Dirac wave functions, the im-
pulse approximation may be stated as FIG. 1. Diagram for first order optical potential.
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the Feynman rules of Bjorken and Drell, Ref. 22, Appen-
dix B, as follows:

2 2
g ~XI'Xz

&BE 2 Z
+

Z
q —m, q —m„

i~ 1 (pl)&2(P2)~(p ii~2 ~P lii 2 )&1(P1)&1(P2)

= iaaf (Bjorken-Drell) . (2.12)

r1 r2 l 1Y1 (Pl P 1 )3 2V2 (P2 P2 }
+

q 4m
(2.13)

Here, A(Bjorken-Drell) refers to the sum of Feynman
graphs for scattering of two nucleons from initial momen-
ta p~ and p2 to final momenta p I and pq. Note that an
extra factor i =& —1 is included and Dirac spinors for in-
itial and final states are omitted to obtain M from the
Feynman rules in our convention. A specific example is
the sum of direct one-boson-exchange (OBE) contribu-
tions due to exchange of a scalar meson, e, a neutral vec-
tor meson, ~, and a pseudoscalar meson, ~, with pseu-
dovector coupling,

A second ingredient needed to construct the optical po-
tential is the nuclear density. It is convenient to define a
relativistic density matrix in the Dirac space of particle 2
as follows,

p(k, q)=4+ / (k —
—,'q)P (k+ —,'q) .

a
(2.14)

Note that the order of the wave functions is such that
p(k, q} is a 4X4 matrix. With these definitions, the opti-
cal potential can be written as a trace with respect to the
Dirac indices of particle 2, i.e.,

d kU(p', p) = ——,'Tr2, At(i2, k —,'q~p'—, k + —,'q)p(k, q) (2.15)

Thus the impulse approximation optical potential is determined by the Feynman amplitude for NN scattering and the
relativistic nuclear density matrix. The analogous nonrelativistic expression is very similar, i.e.,

d k
UNR(p', p) =—'Tr2 ~ r (p, k ——'q~p', k+ —'q)p(k, q) . ,2 (2 )3 2 ~ 2 (2. 16)

where the trace is with respect to Pauli spin indices of particle 2, t is the spin-dependent t matrix, and p is a 2 & 2 density
matrix for the nuclear ground state in the Pauli space. Simple arguments yield the ——,'Tr2[A, pI form of the optical po-
tential in the Dirac equation. The result may be generalized by using the exact nuclear density in (2.15).

Isospin quantum numbers have been suppressed in the analysis leading to the optical potential. A straightforward ex-
tension of the analysis accounts for diAering proton and neutron densities and interactions as follows:

d k d kU(p', p) = ——,'Tr2 f,A~~(p, k ——,'q~p', k + —,'q)p~(k, q) ——,'Tr2 f 3 JM~„(p, k —
—,'q~p', k + —,'q)p„(k, q) ' .

(2.17)

U(p', p)= ——,'Tr2(A. (p, —
—,'q p', + —,'q)p(q)I, (2.18}

where p(q) is a 4X4 matrix obtained by integrating over
k,

p(q)=4f g g (k ——,'q)P (k+ —,'q) .
d k

(2m )
(2.19)

where pp and p„are proton and neutron density matrices
in the nuclear ground state and a/Mpp and JMp are Feyn-
man amp1itudes for proton-proton scattering and
proton-neutron scattering, respectively.

Integration over k in (2.15) or (2.16) is generally ap-
proximated by evaluating the NN amplitude at k =0 and
removing it from the integral. This "factorization ap-
proximation" is motivated by the observation that the
nuclear density generally varies more rapidly with k
than the NN amplitude and is largest at k=0. In the
nonrelativistic ease, k =0 is an optimal factorization
point in the sense that the leading correction proportion-
al to k vanishes for a closed shell nucleus. Factoriza-
tion in the relativistic case yields

Employing the Fourier transformation,

g (k) =f, e '"'P (r),
(2~)

it is straightforward to express p(q) in terms of a coordi-
nate space density matrix

(2.20)

p(q)= f d re' pq(r),

p(r) =4 g it (r)it (r) .
a

(2.21)

(2.22)

Equations (2.18}—(2.22) are the important results of this
section. They define the optical potential in the factorized
form used in the rest of the paper. To construct the po-
tential, one needs the Feynman amplitude A, for NN
scattering in the Breit frame and the nuclear density ma-
trix p.

In Appendix A, the relativistic density matrix is con-
sidered in detail based on relativistic Hartree wave func-
tions for a closed shell nucleus. ' In this case, one obtains
scalar, vector, and tensor form factors as follows:



36 GENERALIZED IMPULSE APPROXIMATION FOR . . ~ 1089

a2q
p(q) =ps(q)+7'5 v(q) (2.23)

where each term is a Fourier transformation of a
coordinate-space density:

ps(q) =4m J dr r j 0(qr)ps(r), (2.24)
0

pi (q)=4m f dr r jo(qr)pi, (r),
0

(2.25)

, J'i(q )
pT(q) = 4~—m I dr r pT(r), (2.26)

0

and j is a spherical Bessel function. Coordinate-space
scalar, vector, and tensor densities are obtained from radi-
al Dirac-Hartree wave functions with upper components
G„~~;(r) and lower components io„F—„ij,(r),

ps(r)= g
njlt

pv(&)= g
nljt

pr(r)= g
njlt

2j+1 [G.~p(r) F.ip(&)],—4~

2j+1
[Gni&r(r)+F„ij, (r)],

4m.

Zj +1
[4G„(),(r)+F„(p(r)] .

4m

(2.27)

(2.28)

(2.29)

Here, n is the radial quantum number, l and j are angular
momentum quantum numbers, and t =+—,

' for proton
states and t = ——,

' for neutron states. To obtain the pro-
ton or neutron densities, pz and p„, for use in (2.17), one
uses (2.23) with scalar, vector, and tensor terms obtained
by omitting the sum over t in (2.27)—(2.29).

Figure 2 shows the nuclear form factors for " Ca based
on Eqs. (2.24)—(2.26) and using the Hartree wave func-
tions of Horowitz and Serot. ' The tensor form factor
defined as in (2.26) is as large as the scalar or vector form
factors; however, it should be noted that the factor
q/(Zm) tends to suppress tensor contributions to the opti-
cal potential. Since pi (q) is the matter form factor, in
practice it is the same as the nonrelativistic form factor,
pNR(q). Relativistic effects in the nuclear density show up
as diff'erences between pi (q) and either ps(q) or pT(q).
To see that this is the case, consider single-particle wave
functions formed by attaching free Dirac spinors to nonre-
lativistic wave functions P, i.e.,

for each isospin. However, not all 128 terms are indepen-
dent. Charge symmetry and time-reversal in variance
reduce the number of independent amplitudes to 56 for
of-mass-shell kinematics, to 50 for quasipotential kine-
matics, and to 44 for on-mass-shell kinematics, again for
each isospin. ' ' Moreover, the on-mass-shell case can be
characterized by invariant amplitudes which are individu-
ally even or odd with respect to the generalized Pauli
principle. Only five of the 44 independent amplitudes
needed on mass shell are determined directly from phase
shift analysis of NN scattering data and therefore the oth-
ers must be predicted from a theoretical model. For this
purpose, the only viable option is a meson exchange mod-
el. Extensive analysis of NN scattering dynamics within
the meson exchange framework has been carried out in re-
cent years. Of particular relevance is the work of Refs. 18
and 19 in which the NN scattering analysis is done in a
relativistic framework. Recently, the model has been ex-
tended to incorporate channel couplings between NN,
NA, and hA states in order to allow for inelasticity in the
NN channel and to obtain realistic results above the pion
production threshold. Numerical calculations show that a
reasonably accurate description of NN scattering data is
achieved for the 0—1000 MeV range of laboratory energy.
Within this dynamical framework, one has a complete
description of the relativistic NN amplitude. Therefore
we adopt the meson exchange mode1 as the theoretical in-

put to determine negative energy couplings implied by the
Dirac optical potential.

IO

IO

g (&)= P (k),
2m

(2.30) —2
I

where terms of order k /m are neglected. From (2.19)
one finds that the corresponding density is IO

a2'q
p(q)= 1+r2 pNR—(q),

2m
(2.31)

where pNa(q) is the nonrelativistic form factor. Terms of
order k /m are again neglected. Thus it is clear that
ps =py =pr =pNR when wave functions of the form (2.30)
are used.

I

2
I

4

III. CONSTRUCTION OF THE POTENTIAL

In general, the parity-invariant NN amplitude needed
to construct the Dirac optical potential contains 128 terms

q (fm )

FICx. 2. Nuclear form factors for Ca. Solid line shows vec-
tor form factor, dashed line shows scalar form factor, and dotted
line shows tensor form factor.
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)& F '
(p ),pp ~p I,p p )

x g'(p))&p'(pp), (3.1)

where p; = + or —,for i = 1 and 2, distinguishes positive
and negative energy initial states. Similarly, p,' = + or-
for final states. There are 16 p-spin sectors of the scatter-
ing matrix of two nucleons and a class superscript ij is as-
sociated to each as in Table I. Covariant projection
operators which are used to separate the 16 sectors of the
full Dirac space are defined as follows,

p(F p
—y.p)+m

A~(p) =
2m

(3.2)

A relativistic quasipotential equation is solved for cou-
pled NN, NA, and AA states with ~, e, g, p, 6, and co

meson exchange. The meson exchange dynamics predicts
the NN matrix elements involving negative energy states
from the same meson-baryon couplings which succeed to
describe the NN scattering in positive energy states.
Pseudovector mN coupling is used. Since phenomenologi-
cal phase shifts are available in positive energy states,
these are used in place of the meson exchange results to
ensure accuracy. References 18 and 19 describe the
meson exchange model and further details may be found
in the thesis of van Faassen. In our calculations, the
model is extended to include negative-energy intermediate
states in the NN channel. '

For the optical potential, NN amplitudes are needed in
the proton-nucleus c.m. frame. Phase shift analysis is
practical for NN scattering only in the NN c.m. frame.
Therefore it is necessary to boost the amplitudes. This is
most conveniently done by introducing a Lorentz invari-
ant representation in which amplitudes take the same
form in all frames. References 15—17 address the prob-
lem of expanding the full amplitude in terms of invariant
amplitudes times kinematic covariants. In particular, Ref.
16 provides a highly symmetrical set of kinematic covari-
ants for which all independent amplitudes are even or odd
with respect to the generalized Pauli principle for on-
mass-shell kinematics. Moreover, Yukawa fits are given
for each of the independent amplitudes and symmetry re-
lations permit reconstruction of a complete set of 128 am-
plitudes from the independent amplitudes. Symmetry
with respect to Pauli exchange is incorporated by ap-
propriately combining Yukawa functions of t and u, the
Mandelstam invariants. The Yukawa fits are designed to
provide a separation of direct and exchange contributions
for on-mass-shell scattering and they provide an analytical
form suitable for extrapolating amplitudes beyond the
physical region.

Following Ref. 16, the full NN amplitude is expanded
in two steps. Step 1 uses covariant projection operators to
separate positive and negative-energy sectors of the Dirac
space,

I I

1~72~P 1~72) g A1 (pl)A2 (p2)
I I

P&PN&Pz

TABLE I. The 16 p-spin sectors of the scattering matrix of
two nucleons.

Class Rho spins

p& pi p& p& Constraint

ll
12

21

13

31

14

41

23

32

22

33

24

42

34

43

44

stricted to act only within one p-spin sector. Thus there
are 16 different sets of F 'J amplitudes which go into deter-
mining the operator F defined by (3.1).

Step 2 expands each F'~ in terms of invariant ampli-
tudes f/~ times kinematic covariants I «(+ ) or I «( —)

as follows,
9

(pl p2~p 'i,pz )= g fk [& I ll «('t}, )

jc =1
(3.3)

with g;~ = + or —depending on the class ij. Table I
provides values of g;~ which are used in the various p-
spin sectors. The notation [a & ] refers to the set of
Lorentz invariant arguments upon which each amplitude
depends. These arguments are defined in Table III of
Ref. 16. However, for on-mass-shell kinematics, just
three arguments are needed, i.e., s =(p, +pz ),
t =(p& —p~)', and u =(p, —p', ) . As explained in Ref.
16, the covariants I «(g) are even or odd with respect to
particle exchange. Although nine terms appear in Eq.
(3.3), one of these is identically zero for each of the 16
classes due to a constraint shown in Table I. Thus Eq.
(3.1) with 16 independent p-spin sectors and Eq. (3.3)
with eight independent amplitudes for each sector ac-
counts for 128 linearly independent terms and 128 in-
variant amplitudes. Due to symmetries, only 44 of the
invariant amplitudes are independent on mass shell.
Moreover, one of these is found to vanish when a quasi-
potential calculation of the NN amplitudes is performed.
Thus 43 independent amplitudes suffice to describe all
nonvanishing fg on mass shell.

Using the Yukawa fits to the independent amplitudes
from Ref. 16, we construct a complete set of on-mass-
shell amplitudes as follows:

Where p= + or —.Note that amplitudes F'~ are re- f„"= —~ '[Af, „"(r)+cr„"A.„"(u)], n =1—5 (3.4)
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f„=f„=—x '[At„(t)+o.„At„(u)], n = 1 —6

f24 f42 f34 f43 —1[At24(t) + 24At24(u )]

(3.6)

n = 1-5, 7-9 (3.7)

f„=—ll '[At„(t)+o „At„(u)],
g„+ = —~ '[At„' (t)+o„' At„' (u)),

g„= rt —'[At„(t)+o „At„(u)],
f„'4=f„'= —,'(g++g„), n = 1,6

f"=f"=,'(g' g-. ), —n =16

n=1 —5

n=1 —6

n=1 —5

(3.8)

(3.9)

(3.10)

(3.1 1)

(3.12)

f 12 f21 f13 f31 ~ —1[At 12(t)+~12At12(u)]

n =1-5, 7-9 (3.5)

Equations (3.4)—(3.15) completely determine 110 non-
vanishing terms of the on-mass-shell NN interaction on
the full Dirac space of two nucleons. Time reversal in-
variance, charge symmetry, and the generalized Pauli
Principle produce equalities among the amplitudes which
are evident in these equations.

For the present purpose, it is convenient to expand the
symmetrized covariants I k(rt) of (3.3) in terms of 13
simpler ones as follows,

13

I"k(21)= g Bl,„(rj)A'„.
n =1

(3.16)

Table II defines covariants %1 to %13 in terms of Dirac
matrices and momenta Qll, Q12, Q21, and Q22 which are
formed out of the initial momenta p1 and p2 and final mo-
menta p'1 and p2 as follows,

where At'~(t) represents a sum of four Yukawa terms as
follows: Q;, =(p,'+p, )/(2m) . (3.17)

At'„'(t)= g
m 1 P —t A —t

(3.13)

and, similarly, At'„'(u) is the same function with t~u.
Symmetry parameters 0'~ take the values + 1 or —1 and
thus each amplitude in Eqs. (3.4)—(3.10) is symmetric or
antisymmetric with respect to interchange of t and u. Nu-
merical values of coupling constants (g„'J ) /(4m), symme-
try parameters 0'„, masses p, and cutoff mass A, which
are needed to evaluate (3.13) for the 43 independent am-
plitudes of Eqs. (3.4)—(3.10), are tabulated in Ref. 16 for
both isospin 0 and isospin 1 states. A cutoff mass
4= 1150 MeV is used.

The f„" amplitudes are based on a phase shift analysis
of NN scattering data as given in Ref. 25. As a result, the
f„"amplitudes for isospin 0 states are not symmetric with
respect to interchange of t and u and a correction must be
made. Charge dependence of the np interaction is incor-
porated into the phase shift analysis and this causes the
small asymmetry with respect to interchange of t and u.
To take this eff'ect into account, we add to f„" (in isospin
0 states) a correction 6f„" which has opposite symmetry
to that of f„",i.e. ,

6f„"= —a. '[5At„"(t)—o „"5At„"(u)], n =1—5

4 g ll 2

p —t A —t

(3.14)

(3.15)

The five extra coupling constants (5g„" )2/(4~) in (3.15)
are the charge-dependent coupling constants listed in Ref.
16 for isospin 0 states.

Table II also provides values for the 9X13 matrix B(g).
Equation (3.16) and Table II constitute a representation of
the symmetrized covariants I q(21 ).

It follows that I k(21) may be replaced by linear com-
binations of %1 to %13 to arrive at

13

F "(pl,p2 pl p2)= g F"[al]~
n =1

where

9
Fl'[al]= g fk'[al ]Bk.(g,&)

k =1

(3.18)

(3.19)

Covariants W, to A9 and the associated amplitudes F'1'

to Fg were used in Ref. 15 to construct a nine-term rep-
resentation in which F]o to F» are zero. The nine-term
representation incorporates all the required symmetries,
but it produces amplitudes which do not, in general,
have simple symmetry with respect to interchange of t
and u. This feature complicates the separation of direct
and exchange contributions and therefore limits the use-

fulness of the Ref. 15 representation to high energy
where exchange contributions to the optical potential are
suppressed. It should be clear that Eq. (3.18) applies to
either the nine term representation of Ref. 15 or to the
symmetrized representation of Ref. 16. In the latter
case, Eq. (3.19) and Table II show how to construct the
13 amplitudes F„'~ from the nine symmetrized amplitudes
f„"given by Eqs. (3.4)—(3.12).

To determine the optical potential, we need the Feyn-
man amplitude At. From Eqs. (2. 11), (3.1), and (3.18), it
follows that

13 r r

At(pl ip2~p I ~p 2 ) = g +1 (pl )A2 (p2) g ~n [a 1 % +n1 (pl )A2 (pz)
P IPZP ]P2 n =1

(3.20)

I

where At„' ' '[a 1 ] is a scalar Feynman amplitude
formed as follows,

1 I

At„' +' '[al]= ~F"[a]— (3.21)

Table I specifies the correspondence of p-spin labels,

I

p]p2p1p2, which appear on the left-hand side of this equa-
tion, to class labels ij, which appear on the right-hand
s1de.

Substituting (3.20) into (2. 18) yields, after some rear-
rangement,
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U(p', p)= g Ai'(p')0 ' '(p', p)Ai'(p),
I

P&Pl

where

13 I I

(3.22)

and
I

p '(q) = A2'( ——,'q)p(q)Az'( —,'q) . (3.24)

Invariance of a trace with respect to cyclic permutations
I

has been used to move A2'( —,'q) to a rightmost position,
and then absorb it into the projected density operator
defined bg (3.24). Equation (3.23) defines four optical po-
tentials, U ++, U +, 0' +, and U, as sums of direct
and exchange Feynman amplitudes times traces involving
density operators p++, p+, p +, and p and kinemat-
ical covariants %'~ to %~3.

Consider first the projected densities. Using (2.23) in
(3.24) leads to the following results,

I

p '(q) = g p '(q)Xk(2),
k

(3.25)

I

where pk '(q) are form factors depending only on

q =
~ q ~, and Xk(2) denotes a set of eight linearly in-

dependent and parity invariant matrices in the Dirac
space of particle 2. For example, these may be chosen to
be

Xk =
I 1, y, a e(, y.e.), a.ep, y e2, a e2a e), y e2a. e) I,

where e~ and e2 are orthogonal unit vectors. For the
present purpose, it is convenient to use vectors which are
natural to the optical potential, even though they are nei-
ther orthogonal nor unit vectors. Therefore, the set of 7's
which we use is based on the choices e~~q/m and
ez~p/m, where q=p —p', and where p and p' are the
momentum arguments of the optical potential. The set of
7 s used &s

0 &'q 'V'q P 'V'P & P q 3 P q+k lr P r
m m m m m m

(3.26)

For example, X3(2)= —aq. q/m and so on, where the
Dirac matrices for particle 2 are used. One similarly has
a set Yk(1) in which the Dirac matrices of particle 1 are
used. Any parity invariant operator on the Dirac space of
particle 2 may be expanded, as in (3.25), in the set of
Xk(2). Similarly, any parity invariant operator on the
Dirac space of particle 1 may be expanded in the set
Xk (1).

An important property of the 7's is that they form a
group with the multiplication rule

+i+j g Pjik +k
k

(3.27)

where the structure constants p;,k depend on the scalar

UPiPi( ~

p) y y ~PiPzP&Pz) PT (~ PP2Pz( ) I

p~ n =1

(3.23)
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products a =e1 e1, b =e2.e2, and c =e1.e2. If e1 and e2
are orthogonal, then the sum on the right-hand side of
(3.27) contains a single term. Otherwise there can be two
terms. Table III shows the group structure constants P;,.I,
based on our choices e1~q/m and e2~p/m. Note that
Dirac traces of 7's vanish except for the scalar term g1,
i.e.,

Equations (3.29) —(3.34) together with (2.24) —(2.29) com-
pletely specify the nuclear density information needed to
construct the optical potential in the approximation con-
sidered here.

It remains to evaluate the Dirac traces. Combining
(3.23) and (3.25) produces

13 4 I I I

—,'Tr[Xk ) =5kl, k =1—8 . (3.28)
P1P1(pt p)gg+P1P2P1P2[]pP2P2(q)

p~ n=1 k=1

——,'pzpg, a pr(q),
I

P2 '(q)= —,'~(P2+Pz)Ps(q)+ —'(I+P2P2)PV(q)

,'(pz+ p—z—)a'pT(q),
I

p3 '(q) =,'~pzpzpT(q)+ ,'(p2+p2)pv(-q)

—
—,'[1—pzpz(k +a )]pT(q),

I

p4"'(q) = ,'(pz p'2)-[ps(—q) ~p v(q)]

where

(3.29)

(3.30)

(3.31)

(3.32)

For the Hartree-density of a closed-shell nucleus, only
to X4 have nonvanishing coefficients in (3.25). The

nonvanishing form factors are
I

pl '(q) = —,'[I +pzpz(&'+a')]ps(q)+ ,'&(pz—+pz)pv(q)

X —'TrzIA'„Xk(2) ) . (3.35)

, E(p')+ E (p) P —-'q

2m
'

m
(3.36)

12—
E(p')+E( —,'q) p ——', q

2m
(3.37)

21

E(p)+ E ( —,
' q) p+ —,

'
q

2m
'

2m
(3.38)

The required traces are straightforward and Appendix B
provides details of their evaluation. Table IV lists the
13)&4 matrix by Dirac traces which arise here. The re-
sults involve momenta Qll, Qlz, Qzl, and Qzz defined as
in (3.17). For the factorized optical potential (k=0 in
Fig. 1), these momenta are

and

a =q /(4m ) (3.33) Q22=
E ( —,'q)

, 0 (3.39)

(3.34)
Since a trace over particle-2 Dirac indices leaves an opera-
tor in the Dirac space of particle 1, the trace in (3.35) may

TABLE III. Traces for Eq (3.35).. Traces of the form —'Trzt%'„gk(2)] are given. Column 3 refers

to Xl ——1, column 4 to X2 ——y2, column 5 to 73 ———a2.q/m, and column 6 to L4 ——y2 q/m.

—,'Trz I~„) 4 Trz tel„
—a2 q Tr,

m

10

12

13

fl f2

Ol ~2@v
pv

~ =Pl/25 5

V171723 2p

yz. Q11

y l.gzz

~r2. Ql 1

&r l.gzz

rz. glzS

yl Q21S

&rz QlzS

Pr1 QzlS

yl Qzz

0

—,'yl Qlz

—,'yl Qzl

4 r 1 'Q12

——,'r 1 Qzl

pl

g0

—,
' y1y1 Qlz

—,
'
y 1.Qz 1 y 1

——,
'

y 1 y l.Q 1 2

4 rl Q21y 1

al q
m

—a l.q
r1'Q12

4m
a 1-q—y 1.Qz 1

4m
—a l.q

yl glz
4m

al qrl. Qzl 44m

0
Qll q

m

0

r l.q r 1 Q12
4m

4m

yl Qlz
4m

r l.q
4m
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TABLE IV. Group constants p;jk. Row i, column j entry shows g„p;~kXk in terms of three constants: a =q /m, b =p /m', and

c =2q.p/m . For example, from the row 4, column 5 entry, one reads $4&2=c and $4q8= —1. All values of p;,k for i, j, or k= 1 to 8

that are not determined by the table are zero.

X]
X2

X3

X4

X5

X6
X7

Xg

X2

Xl
X4

X3

X6

X5

Xg

X7

X3

X4
aX1

—aX2
—X7

Xg
—aX5
—aX6

X4
—X3
aX2

—aXI
Xg

—X7

aX6
aX5

X5

X6
—CXI+X7
cX2 —Xg

bXl
bX2

cX5+bX3
cX6—bX4

X6

X5
cX2 —Xg

—cX1+X7
—bX2
—bXl

cX6—bX4

cX5+bX3

X7

Xg

cX3+aX5
cX4 —aX6

—bX3
bX4

CX7 —ahXl
cXg —abX2

Xg

X7

cX4 —aX6
cX3+aX5

—bX4
bX3

cXg —ahX4
CX7 —abX1

be expanded in the basis Xk(1) from (3.26) as follows,

8

—,'Tr2IA'„Xk(2) )
= g C„kX (1), (3.40)

It is useful to further expand the optical potential using
the basis set Xk(1). Combining Eqs. (3.22) and (3.41)
yields

where C„k is a scalar coefficient. Appendix 8 works out
the nonzero values of C„k for the traces defined by Table
IV and momenta as in (3.36)—(3.39). This procedure pro-
duces expansions for the four optical potentials U++,
U+, U +, and U in terms of the e&ght Dirac opera-
tors X (1) as follows,

8 I

U ' '(p', p)= g g U ' '(p', p)
m =1

I

X &l'(p')X (1)&l'(p), (3.43)

8 I

U ' '(p', p) = g U ' '(p', p)X (1), (3.41)
where all the Dirac matrices are in the last three factors.
In terms of the basis set Xk(1), these may be written as
follows:

I

where U ' ' is a scalar function formed out of products of
I I

NN amplitudes, A, „' ' '[a l ], nuclear form factors,

pk '(q), and kinematic factors C„k of Appendix B,

8

Al'(p')X (I)&l'(p)= g D '. 'X. (1) .
n =1

(3.44)

13 4 I I I

p~ n =1 k=1
(3.42)

I

Since the projection operators (3.2) are sums of coefficients
times X's, the group multiplication (3.27) can be used to

deduce the matrix D '„'. We find

DIlIi ~ &(p ) I E(p)
1

mn ~ pl 42mk Tpl46mk + 2plp4mk +Nlmk pl pk2n Tpldk6n + TljIkln
m 2m

(3.45)

8

C'(p', p) = g U, (p', p)X, (1),
n =1

where eight potentials U„are defined by

(3.46)

Proceeding in this fashion, one obtains the desired expan-
sion for the optical potential,

U(p', p) =S +y l V — T +
—Ey1+ y1- p, + m

the optical potential is finally rearranged to a form
which proves convenient for later transformation to
coordinate space:

8 I

U„(p', p)= g g U ' '(p', p)D '„', n =1-8 .
p'p m =1

(3.47) &1 Pa +
m

Introducing p, = —,'(p+p') and q=p —p', and observing
that X7(1) and Xs(1) may be expressed as . ~1 q&pa 0+I

2 (SLS+1 1VLS ) (3.50)

pa q q . ~1 q&pa+ —i 7

m 2m m
(3.48) where

p q q . ~1 q&Pa
78=P +m2 2m2 m2

(3.49) S =U1+ + U7 —U6,P q q
m 2m

(3.51)



36 GENERALIZED IMPULSE APPROXIMATION FOR. . . 1095

V= U2+ + U8+ U6,
v q q s
m 2m m

(3.52)

T = U3+ —,'U5,

C=U6,
D = U4+ —,

' U6,

F =U5,

SIs = —U7

VI.s = —U8

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

IV. COORDINATE SPACE POTENTIAL

Here, S is a Lorentz scalar potential, V is the time com-
ponent of a vector potential, T is a tensor potential, C is a
space-vector potential, D and F are potentials associated
with time-reversal odd operators in (3.50), and SLs and
VLs are scalar and vector spin-orbit potentials which
directly enter the Dirac equation. When on-mass-shell
NN amplitudes are used, as in this paper, time-reversal
odd potentials D and F vanish. Thus six nonvanishing
potentials contribute to the optical potential in this case.
In general, these potentials depend on three rotational
scalars formed out of momenta p and p', for example, q,

2p„and q.p, .
Equations (3.50)—(3.58) are the basic results of this sec-

tion. They define the eight Dirac optical potentials. In
order to calculate these potentials, one uses (3.4)—(3.15) to
determine symmetrical NN amplitudes f„'J, Eqs. (3.19)
and (3.21) to determine the Feynman amplitudes

' '[a
& ] in all the p-spin sectors, and Eqs.

(3.29)—(3.32) to determine the projected densities pk '(q).
These ingredients are combined in Eqs. (3.42) and (3.47)
to determine eight optical potentials U~(p', p) to U8(p', p).
Finally, Eqs. (3.50)—(3.58) determine the eight terms of
the optical potential. Each potential depends on the ener-
gy and also is a nonlocal function of p and p'.

Isospin effects are incorporated by a straightforward ex-
tension of the analysis. One executes the procedure twice,
once with pp amplitudes and proton densities and once
with pn amplitudes and neutron densities. The resulting
proton and neutron contributions are added to form the
optical potential as in (2.17).

If the potentials are functions only of q and the
asymptotic momentum, p, or the energy E, they are
equivalent to local potentials in coordinate space. This is
obviously not true, in general. However, for high energy
scattering a reasonably accurate local approximation may
be obtained for each of the nonvanishing potentials.

value p throughout the scattering. Similar approxima-
tions are used to obtain a local form for the potentials in
Eqs. (3.51)—(3.58). The leading nonlocalities present in
(3.50) due to a.q/m, y.p, /m, and so on are treated exact-
ly in coordinate space, but nonlocalities internal to the po-
tentials S, V, and so on, are treated approximately.

Two main sources of nonlocality arise in the Dirac po-
tentials. The first is due to momentum dependent covari-
ants and projection operators. Assuming p=p, nonlocal
factors E(p) and E(p') are replaced by E =E(p). Simi-
larly, p/m =p/m and p, .q/m = —,'(p —p' )/m =0 are
used to localize the matrix D in Eq. (3.45). These approx-
imations are expected to be rather good at high energy
since typical corrections involve

E(p) =E + =E —V (4. 1)
2m

where V, is an average Schrodinger potential and the esti-
mate is based on the WKB approximation, where

p =p —2m V, . Since V, (&E, it is a good approximation
to simply use E(p)=E. However, it must be noted that
large angle scattering is more sensitive to nonlocalities and
therefore the approximations work best at small momen-
tum transfer.

The second source of nonlocality is the nucleon ex-
change contribution contained in the JR~(u) NN ampli-
tude terms of Eqs. (3.4)—(3.10). Direct terms, At„(t), are
naturally local since t = —q, and they tend to be the
most important contributions in p-nucleus scattering. Al-
though intrinsically nonlocal, the exchange terms are
much less important for small angle scattering at high en-
ergy. Care is nevertheless required. For on-mass-shell ki-
nematics, —u =2mT~, b

—q, where Thb is the laboratory
kinetic energy of the proton. Holding T~,b constant but
allowing q to vary can give negative values of —u for q
beyond the physically allowed range for NN scattering in
free space, but within the q range where the optical po-
tential may be needed. As a result of this, localization of
exchange based on —u =2mT], b

—q is incorrect because
it produces an unphysical singularity in the exchange
terms of (3.4)—(3.15) when p +2m T~,b —q =0.

Utilizing the Yukawa fits of NN amplitudes, a satis-
factory approximation for nucleon exchange is obtained
by following a prescription from nonrelativistic analyses.
Exchange contributions are localized by replacing Yu-
kawa denominators by the following angular averaged
expression:

X (p, q )=(4') ' fdQ~(p —u) '(1 —u/A ) ', (42)

where

u =[E(p)—E(—,'q)] —(p —
—,'q)

At sufficiently high energy, nucleon-nucleus elastic
scattering becomes diffractive and very forward peaked.
Consequently, the preponderance of experimental data is
taken at relatively small angles. In such circumstances, a
local form of the optical potential proves to be quite accu-
rate. For example, the eikonal approximation is reason-
ably accurate for the experimentally observed angular
range above 300 MeV, and this involves the assumption
that the momentum operator p stays near the asymptotic

Moreover, we replace p by p, in the spirit of the eikonal
approximation. Then averaging over directions of p
yields functions of p and q, which are local. The lo-
calized exchange denominators are given by

A (A —u )(p —u+ )I (p 2q2) = ln
2pq (A —p, ) (A —u+ )(p —u )

(4.3)
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where

u+ = —(
I p I

+-,'
I q I

}'+[E—E(-,' q) 1'

u- = —(
I p I

——,
'

I q I

}'+[E—« lq}]'

(4.4)

(4.5)

U(p', p) =S (q)+y ~ V(q) — T (q)

—Ey]+y].pQ +
C(q)

m

When each denominator (p —u) '(1 —u/A )
' is re-

placed by X (p, q ), and kinematical factors are local-
ized as discussed above, each of the potentials S, V, T,
C, SIs, and Vls in Eqs. (3.51)—(3.58) becomes local and
energy dependent. It is therefore possible to transform
to coordinate space.

Consider the momentum space Dirac equation,

y p™W'(p) —(27r) f d p U(p p)4(p)=0

(4.6)

where

o.-qXp, 0+~ [SLS(q)+y1 VLS(q}]
m

(4.8)

Energy dependence in each of the local potentials is impli-
cit. Terms D and I' are omitted since they vanish for the
case under consideration. Combining (4.7) with (4.6) and

integrating by parts produces

fd r e '~'(y E+iy V . m—)P(r)

—(2vr) fd p U(p', p) fd r e' 'P(r) . (4.9)

Substitution of &and use of pg(r)~ —iVP(r) and

1((p') = fd'r e '~ 'P(r),

and U(p', p) is given by the local form

(4.7) p, g(r) ~( i V ———,
' q)1ij(r)

leads to

(y E+iy V m. )ti—t(r) (27r—) fd q e

X S(q)+y V(q) T(q—)+[ Ey +y ( i—V —,'q)—+m]—C(q)+[SLs(q)+y&VLs(q)] .g(r),0 a.q 0 0 ~.qX V

m m
(4.10)

[yoE+iy V —m —.U(r, V)]1i(r)=0,

where

(4.1 1)

0(r, V }=S(r) +y V (r) i T'(r)—

C(r) 0 C(r)
( Ey iy V+——m) iy.V—

m 2m

[SI'.s(r)+ y—'VLs(r)1
rm

(4.12)

where the r integration and a plane wave factor, e

are omitted. Moreover, the p integration at fixed p' has
been converted to a q integration. Performing the q in-

tegration leads to

One finds that P(r) obeys the Dirac equation

[y E +iy V —m. —U(r)]P(r) =0
with a five term optical potential as follows:

U(r) =S(r)+y V(r) ia rT—(r).
—[Srs(r)+y VL.s(r)]o. L, .

S(r) =S (r)/[1+ C(r)/m],

V(r) = V (r)/[1+ C (r)/m],

T(r) = T'(r)/[m +C (r)],
SLs(r)=SLs(r)/I mr [m +C(r)]],
VLs(r}= VJs(r)/I mr [m +C(r)] I

(4.15)

(4.16)

(4.17)

(4.18)

(4. 19)

(4.20)

(4.21)

and L= —ir X V. Here,

S(r)=(2') fd q e ' 'S(q), (4.13)

P(r)=[1 +(Cr) /]m'~ g(r} . (4.14)

and V(r), T(r), C(r), Sls(r), and VLs(r) are obtained in

exactly the same way from localized functions V(q),
T(q), and so on, which appear in (4.8) and stem from

Eqs. (3.51)—(3.58). A prime as in T'(r) denotes dT(r)ldr,
and similarly for Sl'q and VL~. These derivatives in coor-
dinate space arise from q factors in momentum space and
the fact that the localized potentials are spherically sym-
metric.

Although Eq. (4.13) may be solved directly, it is a little
simpler to eliminate the y V terms by the following tr'ans-

formation:

Note that C(r) does play a role in the scattering and
therefore (4.16) represents the eff'ects of six Dirac poten-
tials. Since P=g beyond the range of the potential C(r),
the same phase shifts are obtained from solving (4.11) or
(4.15). Since Eq. (4.15) is simpler, our numerical calcula-
tions are based on this equation.

V. SCATTERING CALCULATIONS

Initial numerical calculations using the generalized im-

pulse approximation, IA2 are based on complete sets of
on-mass-shell amplitudes. Yukawa fits given in Ref. 16 to-
gether with symmetries determine all nonvanishing ampli-
tudes of Eq. (3.1). Positive energy amplitudes are based on
empirical phase shifts. All other amplitudes are based
on the meson exchange model. Nuclear form factors are
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calculated from the wave functions of Horowitz and
Serot ' as in Eqs. (2.24) —(2.29). These ingredients are
combined to provide a parameter-free specification of the
Dirac optical potential. The essential point of the IA2
analysis is the use of complete sets of NN amplitudes
based on a meson exchange dynamics. Negative energy
couplings are predicted from a consistent set of meson-
baryon couplings which give a good description of NN
scattering in the energy region 0—1000 MeV. The analysis
is logically simple in that a straightforward evaluation of
0= ——'TrzI JM p) is involved.

Comparisons are made with the original form of the
impulse approximation, IA1, in which five NN ampli-
tudes are used. For IA1, the NN amplitude takes the
form

050—
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~ ZO0
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100

0—

-50—

't50—

'100—

350

300—

~ 250—

100—

50—

-50 =

5

&(PiP2 PIP2) g fk [&111k (5.1)

in place of (3.1). The five NN amplitudes and five kine-
matic covariants in (5.1) are exactly the same as the first
five terms of Eq. (3.3) for class 11 of the complete repre-
sentation (3.1). This follows because these five amplitudes
can be determined by positive energy matrix elements.
However, it is a basic assumption that the five-term repre-
sentation may be used on the complete Dirac space of two
nucleons. IA1 is based on the ansatz that (5.1), without
any projection operators, may provide an adequate repre-
sentation of the NN amplitude in all p-spin sectors. As
noted in Ref. 12, IA1 implicitly incorporates pseudoscalar
mN coupling, as may be seen by expressing the one-pion-
exchange amplitude in the form (5.1). IA2 replaces this
ansatz with the prediction of a meson exchange model
which explicitly incorporates pseudovector m.N coupling.

Figures 3—5 show scalar, vector, and tensor potentials,
S, V, and T of (4.17)—(4.19), for 200 MeV proton scatter-

—100—

I I I I I
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FIG. 4. Vector potential for Ca. Solid line is real part and

dashed line is imaginary part. Left-hand panel shows IA1 result
and right-hand panel shows IA2 result.

ing from Ca. For the original impulse approximation
based on the five-term NN amplitude, IA1, these are the
only nonzero potentials. The figures show the IA1 re-
sults and the IA2 potentials based on the complete set of
NN amplitudes. Although IA1 provides interesting pre-
dictions for spin observables in p-nucleus scattering in
the 400—1000 MeV region, overly large scalar and vec-
tor potentials are predicted at low energy. The main
reason for this is implicit incorporation of pseudoscalar
~N coupling as discussed in Ref. 12. The meson ex-
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FIG. 3. Scalar potential for Ca. Solid line is real part and

dashed line is imaginary part. Left-hand panel shows IA1 result
and right-hand panel shows IA2 result.

FIG. 5. Tensor potential for Ca. Solid line is real part and
dashed line is imaginary part. Left-hand panel shows IA1 result
and right-hand panel shows IA2 result.
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change model used as a basis for the generalized impulse
approximation results in considerably smaller scalar and
vector potentials at low energy. Figures 3 and 4 illus-
trate this difference at 200 MeV.

A second point is that IA2 determines six terms in the
optical potential, although one of these is eliminated by
the transformation (4.14). Figures 6—8 show the space-
vector potential C (r), the scalar spin-orbit potential
SLs(r), and the vector spin-orbit potential VL~(r) T. he
spin-orbit potentials which occur in the Dirac optical po-
tential (4.16) should not be confused with the spin-orbit
potential of the equivalent Schrodinger equation. The
latter arises when the lower component of the Dirac wave

function is eliminated to obtain a second order equation
for the upper-component wave function. The large scalar
and vector potentials of the Dirac equation provide the
spin-orbit potential of the equivalent Schrodinger equa-
tion. In the generalized impulse approximation, the
smaller scalar and vector potentials would seem to
translate into a smaller spin-orbit term in the Schrodinger
equation. However, this is not the whole story because
the new spin-orbit terms, S~~ and VLq, also contribute.

Figures 9—14 show results for cross section, analyzing
power, and spin rotation for elastic scattering of protons

by Ca at 200, 500, and 800 MeV, respectively. In each
figure a solid line shows the result of the generalized im-

pulse approximation, IA2, and a dashed line shows the
result based on the original impulse approximation, IA1.
Squares show experimental data. The main conclusion
from these results is that the generalized impulse approxi-
mation provides a successful prediction of the experimen-
tal data over the 200—800 MeV energy range. At 200
MeV, the IA2 results are a significant improvement over
the IA1 predictions and the agreement with data for spin
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FIG. 7. Scalar spin-orbit potential for Ca based on IA2.
Solid line is real part and dashed line is imaginary part.

observables is excellent. Theoretical cross sections at 200
MeV oscillate too much and this might be due to the
influence of nucleon exchange contributions.

As noted above, the overly strong scalar and vector
potentials in the IA1 approach at low energy are mainly
an artifact of the implicit pseudoscalar pion coupling.
Using a pseudovector covariant in place of I

&
in Eq.

(5.1) produces scalar and vector strengths comparable to
those of the IA2 approach. This is misleading, however.
Detailed calculations for cross sections and spin observ-
ables, which wi11 be reported in a future publication,
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FIG. 6. Space-vector potential for Ca based on IA2. Solid
line is real part and dashed line is imaginary part.

1- (frn)
FIG. 8. Vector spin-orbit potential for Ca based on IA2.

Solid line is real part and dashed line is imaginary part.



36 GENERALIZED IMPULSE APPROXIMATION FOR. . . 1099

1O' 10

10

10

Vi 10
10'

lu

10 '-

10

10
0

I I I I I I I

5 10 15 20 25 30 35 90 '15 50

0 (deg)

10

10
0

I I I I

10 15 20 25 30 35 IO

FIG. 9. Cross section for 200 M V
40C

r e proton scattering by
a. Solid line shows IA2 result d d h du an as ed line shows IA1

result. Data from Refs. 28 and 29.

t. o

0.8-
0.6-
o ~ t-

-o. t-
-0.6-
—0.8-
—1.0

5 to

(
I

15 20 25 30 35 tO 't5 50

1.0
0.8-
0.6-
0't-
0.2-

showow that simple conversion of the so e pseudoscalar covari-
n o t e' pseudovector one in Eq. (5.1) i 1dyie s results

tho
are significantly different from d f

ose of the full IA2 analysis. I f h
, an in erior to,

n act, t e various su-
gestions for accomplishing th

a-

la
g e conversion of pseudosca-

ar to pseudovector ion cop oupling do not agree well with
each other. For exam
12 has been foun

xample, the method suggested in R f
ound to produce very poor results for ro-

e in e.
ton scattering by Pb even thou h it i

su s or a and O.
t ere is a serious ambiguity entailed in using less than a

(deg)
FIG. 11. Cross section for 500 MeV

C S ld 1' h

e proton scattering by
a. olid line shows IA2 result and dashed line shows IA1

result. Data from Ref. 5.

20 25 30 35 10

1.0
Q. 8-

0.0-

complete set of NN amplitudes to extend the NN in-
teraction to the full Dirac space of tw

eV the theoretical cross section based on IA2
is very good and the spin observables are also good, al-
though somewhat less so than fo thr e origina impulse a-
proximation, IA1. At 800 MeV the, t eoretical predictions

ase on IA2 are a aiI g n in rather good agreement withI ' ex-

0.8-
0.6- )I

0.9-
/

0.2- t

0.0-
-0.2- i~

l
I

-0.6-
l

-0.6-
I

'l I

-O 8-
l

l l

—1.0

0.0-
—0.2-
—o. 't-
—0.6-
—0.8-
—1.0

10 15 20 25 30 35 'to 05 50

-0 2-
-0."1-
-0.6-
—0.8-
—1.Q

5 1O 15 20 25 30 35 'tQ

(deg)
FIG. 10. Analyzing power (3 an

200 MeV
er «) and spin rotation (Q) for

e proton scattering by Ca. Solid
suit and dashed line sh

a. o i line shows IA2 re-
as e ine shows IA1 result. Data from Refs. 28 and

FIG. 12. Analyzing power (3
500 M

g power («t«) and spin rotation (Q) for
eV proton scattering b Ca.

30.
an as ed line shows IAA1 result. Data from Refs. 5 and



1100 J. A. TJON AND S. J. WALLACE 36

10

10

10

10'

10'—

10

10

10

10
0 5 10 15 20 25 30 35 IO

(deg)
FIG. 13. Cross section for 800 MeV proton scattering by
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ample, fixing p~ and doubling the lower component densi-
ty pl& brings the IA2 results into very good agreement
with the data. The variation of the scalar density is about
2%%uo when pLc is doubled. Enhancement of the scalar-
vector difference arises naturally from vacuum polariza-
tion corrections to the mean field theory of quantum ha-
drodynamics. A future article will analyze proton scatter-
ing observables at 500 and 800 MeV including the vacu-
um polarization correction.

Because of the reduced scalar and vector potentials at
low energy in the IA2 approach, there is an apparent
mismatch between the low energy optical potential and
the mean field used to calculate Dirac-Hartree wave func-
tions. The latter involves a 400 MeV scalar potential and
a 300 MeV vector potential in the nuclear interior. This
raises the interesting question whether the NN interaction
of the IA2 approach implies significantly different nuclear
wave functions and densities in a self-consistent analysis.
There is a related possibility that improved nuclear wave
functions could alter the predictions for proton scattering.
A self-consistent analysis of nuclear wave functions and
optical potentials using the meson theoretical NN interac-
tion is far beyond the scope of the present work, but the
desirability of such an analysis is noted.

perimental data. The differences between the IA1 and
IA2 results at 500 and 800 MeV are due to the somewhat
weaker scalar and vector strengths obtained for IA2. We
have observed that the results are quite sensitive to the
rather small difference pL~ ——p~ —pq due to the lower
components of the Dirac Hartree wave functions. For ex-

1.0
0.8-
0.6-
0. 1-
Q. 2 - ~--~
00-

-0.2-
-0.9-
-0 6-
-0 8-
—1.0

5 10 15 20 25 30 35 10

1.0
0.8-
0.6-
0.9-
0.2-

-0.9-
-0.6-
—0.8-
—1.0

10 15 20 25 30 35 't0

(deg)
FIG. 14. Analyzing power (A~) and spin rotation (Q) for

800 MeV proton scattering by Ca. Solid line shows IA2 re-
sult and dashed line shows IA1 result ~ Data from Ref. 7.

VI. SUMMARY

Utilizing a Yukawa representation of a complete set of
Lorentz invariant NN amplitudes, ' the impulse approxi-
mation optical potential for use in the Dirac equation is
constructed in this paper. Nuclear wave functions used in
the construction are obtained from the Dirac-Hartree cal-
culations of Horowitz and Serot. ' The first order optical
potential 0 is expressed as U= ——,'Tr2I Jk pI, where W is
the Feynman amplitude for NN scattering and p is the
relativistic nuclear density matrix. This is the relativistic
analog of the tp impulse approximation. Effects of the
nuclear medium on the NN amplitudes are not con-
sidered, nor are double scattering corrections to the opti-
cal potential included. Moreover, a factorized form of the
optical potential is used in which dependence of the NN
amplitudes on the Fermi motion of the nucleons in the
nucleus is neglected.

Because U contains effects of coupling to negative ener-
gy states, it is essential to use a complete set of NN ampli-
tudes in order to avoid ambiguities in the construction.
In principle, there are 56 independent NN amplitudes for
each isospin state. For on-mass-shell kinematics, as are
used in this paper, 44 amplitudes suffice. Attempts to de-
scribe the NN amplitude by fewer terms are not well
founded, even though IA1, which uses five terms, has
proved successful in describing p-nucleus data at inter-
mediate energy. Some improvement of the five-term im-
pulse approximation is possible by converting the pseu-
doscalar covariant to a pseudovector one. ' ' This
prescription is ambiguous and our results to be reported
in a future article show that it is not an adequate substi-
tute for the complete IA2 analysis. Therefore a meson ex-
change model must be adopted as in this paper to extend
the available NN data to negative energy sectors of the
full Dirac space of two nucleons. Previous work
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developed suitable sets of kinematical covariants which
form a linearly independent basis for expansion of the NN
amplitudes. In this work, we use the kinematical covari-
ants of Ref. 16 since it is desirable to effect a separation of
direct and exchange terms in the NN amplitude in order
to treat properly exchange contributions to the optical po-
tential. For high energy scattering, a simpler representa-
tion given in Ref. 15 may also be used. For either case,
this paper provides the analysis necessary to construct the
optical potential.

The optical potential is first formulated in momentum
space using the Yukawa fits of Lorentz invariant ampli-
tudes. The Feynman NN amplitudes contain separate
direct and exchange terms such that antisymmetry is in-
corporated explicitly and simply. It is found that the fac-
torized optical potential, using on-mass-shell NN ampli-
tudes, contains six terms. In order to perform calcula-
tions in coordinate space, nucleon exchange contributions
to the optical potential are localized as in Eq. (4.2). Addi-
tionally, where off-shell momenta occur, they are replaced
by on-shell momenta in the spirit of the eikonal approxi-
mation. However, leading nonlocalities of the optical po-
tential are retained as these may be treated exactly in
coordinate space. An equivalent five term optical poten-
tial is obtained by transforming the coordinate space wave
function as in (4.14). Each of the potentials has been cal-
culated and the steps involved in carrying out the analysis
form the bulk of this paper.

Some initial calculations for proton-nucleus scattering
have been carried out and the results exhibit good agree-
ment with experimental data for p- Ca scattering at 200,
500, and 800 MeV. There are no variable parameters in
the calculations. Given the formalism of this paper, it is a
straightforward matter to extend the calculations to ex-
plore more fully the systematics of the IA2 impulse ap-
proximation. A future article will do so.

A main conclusion of the present work is that ambigui-
ties in the construction of the Dirac optical potential may
be eliminated by use of complete sets of NN amplitudes
based on the meson exchange model of the nuclear
force. The meson exchange model adopted in this
work' uses coupling constants and cutoffs which are
typical of other boson-exchange models and are similar
to those of the quantum hadrodynamics model of Serot
and Walecka, and the relativistic Breuckner-Hartree-
Fock approaches of Anastasio, Celenza, and Shakin ' and
Brockmann and Machleidt. We do not expect a large
model dependence of the results since the constraint of
describing the NN data over a broad energy range is rath-
er restrictive. A point deserving further study, however,
is the role of the pion. Since the impulse approximation
includes Fock terms due to exchange, the pion plays a
significant role. This is in contrast to the Hartree model
of nuclear wave functions where the pion plays no role.

An objective of this work was to incorporate the pseu-
dovector n.N coupling in a consistent fashion in order to
obtain reasonable potentials at low energy. This objective
was met by basing the IA2 analysis on the relativistic
meson exchange model of van Faassen and Tjon. The
characteristic Dirac improvement in the description of
spin observables for proton-nucleus scattering is obtained
with significantly smaller scalar and vector potentials at
low energy in the IA2 approach. The meson exchange
model is very similar to models which are used commonly
to calculate meson exchange currents in electromagnetic
reactions. Therefore the IA2 analysis tends to unify the
theoretical analysis of proton scattering with that of NN
scattering and meson exchange currents. Virtual pair
effects are included implicitly when one solves the Dirac
equation and these are given a foundation similar to that
which exists for pair currents in electromagnetic reactions.
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APPENDIX A: DIRAC-HARTREE
DENSITY

In the Dirac-Hartree approach to the nuclear shell
model, each single particle orbital is a solution of the
Dirac equation with scalar and vector potentials. Poten-
tials are determined self-consistently from the nuclear
density and meson exchange interactions treated in the
mean-field approximation. Quantum numbers n (radial), l
(orbital angular momentum), j (total angular momentum),
tM (z component of total angular momentum), and t (iso-
spin projection) characterize a given orbital. The Dirac
wave function takes the form

GntJ't («)
gnj!ttt (r) =i . + ( )

Y~i(r) (Al)

where angular eigenfunctions of good j and 1 =j+—,
' are

formed out of spherical harmonics, Yt (r), Pauli spinors,
g„and Clebsch-Gordan coefficients,

Y("(r)= g (I m —,
'

.s ~j p) Y&~(r)X, . (A2)
m, $

Sums over s range from ——,
' to + —,

' and sums over m

range from —/ to + l.
For a closed-shell nucleus, each of the 2j+ 1 magnetic

substates is occupied and the nuclear density matrix of
Eq. (2.22) is

Gnly («)
p(r)=4+ g tttnJt„t(r)gnJt„t(r)=4+; ~ („)

njlt p= —j nett

where A„ is a 2&(2 matrix defined as follows,

g ~ss'&s&s'[Gnjlt(«)» ttrr+ntjt(«)]
$,$

(A3)
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J
YP(r) YP(r) = g A„X,X,' (A4) p(r) =ps(r)+y~v(r) —,'i—aq r.p T(r), (A13)

S, S

Radial wave functions are real in the Dirac-Hartree
analysis. The matrix 3 may be written as

(lm —,
' s

~

jtM)(lm' —,
' s'

~
jtu) Ytm(r) Ytm (r) .

I
p, rn, m

(A5)

An alternative form is obtained by the substitutions
m ~—m', m'~ —m, and p~ —p as follows,

A„= g ( —1) (lm —,
' —s

~

jp)(lm' —,
' —s'

~
jtLt)

/

p, m, m

X Yt* (r) Yim (r), (A6)

after the reAection properties of the Clebsch-Gordan
coefficients and the spherical harmonics are taken into ac-
count. In (A5), m =tM —s and m'=p —s', since otherwise
the Clebsch-Gordan coefficients vanish. Similarly, in
(A6), m =tu+s and m'=p+s'. Comparing (A5) and
(A6), one sees that A, , must vanish when s'= —s since
then ( —1) = —1 and there is a term in (A6) equal
and opposite to each term in (A5). Moreover, when s'=s,
it follows that m =m' and the average of (A5) and (A6)
can be written as follows:

A„=—,
' g ((lm —,

'
—,
'

~
jm + —,')

+ (lm —,
' —

—,
'

~ j m ——,
' ) )

~
Yt~ (r)

~

(A7)

The Clebsch-Gordan coefficients are elementary. For
j =l+ —,', we find

where scalar, vector, and tensor densities are given by
Eqs. (2.27) —(2.29) of the text. Fourier transformation as
in (2.21) produces scalar, vector, and tensor nucleus form
factors,

APPENDIX B

Traces needed for construction of the optical potential
involve the kinematic covariants %'„, n = 1 —13, as
defined in Table II, and the set of parity invariant Dirac
matrices Xt, defined in Eq. (3.26). For the covariants A&
to %'9, which do not involve the Fierz exchange operator
S, these traces can be all evaluated in terms of three ele-
mentary traces as follows,

—,'TrzIA„ I =5„,+6„„n=1—9

.'Trot(~.—yz } =y i&n~+Q ii ~.6

—,'Trz[A„aq) =2a&5„3, n =1—9 .

(B1)

(B2)

(B3)

The remaining covariants A~o to %~3 do involve the Fierz
exchange operator S and these may be evaluated most
easily by use of the exchange property

yPS =y iS, (B4)

p(q)= f d r[ps(r)+y~t (r) —(2r) 'praq. V~]e'q'

=ps(q)+y~v(q) (2m—) 'a, qpT(q), (A14)

where scalar, vector, and tensor form factors are defined
as in Eqs. (2.24) —(2.26).

j+—,'+m j + —,'+m
21 +1 2I +1+

i
Yt (r) i, (AS)

which follows from the definition of S, i.e.,

Sap, u'p' =&up'&pa (B5)
and terms involving m obviously cancel. By use of

g /

Yt (r) [~= (A9)

where a and P are Dirac indices for particle 1 while a
and /3 are Dirac indices for particle 2. An explicit repre-
sentation of S in terms of Fermi covariants is' '

the sum is evaluated to be

j+—3„=5„ 4~
(A 10)

S =
~

(%' ) +JYp+
~
JV3+%.'4+%'g ) .

It follows from (B6) that

—,'Tr, IS j = —,
'

(B6)

(B7)
Substitution into (A3) then yields

YP(r)YP(r) = 1,
P= J

(A 1 1)

[Gn»t (r)]'I
p(r) =4+

~ at Gntjt (")Fnjtt (")

—i o r Gn»t (r)Fnljt (r )

—[Fn»t (r)]'1

(A12)

Equivalently, this may be expressed in terms of Dirac ma-
trices

where 1 represents the unit operator in the Pauli-spin
space. Consequently, the Dirac-Hartree density for a
closed shell nucleus takes the form of a 4&4 matrix as
follows,

For covariant A~o these properties of S lead to the fol-
lowing results for the traces which appear in Eq. (3.35):

—,'Trz[%&cgt, (2) I
= —„'Trzj yz QyqSXk(2)]

= —,
' Try j Yk (2)yp. Q i pS ]

= —,'Try [SXt, (1)y ( Q tp I

= —,'Tr, IS]&t,. (1)y, .Q„
= —,'&t (1)yi.Qi~ (B8)

In the second line, invariance of a trace with respect to
cyclic permutations of Xk(2) has been used to move
Xk(2) to the left-hand side. Note that Yk(2) involves
only Dirac matrices for particle 2. Next, the commuta-
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tion rule (84) is used to commute S to the left, thereby
changing Dirac matrices for particle 2 into Dirac ma-
trices for particle 1. This accounts for the appearance of
Xk(1). Finally, the Dirac matrices for particle 1 are tak-
en out of the trace since they are not affected by the sum
over Dirac indices of particle 2. The only trace actually
needed is given by (87). From this example, one may
appreciate that Dirac traces involving S are elementary
due to (84).

A similar analysis for covariant W~~ produces

—,'Tr, [&»Xk (2) I
= -,'Tr, [y &. Q~~SXk (2) I

=y ) Q2)Xk (1)—,
' Try [S I

8

—,'Tr2[&„Xk(2)] = g C„kXm(1) .
m=1

(816)

Results for covariants A~ to 4'9 can be read from Table
III and Eqs. (3.26) and (3.27). We find

C11——1, C22 ——1, C24 =1, C33 ——2,
E(p)+ E(p'), 2q p —q'

6,2
2m ' 2m6,4= 7, 1—

E ( —,'q)

to be the only nonzero value of C„k for n =1—9. Covari-
ants %~0 and %'~~ produce more complicated forms. A
straightforward analysis leads to the following results:

=-,'ri Q21Xk(1) . (89)

—,'Tr2[g()2Xk(2) I =y) —,'Tr2[y2y2 Q)2SXk(2) [

(810)

—,
' Trz [%'&sXk (2 ) I =y & —,

' Tr2 [ yzy & Q2 & SXk (2

The analysis for covariants %~2 and %~3 differs only due
to the presence of P =y1y2. We find the following re-
sults:

C10, 1
=2

2

C10,2 =1

C11,2 =1

E (p')+E ( —,'q)

8m

E (p)+E ( —,
' q)

8m

E (p')+E ( —,'q)

8m

E (p)+E ( —,'q)

8m

1

s&
IC11,1

~ 10,2
1 3

10,2

11 2 s &
~ 11 2

C10, 1 s t C10, 1

Therefore we find

—,
' Tr2 [%2Xk (2 ) ] = ( —1 )"+ '

—,
' Tr2 [A'~OX k (2)), (814)

—,'Trq[%'~3Xk(2)] =( —1)"+'—,'Tr2[%'~~Xk(2)[ (815)

A summary of the nonzero traces obtained in this fashion
is given in Table IV of the text.

Each trace over particle 2 indices produces a matrix in
the particle 1 Dirac space. These matrices are expanded
in the basis Xk(1) of Eq. (3.26) as follows,

7 11'1'Q12Xk ( 1 )7 1 (811)
Since y anticommutes with y", and (y ) =1, (811) may
be rewritten as

—'Tr2[%(3Xk(2) )
= ——'y) Q(2yhk(1)y) . (812)

Finally, the y matrices in (810) and (812) are eliminated
by noting that

Xk) —[X]y X2pX3) X4pX5p X6pX7p X8I

(813)

E(p')+E( —,'q) —2q p+ —,'q
C10 3— C 10,3— C1Q 3—

8m 2

—E (p) —E ( —,
' q)

C11,3 C11,3 —
s ~ C11,3—1

8m
' ' ' ' 16 m2

3
C10,4 = E (p')+ E ( —,

' q)
C1Q4= —

s C1Q4=
8m

2q'p

8m
—E (p) —E ( —,

' q)
C11,4 = C11 4 —s~ C11 4

1

8m
' * '' ' 16 m2

The coefficients C„k for covariants %'~2 and %'~3 are ob-
tained from those given above by the rule, stemming from
(814) and (815),

C12 k =(—I)"+'CFo,k

C13 k =( —1 )"CPi k

If a nonzero value of C„k is not determined by these
equations, then C„k =0 is the correct value.
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