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6 production in proton-nucleus scattering at intermediate energies

G. Faldt
Gustaf Werner Institute, S-75121 Uppsala, Sweden

C. Lazard and R. J. Lombard
Division de Physique Theorique, Institut de Physique Nucleaire, F-91406 Orsay Cedex, France

(Received 29 December 1986)

The present work is a study of 6 production in proton-nucleus collisions at intermediate ener-
gies. The theory is based on the Cxlauber multiple scattering theory. For the elementary
NN ~AN process, we employ the amplitude decomposition by Silbar et al. and by Auger et aI.
The numerical values of the parameters involved are taken from the work of Kloet and Silbar.
Two specific examples of nuclear targets are examined: b++ production in 'He and Li at 800
MeV. The effects of multiple scattering corrections on selected spin observables are studied in de-
tail. In light of our results we discuss the possibilities of using nuclear reactions to obtain infor-
mation on specific production amplitudes and on 6 propagation through the nuclear medium.

I. INTRODUCTION

The production of the nucleon isobar b (1232) in
proton-nucleus interactions has up to now received little
interest. On the experimental side there are a few inves-
tigations from Saturne, measuring the differential cross
sections for b, ++ production on Li (Ref. 1) and on He
(Ref. 2). On the theoretical side there are the investiga-
tions by Hennino and by Jain analyzing the Saturne
data on Li. These authors employ a meson exchange
model to describe the elementary reaction NN~AN and
simple assumptions about the multiple scattering correc-
tions.

In view of the importance of the A resonance in inter-
mediate energy physics, it is surprising that so little in-
terest has been attached to these studies. Recent
analysis of experimental data taken at Argonne consti-
tutes a first study of the spin dependence of the elemen-
tary N~A transition based on the production asym-
metry. Some information is also contained in
NN~NNm. reactions. However, we do not know of
any systematic attempt trying to determine the structure
of the elementary A production amplitude from interac-
tions with nuclear targets.

The purpose of the present investigation is to draw at-
tention to this peculiar situation, and to point out that
valuable information can be obtained from nuclear A
production. Since l6 amplitudes are needed to describe
the general spin structure of the reaction NN~AN,
there are a great variety of observables. An experimen-
tal determination of all of them seems at the moment
ruled out. In this situation, production by nuclear tar-
gets has many advantages, since the spin and isospin
quantum numbers of the target can be varied. In other
words, nuclear targets could be used as amplitude filters.

It is quite obvious that multiple scattering effects can
substantially influence the final results, and even invali-
date naive predictions based on the single scattering ap-
proximation. Consequently, they must be handled with

care. The appropriate framework for doing this is the
multiple scattering model of Glauber. However, we
have found it convenient to start from an expression
slightly different from the conventional one. It expresses
the nuclear profile function as an expansion in terms of
iterated commutators between the elementary produc-
tion amplitude and the NN and AN elastic scattering
amplitudes. Hence, it is essentially an expansion in
powers of the difference between the NN and AN elastic
amplitudes.

An important uncertainty is associated with the A
propagation within the nucleus. In the absence of exper-
imental information, the golden rule is to assume similar
AN and NN scattering amplitudes. The virtue of this
approximation is a simplification of the multiple scatter-
ing calculations, but it would be valuable if we could find
a possibility to check this ansatz.

As an application of our formalism we have con-
sidered A production by light nuclei. Detailed calcula-
tions are performed for the reactions p+ Li~A++
+ Heand p+ He~A+++ H.

For the numerical illustration we have chosen a model
for the NN~AN amplitude due to Kloet and Silbar,
based on unitarized iterated pion exchange. In this
model all 16 amplitudes are nonvanishing, i.e., they
simulate the full structure of the real production ampli-
tude. This is an extremely important point. Models
based on mixtures of m and p exchange predict vanishing
asymmetries for the target and projectile nucleons, even
though they reproduce the size of the differential cross
section.

II. ELEMENTARY AMPLITUDES

In this section we shall specify our notation concern-
ing the elementary amplitudes. There are three of them,
corresponding to the production step NN~AN and the
elastic scattering steps NN~NN and AN —+AN.

There is only one possible isospin amplitude for the
reaction NN~AN. We choose its isospin factor as
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1
NT ——— —V'p r),v'3 (2.1)

8

y (b) = g [f; (b)Q;(1&,m& )+g; (b)P; (l&, m& )], (2.6)

where index 1 refers to the target nucleon and index 0 to
the projectile nucleon. The vector transition operator
'Tp is normalized so that

where now

l~ ——k, mp ——i b, ng ——1I,~mI, . (2.7)

++nl Nr
I pp

(2.2)

There are 16 independent amplitudes needed to de-
scribe the reaction pp~ 6++n. A convenient spin space
decomposition of the production amplitude has been
given by Silbar et al. and by Auger et a/. We adhere
to the choice of Auger et al. , i.e.,

8

M (kz, k)= g [f, (q)Q, (l, m)+g;(q)P;(l, m)],

The relation between the coordinate space and momen-
tum space amplitudes is a linear one,

f;(b)= .
1

ikg

g;(b)= .
1

ikq

8

qdq V;j qb, q
j=1

8

qdq W~ qbgj q
j =1

(2.8a)

(2.8b)

The matrices [ V~ ] and [WJ ] are symmetric in their in-
dices. Their only nonvanishing matrix elements are

(2.3)

in terms of which

P;(I,m)=Q;(l, m)o& n

where k and k& are the projectile and 6 momenta and
(q, h~~)=k —kq the momentum transfer. When ambigui-
ty could arise we write q& for the orthogonal component
q of the momentum transfer.

Furthermore, we define a triad of unit basis vectors

I =k, m= —q~, n=lAm,

V11= V77 =JO

V22 V88 J2

~4= V~5= V66= —,'(J2 —Jp),

Vg5 = Vgp = V46 = V64 =
2 ( J2 +Jp )

(2.9a)

(2.9b)

(2.9c)

(2.9d)

and the eight spin operators Q; are expressed as ~11 ~77 ~33 ~44 ~55 ~66 J 1

Q, (l,m)=(Sp 1)(cr, I ),
Qz(l, m) =i ( —', )' (m. Tp n)(o I I ),
Q3(l, m)=(Sp m)(cr&. m)

Q4(l, m)= —i( —', )'~ (I T np)(cr~ m),

(2.4a)

(2.4b)

(2.4c)

(2.4d)

W'qq ——Wss —
—,'(Jq —J) ),

W'2s ——8 s2 = —,'(J~+J, ),

(2.10a)

(2.10b)

(2.10c)

Q&(l, m) =(Sp.n)(o, n),

Q6(l, m)=i( —', )' (I.Tp. m)(o. , n),

Q, (l, m)=(l Tp I ),

(2.4e)

(2.4f)

(2.4g)

where the J functions are Bessel functions.
Our choice of basis vectors and operators Q;(1&,m& )

has the advantage of yielding a symmetric relation be-
tween the pairs (f;,g;) and (f;,g;) but the disadvantage
of having the unconventional normalization m &

——n &

= —1. The inverse of Eq. (2.8) reads
Q&(l, m)= —[(m Tp. m) —(n.Tp n)] .

v'3 (2.4h)

Here, So designates a vector transition operator with re-
duced matrix element' ( —', ~~Sp~~ —,

' ) =( —', )' and Tp a

spin-two tensor transition operator whose definition and
properties are described in Appendix A.

A model for the reaction pp~A++n, based on unitar-
ized iterated pion exchanges, has been developed by
Kloet and Silbar. " The amplitudes of this model, which
are all nonvanishing, are utilized in our numerical illus-
trations.

In the Glauber model we work in impact parameter
space. Hence, we need the impact parameter representa-
tion y (b) of the production amplitude. It is defined

by

y (b)= . f d q~e
' M (q~),

2m.ik ~
(2.5)

and has a spin decomposition identical to that of
M~N(q), i.e.,

8

f;(q)=ikg f bdb g V;, (qb)f, (b),
0 j=1

(2.1 la)

8

g;(q)=ikz f b db g 8;, (qb)g (b) .
0 j =1

(2.11b)

The elastic scattering amplitudes NN~NN and
AN~AN will not be treated in their full generality. We
shall limit ourselves to amplitudes of the form

M'(q) =f"(q)+g"(q)(o„+o, ).n, (2.12)

where cr, ~

——op (or crz) is the Pauli spin operator for the
projectile nucleon (or the b, ) and o

~
the Pauli spin

operator of the target nucleon. For the 6, the notation
means cr~ ——2S&, i.e., u& stands for a set of 4)&4 ma-
trices. The impact parameter representation of the
scattering amplitude y'(b) is defined as in Eq. (2.8) and
has the decomposition
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y"(b)= J d qie ' M"(qi)
2~ik, )

=f "(b)+g "(b)(rr„+o i).nb . (2.13)

S(b,x)=
SNN(b s)

1 g~ b I a((Z

ASNa(b )

The relation between the pairs (f",g") and (f ",g ") is
identical to that between (f i,g &

) and (f i,g i ).
The parameters of the AN interaction are poorly

known. In the additive quark model f =f and
NN b, b,

III. NUCLEAR PROFILE FUNCTIONS

Before going on to detailed calculations for specific
nuclei, it is useful to discuss the general nuclear profile
function, i.e., the impact parameter production ampli-
tude for nucleons at fixed positions x&, . . . , xz.

On the nucleon level, we are dealing with a two chan-
nel problem, i.e., the nucleon-nucleon and the 6-nucleon
channels. It is convenient to account for this fact by in-
troducing a matrix notation for the S matrix. Thus, for
a target nucleon at position x=(s,z) the impact parame-
ter representation of the S matrix becomes

(3.1)

Here, A~~
——k —kz is the longitudinal momentum transfer

and the parameter A, =kz/k has been introduced in or-
der to secure the unitarity of the S matrix. ' The vari-
able b is the impact parameter appropriate for a final
NN channel and b/A. the corresponding one for a final
b, N channel. The submatrices of S(b;x) are related to
the corresponding profile functions by

S"J(b}=~„y"~(b—) . (3.2)

When working with the Glauber multiple scattering
theory, care must be exercised since the individual S-
matrix elements in general do not commute. The col-
lision operator must be properly time (or z) ordered.
This operation yields the following nuclear S-matrix
operator, appropriate for fixed nucleon positions,

S(b, x, , . . . , xq )= g g(z; —z; )
. j9(z; —z; )8(z; —z;, )S(b, x, )

. . S(b, x;, ),
perm

(3.3)

where the sum runs over all permutations [i i, . . . , i& ] of 1, . . . , A. The nuclear profile function I (b) is obtained
by sandwiching this operator between nuclear states. In particular, for the reaction N+ A~A+A',

I (b}=(gf(x„.. . , x„)
~

—A[S(Ab, x„.. . , x„)J
~
@;(x,, . . . , x„)) . (3.4)

Up to this point, the formalism, has been completely general. We shall now make the simplifying assumption that
only terms linear in the NN~AN production amplitude be retained. For this case

I (b, x, , . . . , x„)= g 8(z; —z; }. . 9(z; —z; )
perm

&& [y (b x; )S (Ab —s;„,) . S (Ab —s;, )

+S~~(b —s,. )y +(b x, )S (Ab —s; ) S (Ab —s, )

+S~~(b —s, )
. S (b —s; )y (b, x; )j, (3.5)

where

y (b, )=y (b — ) (3.6)

In our analysis we do not consider the most general elastic NN~NN and 5N~AN profile functions, but limit
ourselves to those of type (2. 12). For this case, a convenient rearrangement is possible, since we can assume the
operators S (b —s;), i =1, . . . , A, to commute amongst each other, and similarly for the operators S (b —s;),
i =1, . . . , A. We stress that since in the end the elastic profiles will be averaged over spherically symmetric densities,
this assumption does not entail any approximations. Under these provisions one derives the following alternative ex-
pression for the nuclear profile function:
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A

I (b, x, , . . . , x„)=g, y (i~) + S (iq)
perm k=2

, [S"(i ), y (i, )] g S (i„)9(z; —z; )

+, ,
[S"(i ), [S"(i2),y (i))]] Q S (i„)9(z; —z; )9(z; —z; )

1

k=4

[S"(ig ), [S"(ia i), . . . , [S"(i 2), y (i) )] ' ]](A —1!

&(9(z; —z; )
. 9(z; —z; ) (3.7)

where we have employed the notations

S (b —s;) when to the left of yS"(i)= .
S (A,b —s;) when to the right of y

(3.8)

folded counterparts

X, (b)= f q, dq, g V;,f, (q, )ST(q', +&~)' ',
lkg 0

(3.11a)
AN(. ) AN(b x ) (3.9)

Q [1—y (b —sl, )9(zq —z;)—y (b —s1, )9(z; —zl, )],

This formulation is particularly appealing since it pro-
vides a systematic expansion in powers of the spin ampli-
tudes of y and y and in the difference of their spin
independent amplitudes.

As a simple illustration, consider the case of spin in-
dependent elastic amplitudes y and y . Then, a
summation of the series (3.7) becomes possible. It leads
to the well-known result,

r(b, x„.. . , x&)=gy' (i»

&;(b)= . f "
q~dqi g ~, g (qi)Sr(qi+~i )'"

lkq 0

(3.11b)

The folded production profile is denoted y(b, k) where
the index k reminds us that y still depends on the nu-
cleon variables through its spin and isospin dependence.
The assumption of spherical symmetry for pT means,
e.g. , that quadrupole contributions are neglected. We
shall come back to this point later. When folding the
elastic scattering operators we attach the same average
spherically symmetric density po(x) to all the scattering
steps. The correspondingly folded profiles are denoted

(3.10) X'(b)= . f q dq Jo(qb)f"(q)S0(q),
lke] 0

(3.12a)

a result which could also have been obtained directly
from the original expression (3.5).

We now consider the specific example of nucleon in-
duced 5 production by light nuclei. A number of sim-
plifying assumptions will be made. We shall try to
present them as clearly as possible.

We assume the nuclear transition to be caused by the
production step. The associated one body transition
density p T(x ) is assumed spherically symmetric. In the
single scattering step, the elementary profile functions
f~(b), gj(b) [Eq. (2.8)] are consequently replaced by their

&"(b)= . f q dq J)(qb)g "(q)SD(q) .
1ke] 0

(3.12b)

The folded S matrix is denoted S "(b,k).
In Eq. (3.7) we encounter the z ordering through the

presence of t9 functions. They substantially complicate
the numerical evaluation. However, for light nuclei the
densities are approximately Gaussian. We shall employ
this property as basis for an approximate treatment of
the product of 0 functions. It consists of replacing them
by

1 1 n Z. n

&2 f dz, . dz„exp —g +id, ~~z, + 9(zl, —z, ) . (3.13)
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When defining A,„,we have divided by

$(b~~) =exp( —A~~R /4)

in order to compensate for the fact that the longitudinal
momentum transfer is taken into account when perform-
ing the folding in Eq. (3.11). The limiting values for
b,

~t

——0 are A,„(0)=lln W. e stress that this procedure is

exact for Gaussian densities and expected to be a good
approximation for light nuclei.

We have not made any attempts to calculate all the
terms in the expansion (3.7) but have limited ourselves to
terms of second order or lower in the elastic spin ampli-

tudes Y"(b). At the same time we have assumed the
commutator [S"(i),y (k)] to be of order Y"(b).

To the order considered, it is possible to obtain a relace

tively compact formula for the nuclear profile function.
We write

1(b)=(&,A'
~

f'(b)
~

N, A), (3.14)

where the profile f'(b) depends on the spin and isospin
operators of all the nucleons involved, and the matrix
elements are interpreted as matrix elements relative to
these degrees of freedom. In the notation introduced
above,

f (b)= g y (b, i&)[Sp(b)]" '+ g [Az[S "(b,i2), y (b, i, )]—Y (b)y (b, i, )(cr; nb)J[Sp(b)]"
L 1,L2

[
)

A3[S "(b i3), [S"(b,i2), y (b, i~)]]—A~Y (b)[$ "(b,i3),y (b, i) )](cr, .nb)
L 1,L2, L3

+ —,'[Y (b)] y (b, i& )(cr;, nb )(cr; nb )][Sp(b)]" (3.15)

with

Sp(b)= 1 —X (b) —Y (b)(o'p' nb) (3.16)

In this expression it is understood that powers of Sp(b)
be truncated at the proper power of Y (b), thereby
making the formula consistent.

There is one important application where our expres-
sion for f' can be further simplified. When the depen-
dence on the target nucleon spin is the same in the S
and S matrices, i.e., when g =g, then the depen-
dence on the target nucleon index i in S"(b,i) in the
commutator terms can be dropped, since (cr; nb) com-
mutes with y (b, k) when i&k As a resu. lt, the sum-
mation over the corresponding nucleon index i can im-
mediately be performed.

IV. AMPLITUDES FOR p He~6++ H

8

M (q)= g [F;(q)Q;(I,m)+G;(q)P, (l, m)], (4.1)

Since the ( He, H) system has the same spin-isospin
content as the (p,n) system, the spin-isospin structure of
the amplitude for the reaction p+ He~A+++ H is
necessarily the same as that for the elementary reaction.
Consequently, we define

where the operators Q; and P; are identical to those of
Eq. (2.4) except that r& and o, are replaced by r and tr,
the total Pauli isospin and spin operators of the nucleus.
Similarly, the nuclear profile function has a decomposi-
tion identical to that of Eq. (2.6), with amplitudes that
we now denote F;(b) and G;(b).

In the wave functions of the He and H nuclei we
only retain their S-wave component. This implies that
the transition density pz. (x) and the average rescattering
density pp(x) become identical. The properly antisym-
metrized spin-isospin part of the nuclear wave function
1S

~

+(1,2, 3))= [ ~

g(1, 2), 3)r
~
f(1,2), 3)sv'2

—
~
g(1,2), 3),

~

X(1,2), 3)s], (4.2)

where indices T and S refer to ket vectors in isospin and
spin space. Furthermore, X(1,2) denote the wave func-
tion where particles 1 and 2 are coupled to total angular
momentum zero, and g(1,2) the one where they are cou-
pled to total angular momentum one.

In our expression for the nuclear profile function
f'(b), Eq. (3.15), we encounter the spin-isospin matrix
elements

'H X (r; a). h 'He)=(n (ra).~ ~

il 1

3H X (r; a). h
.(n, ne) He = n (r.a)

h p),~ ~

2CT Ilb

L
1 iL2 1

(4.3a)

(4.3b)

(
H X (r; .a). h (rr; n)( enen) He .= n (r a) r

' p),1 OL. b 2 L3 Il b CT ' — nb O' 'Ilb
L17L2}L3 1

(4.3c)
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F;(q)=e;S(q +
G, (q)=g, S(q'+A~ )' 'g;(q),

(4.4a)

(4.4b)

where S(q) is the ( He, H) form factor, normalized to
S(0)=1,and

—1, i = 1, . . . , 6

+1, i =7, 8
(4.5)

where the sum (i, ,i2, i 3) runs over all permutations of
(1,2,3). The matrix elements on the right-hand sides
have been expressed as neutron-proton matrix elements
only to emphasize that we are dealing with matrix ele-
ments of operators over the total system.

From Eq. (4.3a) it follows that the ( r.a ) and
(r a)(o b) terms on the right-hand side come with op-
posite signs. Therefore, the single scattering contribu-
tions to the amplitudes F; (q) and G;(q) become

These expressions give the nuclear amplitudes in impact
parameter space. Those in momentum space, F;(q) and
G;(q), are calculated by the transformation (2.11).

It might be appropriate to remark that expressions
(4.7) correspond to the complete multiple scattering
series. The reason is that the truncation performed
when deriving the nuclear profile function of Eq. (3.15)
only affects multiple scattering terms of fourth or higher
order.

The appropriate value of the parameter R entering the
functions k„(6~~R ) is R = 1.66 fm.

The observables of the reaction pp~A++n have been
studied in great detail by Auger et al. Since the ob-
servables of the reaction p He~A++ H are the same,
the expressions of Auger et alt. apply without any
change. The unpolarized differential cross section is

(4.9)

—1, i =1, . . . , 4, 7, 8
Il +1, i =5,6. (4.6)

where

This means that due to the specific spin-isospin structure
of the nuclei the single scattering approximation to the
nuclear amplitudes F;(q) and G;(q) is not obtained by
simply multiplying the corresponding elementary ampli-
tudes by a nuclear form factor. Additional phase factors
complicate the relations. As a result, many polarization
observables will be different for the ( He, H) and (p, n)
reactions. These remarks are strictly valid only when we
limit ourselves to the S-wave part of the wave functions.
When the S'- and D-wave parts are included, the transi-
tion form factor is no longer unique. As described in
Appendix B, the relation between the nucleon and nu-
clear amplitudes becomes more involved.

With all the necessary nuclear matrix elements in our
hands the evaluation of Eq. (3.15) becomes quite easy.
We give the final result for the special case
f (b) =f (b) and g (b) =g (b). Then, there are
only two folded elastic amplitudes Xo(b) and Yo(b) in-
stead of the four of Eq. (3.12). Making systematic use of
Eqs. (A7) and (A9) of Appendix A, one obtains,
i = 1, . . . , 8,

F;(b)=e;[(1—Xo) X;

+2YO(1 —Xo)[v;( Y)+X2t, ( Y) —5; Y;]

+2Y02[|i,(v, (X)+l,,t, (X)—X, )

—
—,'A. ,t, (t (X) ) —k, v, (t (X))]I, (4.7a)

G;(b) =i); [(1—Xo) Y;

—2YO(1 —Xo)[v;(X)+A,2t;(X) —5;X; ]

+ 2 Y,' [6, ( v, ( Y)+X,t, ( Y)—Y, )

——,'A3t, (t(Y)) —A2v, (t(Y))]], (4.7b)

Ao„———g Re(F;*G;) .
8

i =1
(4.10)

Here, the nuclear and nucleon observables differ in the
single scattering approximation, since e; g; = 1 for
i =1, . . . , 4 and = —1 for i =5 . . . , 8. The asymmetry
Ao„ is therefore an observable which is particularly in-
teresting to measure.

The vector analyzing power due to the beam nucleon
1S

A„o———g Re(F;*G )U;
8

I . .
i j =1

(4. 1 1)

with the matrix ( UJ ) as defined in Ref. 9. Since this ma-
trix satisfies e; U;~g; = U;~, the single scattering approxi-
mation yields an Ao„ identical to that of the nucleon.

For a complete classification of all the observables of
the reaction p He~A++ H we refer to Ref. 9.

V. AMPLITUDES FOR p Li —+6++ He

Since He is a J =0+, T= 1 nucleus and Li a
J =1+, T=O nucleus, the spin structure of the nuclear
production amplitude is different from that of the nu-
cleon. In fact, there are only 12 rotationally invariant
amplitudes. They are classified in the following way. In
the isospin transition operator Eq. (2. 1), we replace the
nucleon w1 by a nuclear vector transition operator nor-
malized so that (5++, He

I
NT

I p, Li) =1. In the 16
spin space operators, Eq. (2.4), we replace the target nu-
cleon spin operator o.

1 by a nuclear vector transition
operator V. We normalize V so that the matrix ele-
ments of its spherical components are'

Thus, in the single scattering approximation, Eq. (4.4),
the nuclear cross section equals the nucleon cross section
multiplied by the square of the nuclear form factor.

The vector analyzing power due to the target nucleus
1S

i=1, . . . , 4
i =5, . . . , 8. (4.8) ( )i —M

(OI V
I

1,M)=(OOI11Mq)= — bq M . (5.1)v'3
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Hence, the operators Q;(l, m), i =1, . . . , 6, are obtained
by replacing o.

&
with V. There are no transition opera-

tors corresponding to Q7 and Qs. The operators P; are
similarly obtained by first linearizing the a

&
dependence

of Q;(o &.n) and then replacing o
& by V. In particular,

there are no operators of type P5 and P6. The vanishing
of Q, , Qs, P5, and P6 is directly connected to the scalar
character of these operators in the target nucleon spin
space. We summarize these elementary rules by writing

tween the pairs [F;(q),G;(q)] and [F;(b),G;(b)] become
identical to that of the nucleons [Eqs. (2.8) and (2.11)].

The nuclear matrix elements involving Li and He
have been evaluated under the assumption that these nu-
clei consist of an inert He core with two added valence
nucleons. Exchange contributions involving a core and
a valence nucleon have been neglected. The J wave
functions of the two valence nucleons have been taken to
be"

8

M (q) = g [e,'F;(q)Q;(I, m)+i),'G;(q)P;(I, m)], (5.2) I

1+ ) =a
I
(s 3/2 )' 1+ &+p

I
(p I /2 )

+y I (p3n pi/2) 1+
& (S.sa)

with

I 17
c

0,
i =1, . . . , 6

i =7, 8
(5.3)

1, i =1, . . . , 4, 7, 8
Il

0, i =5,6. (5.4)

In the nuclear profile function f'(b) we make the corre-
sponding substitutions in Q; (It„m& ) and P; (It„mt, ).
Through this procedure we achieve that the relations be-

I

0+ ) =a'
I (p3/2) 0 ) +p'

I
(pt/2)', 0+ ), (5.5b)

with normalizations a +p +y =1 and a' +p' = l.
In our derivation of the nuclear production profile

function we assumed the transition density pr(x) to be
spherically symmetric. The one-body densities corre-
sponding to the wave functions (5.5) contain a quadru-
pole component. As an illustration consider two valence
nucleons in the p3/7 state. In the single scattering ap-
proximation we encounter the matrix element

( He
I
(o, a)e '

I
Li) = (0

I [ —( —', )' (V a)So(Q) —( —', )' [(V.Q)(Q a) —
—,
' V a]S2(Q) J I

1,M ),
with

Sk(Q)= f r dr p (rj)l, (Qr),

(5.6)

(5.7)

and pz(r) the radial p-wave density. Thus, as for scattering by deuterium, there is an additional quadrupole contribu-
tion. In the following, it shall be neglected on the grounds that the quadrupole moment of Li is small. In Appendix
8, we demonstrate how the single scattering terms are changed when it is included.

We now turn to the matrix elements needed for the determination of the nuclear profile function. In the single
scattering term, we encounter, neglecting the quadrupole contribution,

&~++ '«
I
Nr(1)(ai'a)&(r —xi)

I

p'Li & = —Vo&0
I
V'a

I

1 H &pr(r)v'2

with the reduced matrix element

(5.8)

Vo —— —( —v Sa'a+p'p+ v'2a'y+2p'y) .v'3 (5.9)

The factor I/V2 arises from the isospin transition operator Nr(1). The two-body matrix element appearing in the
double scattering is again, neglecting quadrupole contributions,

(b, ++ He
I
Nr(1)(cr ~.a)(o q. nz )6(r —x~)5(r' —xq)

I p Li) = —KVo(0
I

i V a„nl,
I

1,M )pr(r)po(r')v'2

with the reduced matrix element

(5.10)

gVo —— —( —v 5a'a —p'p+2v'2a'p —2v'10p'a+5v'2a'y+p'y) .3v'3 (5.11)

Given the two matrix elements (5.8) and (5.10), the remaining part of the determination of the nuclear profile func-
tion f'(b) becomes straightforward. As for production by He, we limit ourselves to the case of equal nucleon-nucleon
and b, -nucleon elastic scattering amplitudes, f (q)=f (q) and g (q)=g (q). In the notation of the preceding
section the result can be written as, i = 1, . . . , 8,

F ( b ) =e,
' v'2 Vo ( 1 —Xo ) [ ( 1 —Xo ) X, + 5 Yo ( 1 —Xo )[u; ( Y) + A ~t; ( Y)+ —,

'
g; Y; )

+ Y o [ —10X;—20k,,u; (t (X) ) —10k,,t, (t (X) ) 4g; u; (X) 4Ag, t, (X)—+ ,' PX, ]I—, —(5.12a)
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G;(b)=g,'&2VO(1 —Xo) I(1—Xo) Y; —5YO(1 —Xo)[v;(X)+A~t;(X)+ —,'g;X;]

+ Y02[ —10Y; —20Aq U(t ( Y))—10K. 3t;(t ( Y))—4g;U;( Y) —4A~g;t;( Y)+ ,' PY; —]] (5.12b)

with

i=1, . . . , 4
—1, i=5, . . . , 8,

P=( He g (&r; .n&))o; .8~) He)
i l,i 2

(5.13)

A nn
cr(M =1)+cr(M = —1)—2cr(M =0)
o(M =1)+o(M =0)+cr(M = —1)

8

=1——g ( IF I'+
I

G I')
i =5

(5.18)

It is an observable of great interest since it measures the
relative size of

= —2n b
——2 (5.14) IFs

I
+ IF6

I
+

I
G7

I
+

I
Gs

I

do
dA

=l 2( IF I'+ IG I')—= —,'I (5.15)

Since F7 ——F8 ——G5 ——G6 ——0 there are some amplitudes
missing as compared with the nucleon case.

The vector analyzing power due to the beam nucleon
is described by a formula identical to that for the nu-
cleon,

A„o——g Re(F;*G, )U;, .
2

i j =1
(5.16)

The matrix Uz, which is given in Ref. 9, couples F5,F6
to G7, G8 and F7,F8 to G&, G6. Therefore, only half the
number of the terms with i,j =5, . . . , 8 contribute for
'Li targets.

Since Li has spin 1 there are some new features in the
observables measuring the target polarization. The vec-
tor analyzing power due to the target is

Again the momentum space amplitudes F;(q) and G;(q)
of Eq. (5.2) are obtained from F;(b) and G;(b) by the
transformation (2.11).

The appropriate value for the parameter R entering
the functions k„(b,~~R) is R =2.07 fm.

The observables of the reaction p Li~h++ He differ
from those of the nucleon. The unpolarized cross sec-
tion is

VI. NUMERICAL ESTIMATES AND RESULTS

In the absence of experimental results concerning the
spin observables, we shall essentially address here the
question of the sensitivity of the calculations to various
approximations. For this reason, the nuclear structure
aspect of the problem will be kept in the lowest order
compatible with known bulk experimental evidences.

In the case of He, use is made of a single form factor,
parametrized by

2 2 —b2 2 2S(q)=e ' ~ —ce (6.1)

a functional form used by McCarthy et al. ' to fit the
charge form factor. The parameter values are derived
from those obtained by electron scattering, correcting
for the finite size of the proton and the center-of-mass
correlations in the way proposed by Auger et al. '

The situation is slightly different in the Li~ He tran-
sition, which is assumed to proceed through the valence
nucleons only. On the other hand, the multiple scatter-
ing corrections take place on any nucleon, except the
valence proton. Consequently, we must distinguish be-
tween two form factors.

The transition density pT(r) is given by the product of
two 1p shell single particle orbitals. Its monopole part
has a form factor we have parametrized by

&T(q)=(1+x+y)e "~ —xe

o (M =1)—cr(M = —1)Ap„——
o (M =1)+cr(M =0)+cr(M = —1)

ye
—A'q'i2+ 282xq2e -B'q

3 (6.2)

4
Re(F;*G; ) .

i =1
(5.17)

This observable is intrinsically similar to Apn in the
nucleon or He case. However, because of the vanishing
of Q7, Qs, P5, and P6, the sum runs effectively only over
the amplitudes with indices 1 —4. Consequently, it
confirms our expectation that Apn is a potentially in-
teresting observable, as was already remarked in the
preceding section.

For a spin-1 target there is also the possibility of hav-
ing a tensor analyzing power. We have chosen the com-
ponent A„„,where index n refers to the direction n,

The values A =2.778 frn, 8 =0.7143 fm,
x = —06438, and y =0.1947 are so adjusted that in
coordinate space the corresponding transition density
pT(r) fits the values used by Jain.

The multiple scattering corrections are calculated with
a form factor of the same expression as (6.1). As for
He, the parameters are taken from electron scattering,

measured by Li et al. ,
' corrected for the proton size

and center-of-mass motion by the same prescription. '

According to Li et al. ' the form (6. 1) does not allow us
to fit electron scattering data above 6 fm with accura-
cy. However, improvements to achieve a fit at higher
momentum transfer modify only the very central part of
the corresponding density p(r) by 2 —3%. Such a small
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correction can be neglected.
In addition to the form factors, the Li~ He transi-

tion requires the knowledge of the configuration mixings
for the two valence particles distributed among the 1p3/2
and 1p «2 single particle shells, possible higher
configurations being ignored. We take the various
weights from Donelly and Walecka, ' who got their
values by analyzing electromagnetic and weak interac-
tion transitions in Li.

Further refinements concerning the nuclear structure
is not meaningful as long as we do not distinguish multi-
ple scattering corrections in the entrance and exit chan-
nels, i.e., as long as the projectile and the ejectile are as-
sumed to interact the same way with the target nucleons.

For the same reason, the center-of-mass constraints
are handled in an approximate way, which has been
checked and found satisfactory in proton- He elastic
scattering up to momentum transfer of the order of 4

—1 15

As far as the elementary amplitudes are concerned,
the N~A transition is described by a parametrization of
the model amplitudes of Kloet and Silbar. " For the
sake of convenience, the amplitudes f, (q) and g;(q)/q
[see (2.2)] are reproduced by means of Gaussians or sums
of Gaussians. The fit is made for an incident energy of
800 MeV and an invariant mass of the 6 of 1238 MeV.
Two amplitudes, f2(q) and fs(q), are nonvanishing but
small enough to be neglected. Some of the others vary
so little over the 0' —90' range in the elementary center
of mass that they can be considered as constant. The
f; (q) and g;(q) used in the present calculations are listed
in Table I. They fit the actual values of Kloet and Silbar
up to 90 c.m. and somewhat beyond.

The elastic NN and AN amplitudes are assumed to be
identical, and we retain only two components [see
(2.13)]:

f"(q)= 1.05(i —0.23)e o fm

and

g "(q)= —0. 12q (1 —i 1.9)e & ~ fm .

(6.3)

They correspond to a proton-proton and proton-
neutron average of the 800 MeV amplitude of Bystricky
et al. ' parametrized by Auger et al. ' The isospin
dependence of the AN elastic amplitudes is ignored,
which is legitimate at this stage.

The results of the present calculations are displayed in
Figs. 1 —3 for the He~ H transitions, and in Figs. 4—6
for the Li~ He case. For each observable, we com-
pare the full calculations (solid lines) to the single
scattering values (dotted lines), and to an approximate
treatment of the multiple scattering corrections (dashed
lines), in which the spin-dependent component of the
elastic amplitudes g "(q) is neglected.

Only a very limited number of observables are
displayed. They concern the differential cross section,
the vector analyzing powers A„o due to the beam and
the target Ao„, a characteristic "depolarization tensor, "
DII, for He, and the tensor analyzing power A„„ for
Li. Although this choice is somewhat arbitrary, it

reflects our main findings and provides a suScient basis
for the present discussion. We shall list below a number
of comments and remarks.

The observables have been plotted against the quadri-
transfer

~

r
~

. Because the calculations are restricted to
the forward production angles, the longitudinal com-
ponent has been kept to its minimal value, namely its
value at O'. We have verified at the single scattering
term level that this approximation is valid over the con-
sidered range of transfers. For the same reason,
kinematical effects arising from change of reference
frame (c.m. , lab, NN, or N-nucleus), which are impor-

TABLE I. Values of the elementary b,-production amplitudes used in the present work. They correspond to an incident energy
of 800 meV and a 6 mass of 1238 MeV (the variable q denotes the transverse momentum transfer).

f~(q)=43. 3e '~ +i5 '5.
f2(q)=0.0

—0 865fs(q) = —7.2e '6's i 4 55— .
f4(q)= 4 0 i4 —8. — .

f, ( )= —7.2 "' —4.9'
f6(q) = —3 6 i4 86. — .

f7(q)= —6.0(1.0—e ' s ) i5 5—.

fs(q) =0 0

071 2 —0 125 2
g1(q)= —iq(118e 'q +125e ' '

)

g2(q) =i0.75q
—0 245g3(q)= 1.25q +tq 13.1e —0.245

g4(q) = —q(2 22e '~ —1 97e ) —iq2 76e
—05 —04 —025 2 —01 —029 2

g5(q) = —q (16.2e —25.4e +9.5e '~
) —iq (2.96e ' —3. 1e )

g6(q) =q(2.44e 'q —2. 12e )+iq(10.4e . q' —22. 6e 'q +13.6e "~ )

g7(q) = —q (1.06e +iq1.95e ~ )
—0 05 —01g8(q) = —iq (4.53e —4. 13e '

)
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FIG. 3. p+'H~A+++'H. Same as Fig. 1 but for DLL.
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FIG. 1. p+ He~A+++'H. Differential cross section plot-
ted against the momentum transfer. The dotted line corre-
sponds to the single scattering approximation. The dashed line
denotes calculations in which only the spin independent part of
the multiple scattering corrections are included. The results of
the full calculation are displayed by the solid line.

tant in the present case, have been included through
their first order expressions.

Except for the shape of the differential cross section,
the single scattering approximation is never successful.
Occasionally, for small momentum transfer, it may yield
a crude average; see the analyzing powers 3o„, A„o, and
3„„for the Li case. However, predictions based on this
approximation are hazardous.

Keeping only the spin-independent terms in the re-
scattering contributions is already a lot better. It ac-
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FIG. 2. p+ He~A+++'H. Same as Fig. 1 but for c4 p

(polarized beam) and A p„(polarized target).

FIG. 4. p+'Li~h+++'H. Differential cross sec~ion plot-
ted against the momentum transfer. The single scattering ap-
proximation is given by the dotted line. The dashed line corre-
sponds to calculations in which only the spin independent part
of the multiple scattering corrections are included. The results
of the full calculation are displayed by the solid line.
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counts partly for the nuclear structure aspect of the
problem. It seems to be sufficient, over the range of
momentum transfer investigated here, for observables in-
volving sums or differences of squared amplitudes, like
the differential cross section, DLL, or 3„„.Observables
built on interferences, like the asymmetries, are more
sensitive to other contributions.

The spin-dependent rescattering contributions show
their importance in various places. Most of the time
they cannot be neglected, especially when the transverse
momentum transfer reaches 2 fm '. The most dramatic
case is the production asymmetry A„o in the He- H
transition. Actually only the terms linear in the spin-
dependent amplitude play a role. Higher powers in

g "(q) contributions can be ignored.
These spin-dependent corrections are somewhat sensi-

tive to the terms involving the longitudinal momentum
transfer [see Eq. (3.13)]. The effect is not large, so that it
would be a bad approximation to throw them away,
whereas the use of Gaussian densities at this level
suffices to get a reasonable accuracy.

Since the rescattering contributions are important, our
basic assumption concerning the propagation of the 6
through the nuclear matter may be too crude. This has
the unpleasant feature of requiring tedious numerical ex-
ercises, but may bring valuable information.

FIG. 5. p+ Li~h+++ He. Same as Fig. 4 but for A„o
(polarized beam) and Ao„(polarized target). VII. CONCLUSIONS
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The present study has been devoted to 5 production
in proton-nucleus collisions at intermediate energies.
Within the Glauber model we have established practical
formulas that account for the multiple scattering of the
incident proton and the propagation of the b through
the nucleus. The method is in our hands. It can be im-
proved here and there but the main features are incor-
porated.

The two chosen examples clearly show the importance
of multiple scattering corrections and the need for a
rather refined treatment of the propagation, both projec-
tile and ejectile. Predictions made within the single
scattering approximation are unreliable. This aspect ob-
scures our initial goal which was to use the nucleus and
its spin selection rules as a means to isolate particular
amplitudes. The situation is not hopeless, but the
analysis of experimental data will require sophisticated
methods to discriminate between amplitude effects and
nuclear multiple scattering effects.

It is also important to notice that the differential cross
sections are only sensitive to the spin-independent part
of the elastic scattering amplitude. The spin-orbit com-
ponent appears to have a decisive inhuence on the spin
observables, in particular A„o. This is a point of consid-
erable interest.
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APPENDIX A: PROPERTIES
OF SPIN OPERATORS

Our spin transition operators S and T are identical to
those of Silbar et ai. Below we list some additional
properties which are needed in the treatment of the mul-
tiple scattering series. We first introduce the Pauli spin
operators o.

& for the spin —', particle. They are 4)&4 ma-

trices related to the total spin operator by o z ——2S& and
given by the following (the 6 superscript is used when
more convenient),

3 0 0 0
0 1 0 0

~ =00 —l 0
0 0 0 —3

The vector transition operators S are 4& 2 matrices, and
their spherical components are normalized to

( —,'mq
~
S~

~

—,
' mN) =( —,

')'~ ( —,
'

1 mNA,
~

—,'mz) . (A2)

0 v3 0 0
v3 0 2 0

0 2 0 &3
0 0 v3 0

0 —v3 0 0

One immediately verifies the following relations:

Sk o.
7
—S)o.

k ———7 ekr~ S~,
o pS~ —o ~ Sg = 57 Eg~ 5

The tensor transition operator T&I is defined by

(A3a)

V3
Oy =7

0

0 —2

2 0
0

—v'3, '

Tg( ———,'(Skier(+S(o k ) = ,'(crkS(—+crtSk ) .

From these definitions we derive

(A4)

7

(S a)(cr b)= ——(S.a~b)+a T.b,
2

(A5a)

5i
(crt b)(S a)= ——(S aAb)+a. T b,

2
(ASb)

(a T.b)(o c)=—'[3(S a)(b c)+3(S b)(a.c)—2(S.c)(a b)]+ —(a T.bAc+b. T aAc),4 2
(A6a)

37(oq.c)(a.T.b)= —'[3(S a)(b c)+3(S.b)(a.b) —2(S c)(a b)] ——(a.T bAc+b T.a~c) .4 2

In particular, we get (oq S)=(S o )=0.
Our evaluation of the multiple scattering series makes repeated use of the commutator

(A6b)

(ob'nb) g [f Q (lb mt )+g P (lb mb)l g [f Q (lb mb)+g P (Ib bm)]( o' obn)

= g [ —t;(g )Q;(lb, mb )+t, (f )P;(lb, mb )], (A7)

with t; (z =(z&, . . . , z& ) ) given by

t~(z) = —2z3, t2(z) =2z4, t3(z) = —2z» t4(z) =2z2, t5(z) =0,
t6(z) = —2v 3Z7 —2zs, t7(z) = —2v 3zb, ts(z) = —2zb .

We also need

(A8)

g [f;Q;(lb, rnb )+g; P; (lb, mb )](pro. nb ) = g [ —u;(g )Q;(lb, mb )+u;(f )P; (lb, mb )] (A9)

with

v'3
u&(z)= — z4 ——'z3,

2 2

v'3 V3 v'3
U2(Z) = Z3 ——Z4, U3(Z) = ——Z& + Z2, U4(Z) = — Z& ——Zp

2 2 2 2 2 2

v'3 v'3 v'3 v'3
V5(Z)= —Zp — Zs, Vb(z)= Z7+ —Zs, Vp(z)= —Zg+ Zb, U8(Z)= — Z5+ —Zb2 2 2 2 2 2 2 2

(A 10)
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APPENDIX 8: D WAVES IN THE SINGLE SCATTERING TERMS

In Sec. IV we assumed the wave functions of the He and H nuclei to be pure S wave. In reality, there are also S'-
and D-wave contributions. Below we show how the single scattering terms are changed when these components are
added.

We define three transition form factors Vo, V&, and VI as follows:

'
I

'He & = & n
I
~ »0(Q)

I p &

( H
I

v& ag; be '
I

He) =(n
I

—r.aIo"bV|(Q)+[3(tr.Q)(Q.b) —&.b]&'l(Q)I
I p)

(8 la)

(Bib)

They are functions of Q =(q2+A~~)' and have been calculated by Lazard et al. ' The bra and ket vectors (nI and

I p) only serve as indicators of the corresponding quantum numbers.
The formulae given in Sec. IV correspond to the case 20=V& ——ST(Q) and V', =0. When all the form factors are

present the single scattering approximation to the amplitudes of Eq. (4.1) reads

F;(Q)=e; .f; (q)[V, (Q) —PI(Q)+3 71(Q)]+3i g;(q)VI(Q) ' for i =1,2, (82a)

F;(Q)=e; f;(q)[21(Q)—&'llQ)+
2 VI(Q)] —3i

2
g;(q)&'1(Q) . «« =3,4,3q (82b)

F;(Q) =e;f; (q)[7, (Q) —VI(Q)] for i =5,6,
F; (Q) =e;f;(q)9'0(Q) for i =7,8,

G;(Q) =71; g;(q) V, (Q) —VI(Q)+3 7'&(Q) —3i f, (q) VI(Q) for i = 1,2,q'
Q2 Q2

~ ~IIq
G;(Q)=2); 'g;(q) Vl(Q) —VI(Q)+3 7'~(Q) +3i f;(q)VI(Q) for i =3,4,

Q2 Q2

G;(Q) =2);g;(q)70(Q) for i =5,6,
G;(Q)=2l;g;(q)[V&(Q) —7'i(Q)] for i =7.8 .

(82c)

(82d)

(83a)

(83b)

(83c)

(83d)

In Sec. V only the S-wave part of the transition density for Li~ He was properly treated. The D wave is easily in-
cluded, at least in the single scattering approximation. To this end we define the transition form factors V& and V'&

through

( He
I

(r& a)(cr, b)e '
I

Li) =(a„+ia~) —(0
I
VbV~(Q)+[3( VQ)(Qb) —(Vb)]V'~(Q)

I
1,M ) .3' (84)

The formulae of Sec. V correspond to the case VI =0 and 7, (Q)=ST(Q). The expressions for the single scattering ap-
proximation to the amplitudes of Eq. (5.2) are obtained from those of Eqs. (82) and (83). We set 70=0, make the re-
placements e; ~e,', g; ~g,', and apply a common multiplicative factor. Thus, for i =1,2 we have

r

2
IIFl(Q)=e,'&2VO f;(q) && —7'&+3 X~ +3~ g;(q)&I

Q2 Q2

and similarly for i =3, . . . , 8.

(85)

~T. Hennino et al. , Phys. Rev. Lett. 48, 997 (1982).
2C. Ellegaard et al. , Phys. Lett. 154B, 110 (1985).
T. Hennino, Ph. D. thesis, Universite de Paris-Sud, Orsay,

1981.
48. K. Jain, Phys. Rev. Lett. 50, 815 (1983); Phys. Rev. C 29,

1396 (1984).
5A. B. Wicklund et al. , Phys. Rev. D 34, 19 (1986); 35, 2670

(1987).

6See for instance, A. D. Hancok et al. , Phys. Rev. C 27, 2742
(1983); C. L. Hallas et al. , Phys. Rev. Lett. 55, 29 (1985); T.
S. Bhatia et al. , Phys. Rev. C 28, 2071 (1983).

7R. J. Glauber, in Lectures in Theoretical Physics, edited by %'.

E. Brittin and B. W. Downs (Interscience, New York, 1959),
Vol. 1.

8R. R. Silbar, R. J. Lombard, and W. M. Kloet, Nucl. Phys.
A381, 381 (1982).



1050 G. FALDT, C. LAZARD, AND R. J. LOMBARD 36

~J. P. Auger, C. Lazard, R. J. Lombard, and R. R. Silbar,
Nucl. Phys. A442, 621 (1985)~

IoD. M. Brink and G. R. Satchler, Angulav Momentum (Ox-
ford University Press, Oxford, 1968).

''W. M. Kloet and R. R. Silbar, Nucl. Phys. A364, 346 (1981).
C. Lazard, R. J. Lombard, and Z. Marie, J. Phys. G 11, 991
(1985);J. Phys. G 13, 321 (1987).

' T. W. Donnelly and J. D. Walecka, Phys. Lett. 44B, 330
(1973).

"J. S. Carthy, I. Sick, and R. R. Whitney, Phys. Rev. C 15,
1396 (1977).

'~J. P. Auger, J. Gillespie, and R. J. Lombard, Nucl. Phys,

A262, 372 (1976). See also, J. P. Auger and R. J. Lombard,
J. Phys. G 4, L261 (1978).

' G. C. I i, I. Sick, R. R. Whitney, and M. R, Yearian, Nucl.
Phys. A162, 583 (1971).

'7J. Bystricky, C. Lechanoine-Leluc, and F. Lehar, CEA report
No. DPhPE 86-13, and J. Phys. (Paris), to be published.

' J. P. Auger, C. Lazard, R. J. Lombard, and J. P. Maillet, J ~

Phys. G 11, 751 (1985).
' C. Lazard and Z. Marie, Nuovo Cimento 16A, 604 (1973).

See also, J. L. Ballot, C. Lazard, and Z. Marie, Nucl. Phys.
A395, 471 (1983).


