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Phase structure of excited baryonic matter in the relativistic mean field theory
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We analyze the phase structure of the nonlinear mean-field meson theory of baryonic matter
(nucleons plus delta resonances). Depending on the choice of the coupling constants, we find three
physically distinct phase transitions in this theory: a nucleonic liquid-gas transition in the low
temperature, T, & 20 MeV, low density, p=0. 5po, regime, a high-temperature (T= 150 MeV) finite
density transition from a gas of massive hadrons to a nearly massless baryon, antibaryon plasma,
and, third, a strong phase transition from the nucleonic Quid to a resonance-dominated "delta-
matter" isomer at p&2po and T, &50 MeV. All three phase transitions are of first order. It is
shown that the occurrence of these diff&ren phase transitions depends critically on the coupling
constants. Since the production of pions also depends strongly on the coupling constants, it is
seen that the equation of state cannot be derived unambiguously from pion data.

I. INTRODUCTION

In a preceding paper' we investigated the phase struc-
ture of the linear self-consistent relativistic field theoreti-
cal model of baryonic matter. We have found that for
coupling constants which reproduce the observed bind-
ing energy and density of nuclear matter a phase transi-
tion occurs for baryon density zero, i.e., for vanishing
chemical potential (p=O), from a gas of massive nu-
cleons to a plasma of nearly massless nucleons and an-
tinucleons. This sudden change was signalled by a peak
in the specific heat. This transition is due to the rapid
increase of the attractive scalar field at T=200 MeV,
which initiates the drop in the effective nucleon mass.
In the present work we extend our previous investigation
of the phase structure by explicitly including nonlinear
terms in the scalar interaction which allows a more
realistic description of nuclear compressibilities and
effective masses than the linear model. Furthermore,
isobaric resonances are included. In this approach
the properties of baryonic matter depend on six parame-
ters C„C„B,C, a =g, (b, ) Ig, (N), and /3=g, (b, ) Ig, (N).
The strength of the dimensionless coupling constants a
and P of the delta resonance to the vector and scalar
mesons is not known a priori.

We show in the present paper that the plasma phase
transition for p=O (Ref. 1) in the linear model does also
appear at finite baryochemical potentials in the nonlinear
theory. A liquid-gas phase transition is also observed, but
at low density and low temperature. We then show that
for certain values of a and P density isomers occur which
are compatible with known nuclear ground-state proper-
ties: A phase transition from a nucleonic Quid to
resonance-dominated "delta matter" at p ) 2po with a crit-
ical temperature T, (50 MeV is observed. We also show
that the plasma transition of Ref. 1 is not directly related
to such a hypothetical density isomeric state.

II. THE NONI. INEAR RELATIVISTIC MESON
MEAN-FIELD MODEL

OF STRONGLY INTERACTING MATTER

and the nonlinear scalar potential is written as

U(y) = —,'m, y + 3btp + —,'cy— (2)

For symmetric, infinite isotropic nuclear matter one
derives in the mean field approach the following equations
of motion:

Iiy„B"—[mN+g, (N)cp ]—g, (N)ypV I'PN=O,

[iy~d" [mt, +g, (b, )cp—p] g„(b )ypV ]Vg=O, —

mg cpp+btpp+ctpp= —g, (N)p, (N) —g, (&)p, (&),
m,'Vp ——+g, (N)p, (N)+g. (&)p, (&) .

Here Vo is the zero component of the repulsive vector
field V„. The eff'ective baryon masses m*(N) and m*(b, ),

The nucleon field +N and delta field +q interact in the
present approach ' through a scalar field y and a vector
field V„, while the pion and rho meson mean fields vanish
in symmetric nuclear matter in the mean-field theory.
The simplest nonderivative coupling of baryons to meson
fields is given by the Lagrange density: '

L =VN(iy„B" mN )4tN—+4&(iy„B" mt, )'Pz-
,' B„tpB"tp U(—(p)—,'F„—,F"" ,' m, V—„V"——

—g, (N)PN'PNy —g. (b )Pt 'P~p

—g„(N)e Ny„+N V"—g„(b, )4t,y„e'g V",

where the field tensor is defined as
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respectively, are defined by

m *(N)=m N+g, (N)Ipo,

m*(b, ) =mg+g, (b, )IPp,

(4a)

(4b)
ms

gvmN B=
mv 3

gsmN
C=

gs

The relevant parameters of the model are the dimension-
less coupling constants

For finite temperature baryonic matter the scalar densities
are given by

*( ')
p, (i) = ~ J dk, [n;(T)+n;(T)],

(2m) o [k +m* (i)]'

(6a)

while the vector densities are derived as

p, (i)=, J d'k[n;(T) n;(—T)] .
(2~)3

(6b)

Thus the baryon density is the sum of the nucleon and
delta vector densities:

with mN ——939 MeV and m~ ——1232 MeV. Using Eq.
(4a), we write for the effective delta mass

g, (&)
m*(A)=mq+ [m*(N) —mN] .

g, (N)

a and /3 . (11)

The first four coupling constants can be determined from
the four known ground-state properties for infinite nuclear
matter: saturation density po ——0. 15—0. 17/fm, binding
energy per nucleon E/ A = —16 Me V, compressibility
K =200—300 MeV, and effective nucleon mass
m */m -0.7. In the following we use the values obtained
by Boguta from a fit to finite nuclei: C, =246.0,
C, =156.3, B=—1.8E —3 and C=+2.87E —4. They
correspond to po ——0. 17/fm, E / A = —15.84 MeV, and
m ' /m =0.678. Note that while Boguta ' and Nakai and
Takagi claimed a compressibility of 290 MeV, we find
K =344 MeV.

There is no information available about the delta cou-
pling constants a and /3.

III. CHOICE OF THE DELTA COUPLING CONSTANTS

pg =p, (N)+ap, (b. ) . (6c) On the basis of "quark counting" arguments the corre-
sponding constants were chosen equal in Ref. 4,

Here the n; ( T), n; ( T) stand for the Fermi-Dirac distribu-
tions for baryons and antibaryons, respectively,

n;(T)=[exp([k +m* (i)]'~ —vI/T)+1]
n;(T)=[exp({k +m* (i)]' +vI/T)+1]

gsN —gsA

and

gvN gvb,

(12)

The abbreviations i = N, b„and y (i ) =4, 16 correspond to
spin-isospin- —,

' and spin-isospin- —,
' particles, respectively.

The effective chemical potential is defined as
v=p —g, Vo ——p —pzg, /m, . The energy density and the
pressure are given by

2

3 pg+ U(Ip)+ g 3 1 d'k[k'+m * (i)]'~
mv (2~)3

Figure 1 shows m*(p) for various sets of a and /3. The
choice above (a =/3= 1) leads to negative effective nucleon
mass as one can see in Fig. 1. At large densities the delta
has a small positive effective mass, while the effective mass
of the nucleon becomes negative at about p =2 GeV.

The problem is that for an effective mass equal to zero
the energy gap between particles and antiparticles van-

&& [n;(T)+n, (T)], 1.0
I ' I l I

~ I

T = 100 MeV

2
1 gvP = — pg —U(Ip)2m2

y (i) d3k k
(2~)3 p [k 2+ m e2( )]I/2

&& [n, ( T)+n, ( T) ] .

The nucleon and delta effective mass m N and m q, respec-
tively, have to satisfy the self-consistency relation for the
scalar meson field:

mq*(case1)

m„ m„, mz (case 2)

m„*(case])
I I I I I I I I I I I I I I I I I I I I

0 0.5 1.0 1.5 2.0
}3.(GeV)

m*(N) =mN —C, [p, +/3p, +B[m*(N)—mN]

+C[m'(N) —mN] I,
m *(6) =m q +/3[m *(N)—m N] .

(10)

FIG. 1. Effective mass vs the chemical potential p for T= 100
MeV. One can see the influence of the three different sets of
coupling constants, Eqs. (12)—(14)~ For Eq. (12) (case 1) we got
two curves, one for the delta mass (dashed) and one for the nu-
cleon mass (dotted). For Eq. (13) (case 2, dashed-dotted) and 14
(case 3, solid line) the masses have the same ratio.
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ishes. That means that spontaneous particle-antiparticle
pair production can happen abundantly. This unpleasant
behavior one could overcome if the SU(6) symmetry is
considered. If the SU(6) symmetry is exact for baryons,
then we would be forced to use the same coupling con-
stant for the baryon decuplet and the baryon octet, just as
in Ref. 4. but the mass splitting of the multiplets shows
that the SU(6) symmetry is not exactly fulfilled. There-
fore one could also assume that the coupling coefficients
show a splitting similar to that of the mass splitting:

1.5—

1.0—

0.5—

I r [ ) 1 & I ~

)
s I ~ I [ I

e I ~

l
s I

gsh gvA m 6

gN gN mN
(13) p

0 0.5 1.0

g (GeV)

l i i I i I

1.5 2.0

gsS

gsN mN
=1.31 . (14)

For that case both effective masses will converge to zero
from above for infinite temperature. These considera-
tions apply only to the scalar coupling, because the
baryonic plasma does not contain any information about
the vector coupling.

Let us now consider the consequences of the different

For this choice (Fig. 1) the effective mass ratios
m*(i)/m(i) are equal and positive. But one should stress
that symmetry arguments can give only tentative indica-
tions to choose these ratios, since the theory deals with
effective mesons.

A similar result can be obtained with the set of cou-
pling constants studied in Ref. 5, where a = 1 and P was
varied between 1.2 and 1.5. These different choices will
be studied in the following chapter. The main result is
that both effective masses are positive for finite tempera-
ture and chemical potential (Fig. 1) and smaller than for
the previous choice of the delta coupling constants. In the
next section we show that for the baryonic plasma
(@=ps =0) the value of the scalar coupling to the delta
resonance is determined by the restriction of positive
effective masses:

FIG. 3. Same as Fig. 2, except that this figure is connected to
Eq. (13).

choices in some detail (Figs. 2 —4). We have plotted the
particle density of nucleons, antinugleons, deltas, and an-
tideltas versus the chemical potential p. The choice of
Garpman et al. (Ref. 4) shows a clear delta dominance
with fewer nucleons and negligible antiparticles (Fig. 2).
The second choice with mass dependent scalar and vector
coupling predicts a strong suppression of the deltas (Fig.
3). This is due to the strong vector coupling. The third
choice with mass dependent scalar and equal vector cou-
pling ' ' yields delta dominated matter with suppressed
nucleons and negligible antiparticle contributions. Here
negative effective masses do not occur (Fig. 4). These
three possibilities show that the delta abundance is strong-
ly dependent on the coupling constants of the delta reso-
nances to the scalar and vector fields. This result renders
the proposed method of using the pion (b, ) yields to ex-
tract the nuclear equation of state from data' " virtually
useless for the mean field equation of state. In this paper
we will consider mainly the third choice in more detail.

I ' I [ I a I ~

1
I

I ' 1 [ I I
$

\

)
~

1.0—
T=100MeV, a. =

P =1 T=100 MeV, et=1, P =1.3

E.
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0
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p. (GeV)
2.0

/
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n
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FIG. 2. The particle densities vs the chemical potential p.
The solid line corresponds to the nucleon density, the dashed-
dotted line to the deltas, while the dotted line represents the an-
tinucleons and the dashed line stands for the antideltas. This
figure is connected to Eq. (12).

FIG. 4. Same as Fig. 2, except that this figure stands for the
set of Eq. (14).
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IV. THREE PHASE TRANSITIONS
IN HOT HADRONIC MATTER

A. Critical phenomena at finite baryochemical
potential and densities

1.0

C, =2/6. 0, C, =156.3, B=1.8 d-3, C= 2.81d-/, T=0MeV

P =1.35

deltas

Let us study the phase structure of nuclear matter in
analogy to Ref. 1, but at finite baryochemical potential:
Figure 5 shows the "equation of state" at T=O MeV,
i.e., the binding energy per nucleon versus the density,
for diff'erent values of the scalar coupling constant /3

(/3= l. 31—1.35 ) and the vector coupling constant a
(a=1.0—1.31). For a=1.0 and P& 1.2, a secondary
minimum is obtained at densities p~ &2po. For p=1. 5
the second minimum is actually lower than the ground
state (below —50 MeV). For P=m(b, )/m(N) (a=1.0
and /3 = 1.35), a secondary minimum develops at
E/3 = +4 MeV and p =3po. The reason for this behav-
ior is the rapid increase of the delta production at 2po

05

Cl

CL

nucleons

0
0

FIG. 6. Particle density of deltas and nucleons vs the baryon
density. p is chosen to be 1.35, that is, the density isomeric case.

C = 246.0, C = 156.3, B = -1.81-3, C = +2.87d-I, T=O MeV

100—

50—

-20—

FIG. 5. Equation of state: Binding energy per nucleon vs
the baryon density pa/po for a & 1.0 and /3=1. 31, 1.35 and
vanishing temperature T =0 MeV. The left curve (solid) is the
nucleonic curve without any delta distribution, but is also valid
for /3=1. 31 and a& 1.2. The second (dashed), third (dashed-
dotted), and fourth (dotted) curves are plotted for /3=1. 31 and
a=1.15, 1.1, and +=1.0, respectively. For decreasing vector
coupling strength o.' the binding energy decreases and a real
minimum is only reached for a=1.1. The fifth (solid) curve is
the only one with /3=1. 35 (a=1.0).

(Fig. 6). This refiects the strong attraction of the deltas
by the scalar field, which results in a lowering of the del-
ta continuum states below the Fermi surface of the nu-
cleons. Equilibrium is reached when 80% of the
baryons are in the deltas (with degeneracy y = 16) and
20% are in the nucleons (y =4). But also the vector
coupling constant o. has a great influence on the equa-
tion of state. If we fix the scalar coupling constant to
/3=1. 31 and vary only a, the minimum of the density
isomer lies higher in energy and vanishes completely for
o. ~1.15. Then the delta resonances do not occur at
moderate densities. The left curve in Fig. 5 is not only
valid for this choice but also for the normal nucleonic
equation of state.

Hence we can conclude in agreement with Fig. 5 that
in addition to the ground state properties there is a great
influence of the delta coupling constants on the high
density behavior (Ref. 5). The delta resonances play the
most important role for the pion production in heavy
ion collisions from 0 MeV to 2 GeV/nucleon bombard-
ing energy. ' The present result means that the equation
of state cannot be unambiguously derived from the pion
data as was expected before. ' ""

For finite temperatures (Fig. 7) we can see a similar be-
havior: As the temperature increases, so does the energy
per nucleon. For T & 20 MeV the system is unbound and
for T= 50 MeV the two minima have the same depth.
While the normal nucleonic minimum vanishes, more and
more deltas are produced. For T= 100 MeV there is
finally only one broad delta dominated minimum in the
isotherm. This behavior is due to the smearing effect of
the temperature on the Fermi level (compare Fig. 8).
Therefore the delta abundance increases much more
smoothly, but starts already at zero baryon density with a
value above 0.2p~.

The velocity of sound tends towards the velocity of
light for high densities and/or high temperatures as can
be seen in Fig. 9: The isotherms of P tend towards the
causality limit P=e. That means that BP/Be=c, con-
verges to 1 from below. The second velocity is therefore
predicted to be always smaller than the light velocity. In
the same picture, two phase transitions can be observed.
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FICx. 7. Equation of state for finite temperature and p=1.35.
Binding energy per nucleon vs baryon density pz /po.

FICx. 9. Pressure vs energy density in a logarithmic scale for
p=1.35 and temperatures from 10 to 100 MeV.

The first one at an energy density a=100 MeV/fm, and
the second one at @=400 MeV/fm . These phase transi-
tions are characterized by negative values of c, , i.e., imag-
inary values of the sound velocity c, . This indicates a
mechanical instability of the system. The first phase tran-
sition at @=100MeV/fm can be identified as the liquid-
vapor phase transition, as shown in Ref. 1 for the linear
model. The second phase transition corresponds to the
delta-density isomeric state. Here a baryonic phase tran-
sition from nucleonic to delta matter occurs. Solving the
Rankine-Hugoniot-Taub relations for this density isomeric
state the single shock solutions break down and shock in-
stabilities occur, similar to those predicted ten year ago. '

The equation of state of the baryonic system and the
appearance of phase transitions can be illustrated best by
plotting isotherms of pressure versus the chemical poten-
tial p. In such a figure, possible phase transitions can be

identified very easily: The Gibbs two phase equilibrium
is established when two branches of P(p, T) cross, i.e.,
thermal equilibrium ( T

&

——T2 ), chemical equilibrium

(p1 ——p2), and mechanical equilibrium (Pt P2) betw——een
the two branches are automatically ensured. Observe in
Fig. 10 that the isotherms separate into four regions
which can be identified with nucleon-liquid, the
nucleon-gas, the delta phase, and a fourth phase which
corresponds to the plasma phase discussed in Ref. 1.
Regions of instability develop when the incompressibility
becomes negative. The van der Waals form of the equa-
tion of state in the low temperature range is due to the
long range attractive forces and the short range repul-
sion described in the mean-field model. This first transi-
tion (liquid-gas) has a critical temperature T, = 17 MeV.
The critical temperature of the second phase transition
is T, =41 MeV. At even high temperatures, T = 130

1.0—
C, = 246,0, C„=156.3, B=-1.8d-3, C-2.87d-4, T=100 MeV

40

C =246.0, C =156.3, B=-1.8d-3, C=2.87d-4, P=1.35

30

0.6
20E)

X
10

04

0.2—
0 2 3

P, P.

-10-
I ~ t i I i I I I I I ~ I I I ~ I ~ I ~ 5 ~ I

450 500 550 600 650 700 750 800 850 900 950 1000

p (Mev)

FIG. 8. Particle density of deltas and nucleons vs the baryon
density for T =100 MeV.

FIG. 10. Pressure P vs chemical potential p for P=1.35 and
temperatures from 5 to 130 MeV.
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MeV, an independent phase transition develops. It cor-
responds to the nearly massless phase of hadrons ob-
served in Refs. 1, 4, and 6—8. This phase transition
occurs not only for the vanishing chemical potential p
discussed in Ref. 1. Figure 10 shows that it exists for a
higher chemical potential above 500 MeV as well. The
appearance of heavier baryons not only raises the chemi-
cal potential p, but also produces a cooling effect due to
the high degeneracy factor y (yz ——16). This effect will
be discussed in more detail for the baryonic plasma
(P~ =P=0).

Figure 11 shows the phase diagram of baryonic matter
for the set of coupling constants given above and o. =1,
P=1.35. We can recognize the liquid-gas coexistence,
the delta matter, and the narrow (in temperature T) but
broad (in density pti lpo) band of the transition region to
the massless plasma. The liquid-vapor phase transition
is not affected by the inclusion of the delta resonances,
while the high-temperature phase transition is strongly
shifted to lower temperatures. The three transition re-
gions are well separated from each other.

B. Critical conditions in the baryonic plasma

Let us now explore the phase structure of the effective
Lagrangian at vanishing chemical potential p, i.e., vanish-

(vev)
200-

C, 246.0, C„156.3, 8 -1.8d-3, C - +2.87d-4, P = 1.35

GLG P

1[jo—
Transition to massless plasma

Liquid- gas
t

coexistence

[j 1

n to
delta matter

FIG. 11. Phase diagram of nuclear matter: Temperature T vs

baryon density ps/po for /3=1. 35 and a=1.0. The coexistence
region for liquid gas and the transition regions to delta matter
and to the massless plasma are calculated. The hatched area in-

dicates the coexistence region of quark-gluon plasma and ha-

dronic phase. QGP stands for quark-gluon plasma.

ing vector density p, . First observe that for p =0 the vec-
tor coupling constant does not appear in the thermo-
dynamical quantities calculated in the mean field approxi-
mation. In contrast to finite p, the Fermi integration can
be done analytically, yielding for the dimensionless energy
density

y(N)Tm* (N) "
( —1)"e=+U yo +

'jl 2 n=i n

3T
K, (zN )+ Kp(z~ )

nm *(N)

3TKt(z~)+ K, (z~)
nm *(b, )

(15)

and the total pressure

y(N)T m* (N) ( —1)" ' y(h)T m*2(b, )
"

( —1)"I'= —U Vo +
7T rr n=]

(16)

The self-consistency relation for the eff'ective mass results for p =0 in

( 1
n —i

m*(N)=mN —C, g [y(N)m* ( N) K(iz~) +Py(h)m* (b, )Kt(zq)
n =1

+B[m*(N) —mN] +C[m*(N) —mN] ] (17)

where z (i) abbreviates:

z(i) = —nm *(i)/T (18)

for i =N, A.
In Eqs. (15)—(17), Ki and K2 denote the modified

Bessel functions of first and second order, respectively.
Figure 12 contains the solution m * of the self-consistency
equation as a function of the temperature for a linear set
of coupling constants. ' The general trend of the function
m*(T) can be understood as follows: The scalar density,
which appears as a source for the scalar meson field go,
increases with increasing temperature. This leads to an

increase of the mean-field value of cpa. Since the scalar
meson describes an attractive interaction of the nucleons,
these will be bound more strongly, and thus the effective
mass is reduced. This mechanism is reinforced by the
fact that a decrease of the effective mass increases the sca-
lar density again. One striking feature is the sudden drop
in m* at temperature T=200 MeV, where the transition
from m*=0.75 to m*=0.25 occurs in an interval of
AT=5 MeV only. The critical temperature of the phase
transition decreases to T=100—150 MeV if we take the
delta resonances into account. This is the cooling effect
mentioned above and is seen similarly in shock calcula-
tions. It also depends on the ground-state properties
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FIG. 12. Eftective mass m*/m vs temperature T for vanish-

ing chemical potential p and P=0, 1.2, 1.31, 1.5.

m*(N) m~
= —Py(b ) —P X const,

mN T~ oo mN

used. The mathematical structure of the self-consistency
equation is so simple that is is possible to understand how
this decoupling happens. First we remark that the specific
heat is linear in 8m*/BT. So whenever we see a sudden
fall in m*l(T), there is a peak in the specific heat. In ad-
dition, if we have three solutions of the self-consistency
equation, similarly the total energy density in that region
is also triple valued. The fact that we see one or two
poles or only a peak in 8m *lr)T means, respectively, that
we have a phase transition of second or first order or con-
tinuous thermodynamical behavior. The most important
point is the occurrence of negative effective nucleon
masses evaluated for a = 1 and P = l.20. When the
effective mass vanishes, there is no energy gap between the
baryons and the antibaryons. Thus spontaneous particle
production can occur. In the linear model an analytic
solution for the high-temperature behavior of the effective
masses can be derived:

only valid for the scalar coupling constant, because the
vector meson does not contribute to the effective masses.
Thus the only way to get rid of the unrealistic negative
masses is to choose P=m(b, )/m(N) =1.31, so that both
effective masses converge to zero for T~co. This re-
quirement does not imply that P should be chosen in this
way in all mean-field calculations: The extrapolation to
high T must certainly be questioned for the present ap-
proach. It must be kept in mind that this picture is the
result of a mean-field approximation. Hence the detailed
structure of the phase transitions will certainly be
different in the full quantum field theory. Another re-
mark concerns the observation that at high temperature
the system behaves like an almost free zero mass fermion
gas with a constant shift in the energy density and in the
pressure. This is quite analogous to the expected chiral
phase transition in high temperature quantum chromo-
dynamics (QCD). However, there is no liberation of
internal degrees of freedom of hadrons in the linear
mean-field model.

Summarizing this section we may state that around the
temperature T= 100—200 MeV the pressure and the inter-
nal energy become, up to a constant, those of a free mass-
less fermion gas having the degeneracy factor of nuclear
matter. We interpret these results such that the nuclear
field theory, as a low temperature effective theory of ha-
dronic matter, indicates the occurrence of a sudden
change in the thermodynamical behavior around
T= 100—200 MeV at zero baryon density, in some analo-

gy to quark deconfinement in lattice QCD calculations.
The last result is that this phase transition occurs for
diFerent /3 (P= 1.2 —1.5 ), and in the special case I3= 1.3 1

for all possible values of C, . While this phase transition
was parameter dependent in the normal linear and non-
linear mean-field theory (Ref. 1), it is now always present.
This is due to the delta-scalar coupling which reduces the
effective nucleon mass very strongly. The critical value
for p=1.35 is C,~=20. For such a low scalar coupling
one obtains an effective nucleon mass above 0.9 for the
ground state or a compressibility of 2000 MeV, which are
both much too high.

(19) V. CONCLUSION

m "(5)
mN

m~ —P &&const .- +y(N)T~ oo mN

It is obvious that the sign of the effective masses depends
on the sign of the quantity inside the large parentheses,
but in an opposite way. So we have three different possi-
bilities in choosing P. The first one is to choose P& 1.31,
so that we get a positive effective nucleon mass, but then
the effective delta mass becomes negative. The second
one is to choose P& 1.31. Then we will get a positive
effective delta mass, but have to cope with negative
eff'ective nucleon mass. The third possibility is P=1.31,
as we had discussed analytically for the baryonic plasma,
in which case both effective masses will go to zero in the
high temperature regime, i.e., we will get chiral symme-
try. This only happens if P is equal to the ratio of the
delta mass to the nucleon mass [Eq. (14)]. This result is

A detailed analysis of the phase structure in the non-
linear mean field model including delta resonances shows
that with parameters which reproduce the properties of
ground state nuclear matter, the model predicts a low-
temperature nucleonic liquid-vapor phase transition at
T, = 15—20 MeV, and another one at temperatures above
100 MeV connected with the critical conditions in the
high-temperature baryon, antibaryon plasma. These tran-
sition are quite similar to those found in the linear mean-
field model, but the critical temperature T, in the high-
temperature regime is reduced. The location of this high-
temperature phase transition is strongly parameter depen-
dent. For a system of nucleons and delta resonances, we
do observe this state for all coupling constants which de-
scribe nuclear ground-state properties. Thus the inclusion
of nonlinear scalar interactions or delta-meson couplings
into the mean-field Lagrangian does not alter this critical
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behavior of the model. Additional problems enter by a
third phase transition, which results from the delta in-
teraction with the meson fields. The first problem is the
nucleon-delta phase transition at T, (45 MeV, and the
second one the creation of negative effective masses for
P&m(h)/m(N). One can only get rid of this unrealistic
behavior by demanding the scalar-delta coupling to be
proportional to the mass ratio. This can yield delta iso-

mers for certain choices of the vector coupling constant
(a (P).
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