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Spin density and the real part of the heavy-ion potential
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The contribution of the spin density term in the Vautherin-Brink energy density functional to the
real part of the heavy-ion potential is estimated. The explicit expression involving Hartree-Fock or-
bitals given by Vautherin and Brink is used to calculate the spin density where, instead of self-

consistent orbitals, shell model orbitals have been used. Results are presented for target projectile
combinations such that (a) one of the nuclei is spin unsaturated and (b) both are spin unsaturated.
The contribution of the spin density term to the heavy-ion potential is found to be appreciable.

I. INTRODUCTION

The energy density formalism' has been used exten-
sively in calculating the real part of the heavy ion poten-
tial. The advantage of the method over other micro-
scopic approaches lies in its computational simplicity.
Among the various energy density functionals, the one
given by Vautherin and Brink (VB) derived from Skyrme
interaction enjoys special popularity because of its suc-
cess in predicting properties of individual nuclei. The VB
energy density is given in terms of nucleon mass density,
the kinetic energy density, and the spin density (also re-
ferred to in the literature as "spin-orbit density"). ' The
spin density arises out of the two-body spin-orbit interac-
tion term in Skyrme interaction. The role of the spin den-
sity in determining the heavy ion potential is not ade-
quately known. Either the systems studied had spin den-
sity equal to zero (spin saturated systems) or the term was
neglected, assuming its contribution to be small. If
one wishes to extend the energy density formalism to deep

inelastic collision processes, a proper evaluation of the im-
portance of the term becomes necessary. Because of parti-
cle transfer, two spin saturated systems on collision will
give rise to combinations which are not necessarily spin
saturated. In fission also this term is expected to play a
role, though the situation is more complicated by the
presence of deformation. In this paper we present a sys-
tematic study of the contribution of the spin density term
in the VB energy density functional to the heavy ion po-
tential, confining our attention to spherical systems. In
Sec. II the theory and the relevant mathematical details
are given. In Sec. III the results of the computation are
presented and discussed.

II. THE CONTRIBUTION OF SPIN DENSITY
TO THE HEAVY ION POTENTIAL

The VB energy density functional for an even-even
spherical nucleus is given by
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In (I), p=p„+pz is the nucleon density (the subscripts n and p refer to neutron and proton, respectively), r =r„+r~ is
the kinetic energy density, and J=J„+J~ is the spin density. to, xo, t~, t2, t3, and Wo are Skyrme interaction parame-
ters. The above expression for energy density was obtained from a variational calculation using a wave function in the
form of a Slater determinant.

The nucleon, kinetic energy, and spin density can be expressed in terms of self-consistent Hartree-Fock orbitals P;.
Thus J in terms of P; is given as
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~
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The summation over i runs over all occupied single particle orbitals. The subscript q refers to either neutrons (q =n) or
protons (q =p).

The ion-ion potential in this formalism is calculated as the difference of total energies of the overlapping and isolated
systems l and 2:

V(R)= f H(r, , pJr)dr — f H~(r~, pt, r~, J~)dr~+ f Hq(rq, pq, r2, Jq)dry (3)
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Equation (3) has been used by various authors to calculate the real part of the heavy ion potential. In such calcula-
tions many of the systems chosen for study were spin saturated with J„=J~=O. For systems in which these conditions
were not satisfied the contribution of the term was neglected.

In principle, Jq(r) can be calculated for any even-even system using expression (2). Self-consistent calculations, how-
ever, involve large, time consuming computations and become prohibitive for heavier systems. This is avoided in the
present calculation by the use of shell model orbitals for p;. For closed j shells, expression (2) for Jq(r) simplifies consid-
erably to

J~(r)= g (2j +1)[j (j +1)—I (1 +1)—,']R —~(r),
4~r4

(4)

where R z(r)Ir is the radial part of the single particle
wave function P; ( r, cr, q ).

From Eqs. (1) and (3) the contribution of the spin den-
sity term in the energy density functional of VB to the
heavy ion potential is found to be

Vs(R) = ——,
' ~o f [ pi V. (J.,+J,)

+p2V (J„,+J„))dr .

The subscripts 1 and 2 refer to the corresponding quanti-
ties for colliding nuclei l and 2, and R is the distance be-
tween their centers. In arriving at (5) it has been assumed
that in a nucleus, p„=p~= —,'p. This last assumption is,
however, not essential. The expression for V, (R) without
this assumption will involve p„,p~ and p„,p~ . In

evaluating the right-hand side of Eq. (5), the expression
for J given in Eq. (4) has been used. In this equation, al-
though the summation runs over the occupied levels, all
pairs of orbitals corresponding to j =l + —,

' and j =I ——,
'

contribute zero. The contribution to V- J, therefore,
comes from the outer unpaired orbitals.

III. RESULTS AND DISCUSSIONS

Rni(r)
1/2
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The scale factor

mw 0.4940V=
2A

fm

The contribution to the heavy ion potential from the
spin density terms in the VB energy density functional has
been calculated using Eqs. (4) and (5). The normalized ra-
dial part R z(r) lr of the shell model orbitals is given by"
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FIG. 1. The plot of V, (R) as a function of the separation dis-
tance R between the centers of the co11iding nuclei. The nucleus
' 0 is spin saturated with J„=O, J~=O.

FICx. 2. The plot of V, (R) as a function of the separation dis-
tance R between the centers of the colliding nuclei. One of the
nuclei ( Ca) is spin saturated.
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FIG. 3. The plot of V, (R) as a function of the distance of sep-
aration R between the colliding nuclei, where both nuclei are
spin unsaturated. -2

] x10

is related to the oscillator parameter b by v = 1/2b .
These oscillator wave functions could be used to calculate
the density distributions of the colliding systems. Instead,
parametrized Fermi-type distributions given by Stancu
and Brink have been used. The agreement between such
parametrized densities and those calculated using wave
functions has been shown to be very good in Ref. 6. The
agreement is particularly impressive in the tail region,
which makes the most significant contribution to the po-
tential. One thus saves a lot of computational eff'ort and
time without sacrificing accuracy significantly, by using
the parametrized density distributions. In obtaining the
densities p and spin densities J of the overlapping systems,
the sudden approximation has been used:

p=p&+p2 ~

J=J(+Jp .

This approximation is reliable only at high bombarding
energies.

The plots of V, (R) as a function of the distance R be-
tween the centers of the colliding nuclei are given in Figs.
1 —3. In all the target projectile combinations in Figs. 1

and 2, one of the nuclei is spin saturated (J=O), while in

FIG. 4. The plot of V J as a function of the radial distance r
for 'Ca. The arrow indicates the radius R = ro A ' ' with
ro =1.2 fm.

the combinations of Fig. 3 both nuclei are spin unsaturat-
ed. One observes that the contribution of spin density to
the potential is appreciable. In comparison, it should be
noted that the depths of potentials obtained by Stancu and
Brink without the spin-density terms for the target pro-
jectile combinations ' 0+ Ca and Ca+ Ni are —32
and —40 MeV, respectively. For combinations where
both the colliding nuclei are spin unsaturated, V, (R ) is
much deeper compared to that. for similar combinations
where one nucleus is spin saturated. This is evident from
a comparison of the curves corresponding to Ca+ Ni
and Ca+ Ni, and also those for Ca+ Zr and

Ca+ Zr. The tail parts of V, (R ) indicate a slight
repulsion. This arises because of a change of sign of V' J
near the nuclear surface (Fig. 4). In the total potential
this repulsion will be more than compensated for by the
attractive contributions of the other terms.
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