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Exciton-model approach to fast-particle emission in heavy-ion collisions
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Emission of fast particles in low-energy heavy-ion reactions is calculated using the exciton model.
The initial state of the excitons is fixed by pure momentum-space considerations. By defining the
projectile source and the target source as independent ernitters of the fast particles, we calculate the
angle-energy double-differential cross section. Angular dependence is obtained by fixing the total
linear momenta of the projectile source and target source separately in addition to fixing their exci-
tation energies. A linear-momentum-dependent level density is used for this purpose. This model is

applied to several heavy-ion reactions whose energy is 10—20 MeV per particle. Our calculations
reproduce the data for the high-energy part of the energy spectra well. Our model is one way of
understanding the mechanism of the moving-source model.

I. INTRODUCTION

In heavy-ion reactions with energies of several tens of
MeV per particle, energetic nucleons and light composite
particles are emitted more frequently than is calculated by
the evaporation model. Such fast particles are identified
by direct measurement or by detection of the fusion resi-
due velocity spectra. Phenomenologically, the energy-
angle double-differential cross sections can be reproduced
well by the moving-source parametrization. ' Theoreti-
cally, proposals such as the Fermi-jet model, the exci-
ton model, ' the time-dependent Hartree-jock (TDHF)
model, "' the Boltzmann-Uehling-Uhlenbeck (BUU) [or
the Vlasov-Uehling-Uhlenbeck (VUU)] model, ' ' ' and
many others have been examined. By contrast with the
light-ion reactions, it is ambiguous to fix configurations
and trajectories of the heavy-ion projectile and the target.
The models proposed up to now absorb these ambiguities
in the values of parameters. We propose a new model for
calculating the double-differential cross section which ob-
viates the need for precise trajectories and configurations.

One of our purposes is to understand the physics behind
the phenomenological moving-source parametrization. '
The moving-source model is based on an intuitive idea
and has achieved good success in explaining the data.
Nevertheless, the basis of this model is not clear and it is
highly desirable to understand it on more fundamental
grounds. As discussed in the following sections, our
model will play a role in achieving this purpose.

Our model is composed of two items: the Fermi-sphere
consideration and the exciton model. The idea of the Fer-
mi sphere is to pay attention only to the momentum-space
consideration of the nucleons in the target and the projec-
tile and neglecting all information on the configuration
space. Because of this simplification, we do not need the
precise trajectories of the heavy ions and their configura-
tions. With this idea, we fix the initial condition of the
exciton model which is used to calculate the double-
differential cross section. This model has a relation to the
Fermi-jet model and we intend to calculate the secon-

dary scattering of the Fermi-jet particles by the exciton
model. By this procedure we hope to calculate
phenomenologically the effect of the collision terms as is
calculated by the BUU (or VUU) model. ' ' The total
linear momentum of the excitons brought in by the
Fermi-jet particles plays a crucial role in determining the
angular distribution. By fixing the values of the parame-
ters for the exciton model as those obtained in the light-
ion calculations, we can calculate the absolute values of
the cross sections. Agreement with data is fairly good, as
will be shown in Sec. III. A preliminary report on this
subject was published in Ref. 15.

In the next section we give the motivation and formal-
ism of our model. In Sec. III we will give the results of
the numerical calculations and related discussions for the
emission of protons. In Sec. IV we give a brief summary.

II. MODEL

We calculate the emission of fast nucleons in heavy-ion
reactions for incident energies of several tens of MeV per
nucleon. In this energy range, the main reaction channels
are the fusionlike, deep-inelastic, and quasielastic process-
es. We formulate the model corresponding to the first
channel. We pay attention to the fast particle emission,
which is not taken into account by the evaporation pro-
cess. Thus the process we tackle is the incomplete fusion
reaction.

The Fermi-jet idea gives a simple model with which
to understand fast-particle emission. This model, howev-
er, has some problems when it is applied to the data
analysis. In this model one must fix the trajectories of
both heavy ions (projectile and target), which is difficult
to achieve. Another point is that it is also difficult to in-
corporate the effect of the secondary scattering of the
Fermi-jet particles. To resolve these problems we adopt
the exciton model, and in order to define the initial condi-
tion of the model we use Fermi-sphere considerations. In
it, we use only the momentum space.
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A. Initial condition of excitons

We start with the experimental data of Refs. 16 and 17.
The authors of Refs. 16 and 17 analyzed the ratio of the
incomplete fusion cross section to the total fusion cross
section for many reaction channels and for many incident
energies. One of the conclusions of their analysis is that
the velocity of the light collision partner, measured in the
center-of-mass frame, is a good measure of controlling the
occurrence of the incomplete fusion. The relative velocity
of the projectile and the target (or equivalently the energy
per nucleon) is not a good measure for describing such
processes when the data for different mass asymmetry of
the initial channels are compared. In Ref. 17 the data
were analyzed on the basis of simple Fermi-sphere —model
considerations and it was found that the center-of-mass
frame (or the rest frame of the compound nucleus) is suit-
able as a reference frame. We adopt thus the compound
nucleus as a basis of the exciton-model calculations.

The way of fixing the initial condition for the exciton-
model calculation is the following. We show in Fig. 1 an
example of our Fermi-sphere model for the reaction
' 0+ Al for the incident energy of 315 MeV leading to
the compound nucleus " Sc. In this figure we show the
Fermi spheres in the momentum space of the compound
nucleus Sc (centered at C, ), the projectile ' 0 (centered
at C~), and the target Al (centered at C, ). The latter
two are calculated at the Coulomb barrier position, thus
their centers are displaced from C, corresponding to the
incoming velocities at the barrier. For simplicity, we as-
sume the same Fermi momentum for all nuclei. Because
we take the compound nucleus as a reference frame, the
sphere centered at C, is our basis. The number of states
in the momentum volume dp at p for projectile (i =p)
and target (i =t) is given by the Fermi-gas model as

160 27~ ~ 45s

E ( 0j = 310 MeV

FIG. 1. Illustration of the Fermi spheres in the momentum
space for the reaction 310-MeV ' 0 on 'Al. Fermi sphere of
' 0 (centered at C~) of Al (centered at C, ), together with that
of the compound nucleus 'Sc (centered at C, ) are shown. Same
Fermi energy of 33.5 MeV is assumed for all nuclei. The mean-
ing of the shaded and dotted area is given in the text.

4V;dp
n;dp= (i =p or t),

(2M)

where V; is the volume and

V; 2r02;
n;= = (i=p or t)

2m A 3m A
(2)

is the density of states in momentum space expressed by
the radius parameter r0 and the mass number 3;. This
density for Sc is a sum of those for ' 0 and Al because
the density is proportional to A. The central blank area in
Fig. 1 corresponds to the situation where the densities of
' 0 and Al overlap. Two shaded areas in the figure are
particle states, one coming from ' 0 and the other from

Al. Two dotted areas, on the other hand, are thought to
be hole states because the density of momentum space is
less than the normal density for the compound nucleus.
The central blank area is a O-particle, 0-hole state in this
terminology. We identify such configurations in the
momentum space as initial configurations of the exciton
model calculations; i.e., we use the compound basis in or-
der to specify the state of two nuclei at the barrier top po-
sition. This does not mean, however, that the normal
compound nucleus is formed at that instance. We do not
use any information of the configuration space in the fol-
lowing exciton-model calculations. What we assume is
that the composite system with a nearly spherical Fermi
surface is formed. Even the dinuclear shape at the barrier
will be allowed unless its Fermi sphere is much distorted.

Next, we assume that fast particles are emitted from ei-
ther one of two independent sources. One is the projectile
source, which is defined as the sum of particles in the
right shaded area and holes in the left dotted area in Fig.
l. The other is the target source, which is defined as the
sum of the left shaded and right dotted areas. The former
source is so named because it is composed of projectile
particles and a lack (or holes) of target particles. The
linear momenta of the particles and holes in the projectile
source are directed to the right direction and stand for the
current from left to right. The linear momenta of the tar-
get source are directed to the left and stand for the current
from right to left. These two currents mix as time
proceeds and finally they stop and form the states of the
compound nucleus. We assume, insofar as the nonequili-
brium fast particle is concerned, that these two sources
emit fast particles independently at the early stage of the
reaction process.

We now calculate the particle-hole numbers, excitation
energies, and total linear momenta of two sources corre-
sponding to the situation of Fig. 1. These values are used
as initial conditions of the following exciton-model calcu-
lation. The number of particles and number of holes in a
source are the same because the volume of the momentum
space is the same as seen clearly in Fig. 1. We denote by
Nzo' the exciton number (particle+ hole) of the projectile
source and by N,' ' that of the target source. These are
obtained from the integration of

N =n; dp (i=p art),
l

where the integration is performed for the sum of shaded
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and dotted areas for the projectile source or the target
source. These numbers are generally fractional numbers.
Next, we calculate the excitation energies of these two
sources by calculating the kinetic energy E;,

K;=n; dp (i =p or t), (4)
2m

where the integration is performed for the sum of shaded
and dotted areas for the projectile source or the target
source. The excitation energies are obtained from K; by
correcting the Fermi energy. We denote by E~

' the exci-
tation energy of the projectile source (particles and holes
added) and by E,' ' that of the target source. Finally, we
calculate the total linear momenta of both sources as

P;''=n; p.dp (i =p or t), (5)

where the integration is performed for the sum of shaded
and dotted areas. These two sets of parameters
IX& ', E~ ', Pz 'I and (N,' ', E,' ', P,' 'I are used as starting
values of the exciton-model calculations.

B. Double-differential cross section

In the following exciton-model calculations, we assume
two groups of excitons, projectile source and target
source, which evolve according to the master equation in-
dependently to the equilibrium. Fast particles are emitted
from an exciton state of either of the two sources. We
need to first fix the change of the excitation energy E;
and momentum P; (i =p, t) of the two sources as the exci-
ton number increases due to the two body collision. We
impose that E; is constant independent of the exciton
number. Defining P;(N;) as the momentum vector for
the source i when the exciton number is X;, we impose
that

(o) (Nt Ni~ )—
Pi(Ni ) =Pi 1—, (o)(Nq N; )—

where X is the equilibrium number of the excitons in
the source i for given E;, and N ' and P,' ' are defined in
Eqs. (3) and (5), respectively. Equation (6) means that, at
equilibrium, the linear momentum is assumed to become
zero due to the two body collision. The slight change of
the form of Eq. (6) is found not to cause a notable change
in the final result.

The evolution of the system is assumed to be governed
by the same type of master equation as is used in light-ion
reactions' where one imposes the never-come-back ap-
proximation for simplicity. In our case, the projectile
source and the target source follow this equation indepen-
dently. The double-differential cross section is written in
the form

of energy e to the direction 0 from the n-exciton state.
The first term within the curly braces on the right hand
side of Eq. (7) is the emission from the projectile source
and the second term is that from the target source. Dura-
tion time ~„ is calculated by solving the master equation
of the standard type as was done in Ref. 19. To calculate
the emission rate W„(e,Q) we use a method similar to
that used by Madler and Reif. ' That is, we assume the
capture cross section for the nucleon of energy e to have
the form

cT„p——
f

M
f

co( p, h, E, P)d P—,
U

(8)

(2s+ 1)dp V

(2vrR)'

where (
f
M

f

)' is the average value of the square of the
matrix element which connects the state inside the nucleus
to that outside. The energy of the particle is written as e,
the Q value of the emission process as Q, the spin of the
particle as s, and the volume of the space as V. Accord-
ing to the same assumption as the angle-independent exci-
ton model, w'e set

( fM f

)'= fM
f

(10)

From Eqs. (8)—(10) we can derive the expression for the
emission rate of the nucleons of energy e to the direction
0 as

2s + 1 co(p —1, h, E —e —Q, P —p)W„(E,Q) = macr„p

X I
P —p I

'd (
I

P —p I
)

P dP

In deriving this equation, we assumed that the p depen-
dence of (cpo, ,hEp) is only through its absolute value

p =
f p f, which will be explained in the next subsection.

C. Momentum dependent level density

Now we specify the quantity (cohp, EP) which ap-
peared in Eq. (8). We start from the calculation of the
quantity Q(p, h, E,P, ) where we fix the z component P, of
the linear momentum P instead of P itself. 0 is given by
the definition

where
f
M

f
is the average value of the square of the ma-

trix element which connects the nucleon state outside the
nucleus to that inside the nucleus with the total linear
momentum P fixed. The level density of the particle-hole
(p-h) state with energy E in the momentum volume ele-
ment d P at linear momentum P is written as
co(p,h, EP)d P, V is the volume, and U is the velocity of

the particle. The emission rate dm for the nucleon of
momentum p is written as

2' 2 ~

( fM
f

)'co(p —l, h, E —E—Q, P —p)

where o.f„, is the fusion cross section of two heavy ions,

g„ is the sum over the exciton number n, r„ is the dura-
tion time of the n-exciton state (including the depletion
factor), and lV„(e,Q) is the emission rate of the particle

Q(p, h, E,P, ) = g 5(E E; )5(P, —(P, );), —(12)

where 5 stands for the delta function, E; the energy of the
ith level, and (P, ); the z component of the linear momen-
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turn of the ith level. Adopting the independent-particle
model, the energy E; and momentum (P, ); are written as

Inserting Eqs. (13) and (14) into Eq. (15), we get

Z(P, y) = g exp g [n (v)];[+Pe(v)+yp, (v)]
E; = g [n(v)];e(v) — g [n(v)];e(v) (13)

e(v) )eF 6(v) (E'F

(16)
and

(P, ); = y [n (v)];p, (v) — y [n (v)];p, (v), (14)
e(v) )eF e(v) &eF

Z(P, y)= f dE f dP, Q(p, h, E,P, )exp( PF. y—P, )—
= g exp[ PE; y—(P,—);] . (15)

where we denote the single-particle energy of the vth level
by e(v) and its z component of the momentum by p, (v).
The occupation number n(v) of the vth level is under-
stood here as the occupation number of the particle for
e(v) & eF and as the occupation number of the hole for
E(v) & EF.

We denote the Laplace transform of 0 by Z(I3,y); it is
given by

where + means minus for e(v) & eF and plus for e(v) & eF.
For a fixed number of particles p and holes h,

Z(P, y) = —, g exp[ —Pe(v) —yp, (v)]
1

p!

P

g exp[f3e(v)+yp, (v)]
1

V

(17)

where we neglect the effect of the Pauli principle for the
occupation of the single-particle level. Introducing the
quantity g (e,p, ) by demanding that g (e,p, )de dp, is the
number of levels in the interval e —e+d e and
p, -p, +dp„we replace the summation in Eq. (17) with
the integration with respect to the energy and z corn-
ponent of the linear momentum,

oo P l EF h

Z(P, y)= —f de f dp, g(E,p, )e px( Pe yp, ) —— f— de f dp, g(e,p, )exp( +P e+yp, )
p ~

. 00

The above double integral is calculated in the following
manner. We define and calculate the quantity I

&
as

I~
—— dp, g e,p, exp —yp,

and

po ——[2m (eF+e')]'~

po =[2m (eF —e )]

(23)

(24)
2

= f dp, g(E,p, ) 1 — ~p, +
t
p, —

2 4
= f dp.g(~p. ) 1+

2, p.'+ 4, p.'+ (19)

where e* is the average excitation energy per particle or
hole. This quantity is determined once the system and its
incident energy and the numbers of particles and holes are
given. Substituting Eq. (22) into Eq. (20), we get

The third line follows because g(e,p, ) is thought to be an
even function of p, . It is rewritten in the form

2 4

i, =g(~) 1+y (p,'&+y (p.'&+. . .

I) =g(&) 1+ (po )'+ (po )'+
2!3 4!5

sinh(ypo ) .g(e)
XPO

(25)

where the average value of p, is denoted by (p, ) and
the level density g (e) is defined as

g(e)= f dp, g(e,p, ) . (21)

The value of (p, ) is calculated approximately in the
Appendix as

2m

( 2m)
2m +1 (22)

where po is the average magnitude of the linear momen-
tum. In the numerical calculation, we use two values of
po, i.e., po for the particle state and po for the hole state.
They are defined as

I,= f dp, g(e,p, )exp(+yp, )

sinh(ypo ),g(e)
'VP0

(26)

where the level density g(e) is taken as the same as that
for particles. Substituting Eqs. (25) and (26) into Eq. (18),
we are left with the integration with respect to energy. As
usual, we assume that the level density g(E) is constant
for the region of interest and denote it with go. Finally,
we get

Similarly, we can calculate another term in Eq. (18) for
holes,
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z(P r) = —,
,

go
1 exp( —Pe+) sinh(ypo )

rJ 0'

1
go

h
exp(PeF) sinh(ypo )

r~o
(27)

Laplace transform of the quantity Z(/3, y), as is seen from
Eq. (15):

Q(p, h, Ep, )= f dP f dyZ(P, y)

X exp(PE +yp, ) .

The level density Q(p, h, E,P, ) is obtained by the inverse Inserting Eq. (27) into Eq. (28), we get
(28)

(go)"+" 1 i exp[ (p —h)eF—p+ pE]
Q(p, h, E,p, ) = . dP

p!h! 2mi pp+ h

sinh( yp o+ ) I sinh( y p 0 )
dy

27Tl ~ ~
happ happ

exp(yp, ) i . (29)

This integration is calculated by the saddle-point method.
The first term in Eq. (29) reduces to

d Q(p, h, E,P, )
co(p, h, E,P)=-

2nP Z P =P
2

(36)

+h p+h
exp(p+ h) E —(P —h)EF

~2nVp+ h p. !h! p+ h
(30)

After using the asymptotic form of the gamma function,
which is valid for p+ h ~&1, Eq. (30) is rewritten in the
currently used form of the Ericson's formula,

g3'"[E —(p —h)~~]"" '
(31)

p!h!(p+h —1)!

The second term in curly braces in Eq. (29) is also calcu-
lated by the saddle-point method. It involves a rather
lengthy expression and we do not show it here. The sad-
dle point is determined numerically in this case. Because
of the approximation used, the level density is a product
of the Ericson formula and a momentum-dependent part.
It makes the calculation easier and more transparent.

Up to now, we calculated the level density for fixed p,
h, E, and P, ; we wish to obtain that for fixed p, h, E, and
P. The relation between Q(p, h, E,p, ) and co(p,h, E,P) is
obtained from

f Q(p, h, E,P, )dP, = f co(p, h, E,P)dP . (32)

The volume element dP is expressed with the nonorthogo-
nal coordinates (P,P„P) by

d P=pd PQ P,dP, (33)

f Q(p, h, E,P, )dP, = f 2mf[co(p, h, E,P)P]d-P dP, .

From this relation, we obtain

A(p, h, E,P, ) =2m f [co(p, h, E,P)P]dP .

Finally, we come to the expression

(34)

(35)

where P is the angle of the projection of P to the (P„,Pz)
plane measured from the P axis. From the uniformity of
the space, the level density co(p,h, E,P) depends only on
P =

~

P
~

. Thus we get, from Eq. (32),

The derivative with respect to P, is performed numerical-
ly. From this equation, we get the level density which de-
pends on

~

P
~

. Characteristics of the momentum depen-
dence will be discussed in the next section.

III. NUMERICAL CALCULATIONS
AND DISCUSSIONS

A. General remarks

Before calculating the double-differential cross section,
we discuss the behavior of our momentum-dependent level
density given by Eq. (36). As Eq. (29) shows, our level
density is the product of the Ericson formula and the
momentum-dependent term. The former is well known
and we discuss here only the latter term. The inverse La-
place transform appearing in the second term in curly
braces of Eq. (29) is performed with the saddle-point
method. The value of y which gives the saddle point is
obtained numerically. Physically, this value is the mea-
sure of the average value of the z component of the linear
momentum per excitons. After calculating this integral,
the P-dependent level density is obtained by the numerical
derivative given in Eq. (36). In Fig. 2 we show one of the
examples of this level density (the multiplication factor of
Ericson's formula). The excitation energy dependence
comes from Eqs. (23) and (24). In Fig. 2 we see a mono-
tonic decrease of the level density as a function of the
momentum. Because we use the approximation of Eqs.
(23) and (24), the level density becomes negligible when
the relation

P=ppo +hpo (37)

holds. In Fig. 2 the initial value of the linear momentum
for the reaction ' 0+' Au is shown by the arrow on the
abscissa. When the fast particle is emitted in the forward
direction, the absolute value of the momentum of the resi-
dual nucleus is decreased from that of the compound nu-
cleus and, correspondingly, the level density increases as
seen in Fig. 2. (On the other hand, if the fast particle is
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emitted in the backward direction, the absolute value of
the linear momentum of the residual nucleus increases
from that of the compound nucleus and the resulting level
density decreases. ) The cross section for past particle
emission is proportional to the level density of the residual
nucleus [see Eqs. (7) and (11)]. Therefore we have ex-
plained in our model why fast particles are preferentially
emitted in the forward direction.

For the calculation of the double-differential cross sec-
tion, we use the model given in the preceding section.
Our model corresponds to the incomplete fusion reaction
and thus the coincident measurement of the fusion residue
and the fast particle is suitable for comparison. In these
data, however, the fusion residue is measured at a fixed
angle coincident with the energy-angle double-differential
cross sections of light particles. It is impossible to calcu-
late such triple-differential cross sections in our model.
Thus we choose the data of energy-angle double-
differential cross sections of light particles where the
fusion residue is not measured, but the dominant reaction
channel is thought to be the incomplete fusion reaction.

B. Values of the parameters

3 2

I „'=2 /M [ 2(n+1) (3g)

and the value of the matrix element
~

M
~

is taken from
Ref. 23. The escape width is assumed to be the sum of
the proton escape width and the neutron escape width.
Each one is obtained from detailed balance arguments and
the expression is

We give in this subsection the values of the parameters
used in the calculation. Because we are interested in fast
particle emission, we solve the master equation by using
the never-come-back approximation in order to get the
duration time r„ in Eq. (7). From numerical calculations,
this approximation appears to be adequate. We include
the terms in the summation in Eq. (7) up to the first five
steps of the exciton number. Addition of higher terms
only affects the low energy part of the spectrum.

In order to solve the master equation, we need the
spreading width I „' and the escape width I „' of the n

exciton state. The spreading width is assumed to have the
form

5 x10
I I I I I I I

I t(I)
A d

2s+1
0 2/3

10

5x102

16 197+ 310 MeV

(;) co(p —1, h, E —e —QI')
0 CCTggp

co(p, h, E) 7

(39)

where i denotes proton or neutron, B"is the binding en-
ergy, and Q" is the emission Q value. The level density
co(p,h, E) is assumed to be the Ericson form with the
correction factor of Ref. 24. The capture cross section ap-
pearing in Eqs. (11) and (39) is taken as

10

C3
']

5x10

cr„p vr[ro(A, +A~)'~ ] ——1—

where

V,
(40)

10

5x100

and

(Zi+Zq —1)e
V, = /3 for protons

r, (A, +A2 —I)'~

V, =0 for neutrons .

(41a)

(41b)

Here, A &, A2, Z&, Z2 are masses and charges of the projec-
tile and target. The values of the radius parameters are
taken as

10 I

0
I I I I I I I I I

2 3 4 5 6 7 8 9 10

Momentum ( in unit of p, ) and

ro ——1.3 fm

r, =1.5 fm .

(42a)

(42b)
FIG. 2. Momentum-dependent part of the level density

co{p,h, E,P) as a function of the momentum P. It is for the 9p-
9h state corresponding to the excitation energy of the projectile
source of the reaction 310-MeV ' 0 on ' Au. Abscissa is plot-
ted in multiples of the Fermi momentum pF and ordinate is
plotted in arbitrary units. Initial linear momentum of the reac-
tion is located at the arrow of injection point.

crt„,=a[ra(A i +Aq )] 1—V,
'

E (43)

In order to get the final cross section, we should also fix
the fusion cross section crt„, appearing in Eq. (7). It is set
to the form
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System

"0+"Al

Energy

(MeV)

215

310

~(0)
P

~(0)
h

4.48(5)
4.48(5)

5.44(6)
5.44(6)

E(0)
P

E(0)
h

45.4
31.1

70.0
44.0

p(0)
P

p(0)
h

3.87
2. 18

4.94
2.44

16O+ 90Zr 215 s.s4(7)
5.54(7)

73.0
45.5

5.06
2.46

TABLE I. Parameters of the initial state of the exciton
model. For six reactions listed, we show the values of the parti-
cle and hole numbers N~ ',Nz ' (numbers in parentheses are
those used in the exciton model calculation; see text), excitation
energies of particles and holes, EP ' and Eh ', in MeV, and the
linear momenta of the particles and holes, PP ' and Ph ', divided

by the Fermi momentum.
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FIG. 3. Energy-angle double-differential cross section of pro-
tons in the reaction ' Al(' O,p). Left panel is for the incident
energy of 215 MeV and right is for 310 MeV. Abscissa is the
laboratory energy and circles are the experimental data taken
from Ref. 2; solid lines are our calculations. Dashed lines are
the evaporation calculations with the level density parameter of
A/20.

The same values of the radius parameters as in Eq. (42)
are used. The value of the Fermi energy eF used to calcu-
late Eqs. (3)—(5) is set as

eF ——33.5 Mev .

Because one aim of the present investigation is to clari-
fy the phenomenological moving-source model, we choose
the experimental data of Awes et al. , where the moving-
source analysis is done thoroughly. The experiment in-
volves the ' 0-induced reaction on Al, Zr, and ' Au
targets with incident energies of 215 and 310 MeV. We
first show in Table I the initial state of the exciton-model
calculation obtained by the method of Sec. II A. The cal-
culated particle and hole numbers are fractional numbers
and the numbers in parentheses are the starting values of
the exciton model calculation. We see that the latter
numbers are former numbers plus 0.5—2 exciton pairs.
There is a tendency that, as the excitation energy increases
and the target mass increases, the number added also in-
creases. This number (of pairs) is the fitting parameter in
our model. By comparison, in the case of light-ion reac-
tions we usually start from a 2p-lh state, i.e., the addition
of 1p-1h to the incoming nucleon.

C. Double-differential cross sections

10

10
10

ll
10

10
9~ 10

~ 10

~ 10
E10

5
10

4~ l0
CI

QJ 3~ 10

100-
10-

0. 1

-2—
10

-3-
10

10

215 MeV

35'(10 )

50'(10 )

65'(10 )

0(10 )

(10 )

(10)

I

40 80 120 0 40
ENERGY ( MeV )

I
'

16 I QP0+ Zr-p+X
qr

310 MeV

20 (10 )

35 (10 )

50'(10 )

65'(10 )

5'(10 )

5(10 )

I

80 120 ) 60

In Figs. 3—5 we show the double-differential cross sec-
tion of the six reactions given in Table I. In the calcula-
tion we first change the laboratory angle and energy to

FIG. 4. Same as Fig. 3, but for the reaction Zr( ' O,p). The
evaporation calculations are performed with the level density
parameter of A/13.



35 EXCITON-MODEL APPROACH TO FAST-PARTICLE EMISSION. . . 991

14

1
013:
012-

10 i-
)0 =

109

10 r
8

T10
106

10
5

4
10
103

100
10

1 E

0. 1

10
10 j-

10
0 40

160 (9T~

215 MeV

35 (10 ) "-~

50'(10 )

65 (10 )

0(10 )

(10 )

140 (10)

I I

80 120 0
ENERGY

p+X

310 MeV

20 (10 )

35 {10 )

0'(10 )

(10 )

(10 )

10 )

10 )

155

40 80
(MeV)

120 160

FICx. 5. Same as Fig. 2, but for the reaction ' Au(' O,p).
The evaporation calculations are performed with the level densi-
ty parameter of A/I3.

those of the center of mass frame. The formulas of Sec.
II are then used to calculate the double-differential cross
section. We calculate the emission from the projectile
source and target source independently. Numerical calcu-
lation shows that the contribution from the target source
is negligible, even in the case of the Al target, where tar-
get emission is most prominent. Thus we show in Figs.
3—5 the contributions from the projectile sources only.
We also include the evaporation calculation from the
compound state by the dashed lines. As stated in the
preceding subsection, we include only the first five steps
in the excitons in our calculation and thus the evaporation
part of the spectra should be added to our calculation in
order to facilitate comparison with the data. To show the
correspondence between the calculation and data, we draw
thin lines with arrows. The level-density parameters
which enter into the evaporation formula are chosen to
give a good fit to the slope of the energy spectra at the ex-
treme back angles. The value thus chosen is A/20 for Al;
it is A/13 for Zr and Au targets. The normalization of
the evaporation calculation is chosen to fit the backward-
angle data at an emission energy of 10—20 MeV. There
are systematic deviations between calculations and data at
the very-low-energy region near the maxima of the cross
sections. The use of the sharp cutoff of the barrier
penetration factor is partly responsible for these devia-
tions, but detailed investigation of this effect is beyond the
scope of the current paper.

In the case of Al (see Fig. 3), the evaporation calcula-
tion gives a good fit to the data for angles larger than 35'
for the 215 MeV case and larger than 50' for the 310 MeV
case. For these angles, our calculation gives only a frac-
tion of the experimental data. In the cases of the 20 data
for both 215 and 310 MeV and the 35 data for 310 MeV,
the solid line gives imporant contributions to the high-

energy part of the spectra, and adding it to the evapora-
tion part (dashed line) greatly improves the fits. There is
a tendency, however, that the calculation (absolute value)
underestimates the data at low energies. This tendency is
most prominent for the 20 data at 310 MeV, where the
same discrepancy was seen in the moving-source parame-
trization given in Ref. 2, and we do not investigate it fur-
ther.

For the Zr target case shown in Fig. 4, the situation
differs greatly from the Al target case. For both 215
and 310 MeV incident energies the evaporation calcula-
tion fails to fit the data at all angles smaller than 110'.
Addition of the solid line to the dashed line greatly im-
proves the fits at high emission energy. Except for the
low-emission-energy part, which has the same nature as
pointed out in the preceding paragraph, the spectra are
reproduced well with the calculation. Preequilibrium con-
tribution to the cross section at high emission energy is
one to two orders larger compared to the evaporation cal-
culations. This deviation is impossible to explain by the
adjustment of the level-density parameter in the evapora-
tion calculation. ' Our calculation explains the origin of
the deviation naturally and the systematics of the data can
be reproduced well with it.

The large contribution of the preequilibrium emission is
more pronounced in the ' Au target case shown in Fig. 5.
The evaporation calculation with the level density param-
eter of 2/13 fails to reproduce the data even at the most
backward angle of 155 . Addition of the solid line to the
dashed line greatly improves the fit at high emission ener-

gy. In the ' Au case the enhancement of the cross sec-
tion at high emission energy is more than three orders of
magnitude for the forward angles and about one order for
the backward angles.

From Figs. 3—5 we see that the contribution of the
preequilibrium emission becomes larger as the target be-
comes heavier. The main change is the increase of the
center-of-mass excitation energy and thus we can con-
clude that as the excitation energy increases the preequili-
brium emission becomes more important in the energy
range we examined. From Table I we see that the effec-
tive excitation energies in the Al (310 MeV), Zr (215
MeV), and Au (215 MeV) cases are similar, but the devia-
tion from the evaporation is much larger for the latter
two, as seen from Figs. 3—5. Thus, apart from the excita-
tion energy effect, there is also the effect coming from the
size of the target or, more precisely, the ratio of the target
mass to the projectile mass. This effect is fully taken into
account in our model because the change of this ratio
causes the change in the shift of the Fermi spheres of the
projectile and target, as seen in Fig. 1. At any rate, our
model calculation can explain systematically the contribu-
tion of the preequilibrium emission corresponding to the
change of the detection angle, change of the effective exci-
tation energy, and target-projectile mass ratio. Because
our model is simple and employed drastic approximations,
we did not aim for the precise fitting of the data. We
could get, however, the result which is qualitatively simi-
lar to the phenomenological moving-source parametriza-
tion. Our model is, therefore, one approach to under-
standing the physics of the moving source model.
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IV. SUMMARY

We have formulated a model describing the preequili-
brium emission of fast particles in low energy heavy-ion
reactions. The model is specially developed to calculate
the fast particles associated with fusion, namely the in-
complete fusion reaction. For such reactions the moving-
source parametrization is known to give a good fit to the
data. One aim of the present investigation is to clarify the
mechanism of that model on more fundamental grounds.
The idea of the Fermi-jet model and the related
phenomenological analysis using the Fermi-sphere con-
siderations led us to set up the initial conditions of the
calculation. After specifying this, we used the exciton
model to take into account the secondary scattering of the
excitons, which is hard to do in the framework of the
Fermi-jet model. To calculate the angular distribution we
extended the exciton model so as to use the linear momen-
tum of the exciton system as a new variable. This linear
momentum is defined separately for the projectile source
and target source. The emission rate of the particle of en-

ergy e in a definite direction is calculated using the level
density of the excitons, which is generalized to depend not
only on the particle and hole numbers and excitation ener-

gy, but also on the total linear momentum of the exciton
system. This level density is similar to the commonly
used angular-momentum-dependent level density.

On the basis of this model, we have performed the cal-
culation of energy-angle double-differential cross sections
for the emission of protons. Six reactions with an energy
per particle of 10—20 MeV are examined. The reactions
with lower incident energy and lighter target mass are
found to be described almost completely by the evapora-
tion model. Numerical calculations show that the pree-
quilibrium particles are emitted preferentially in the for-
ward direction and their contributions increase as the ex-
citation energy increases and the mass of the system in-
creases. These are just the characteristics of the experi-
mental data, and addition of our calculation to the eva-
poration spectra reproduces the data systematically well.
The change of the cross section with the detection angle is
very similar to the phenomenological moving-source
model. ' Our model includes a fitting parameter which
changes the initial number of the excitons, but this adjust-
ment is only 0.5—2 pairs of particle-hole and is rather sys-
tematic. Thus we can say that, in spite of the simplicity
of the model, it predicts the systematic features of fast-
particle emission very well. Our method of including the
linear momentum of the excitons into the level density

formula is one way of explaining the phenomenological
moving source model ~ The effect of the secondary
scattering of the Fermi-jet particles is calculated by the
exciton model in our calculations. Instead of calculating
collision terms dynamically, as is done in the BUU or
VUU model, ' ' we take them into account phenomeno-
logically by simple statistical assumptions.
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APPENDIX

We give here a brief deviation of Eq. (22). We use the
classical approximation to obtain the expectation value of
the projection of the single-particle linear momentum.
The classical phase space density g(p, r) is assumed to
have the form

g(p, r)=2 1

2~6
(Al)

2m

( Zm)
2m +1

which is the result used in Eq. (22).

(A3)

Because we are interested in the application to the heavy-
ion reactions, the magnitude of the single-particle momen-
ta is concentrated around the average value, as is seen in
the shaded and dotted regions of Fig. 1. We denote the
average magnitude of the momentum by po and calculate
the average value of (p, ) as

J g(p, r)5(p /2M —po/2M)p, dpdr
(p. )=, , (A2)jg (p, r)5(p /2M —po/2M)dpdr

This integration is easily calculated to give the final re-
sult,
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