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Onno S. van Roosmalen
A. JK 8 right Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06511

(Received 29 September 1986)

I propose a fast algorithm for performing unconstrained phase-shift analyses of (low energy)

heavy-ion elastic-scattering data. The method is applied, as an example, to ' 0+ Si elastic scatter-

ing at F, =21.1 MeV. A study of general properties of the error matrix is performed, and criteria
for the feasibility of a model-independent analysis are discussed. Some recommendations for future

experiments and model-dependent analyses are made.

INTRODUCTION

Until recently, analyses of heavy-ion reaction data were
performed almost exclusively in model-dependent frame-
works like the optical model, coupled-channel approaches,
or constrained phase-shift analysis. Although one can ex-
tract the partial-wave amplitudes from the cross-section
information unambiguously for elastic processes involving
an asymptotically known Coulomb potential (at least in
principle, if the cross section is known accurately enough),
this step was never made in an entirely model-independent
fashion. The main reason is that the quality of the avail-
able cross-section data did not allow for a meaningful fit
with as large a set of parameters as would be required in
such a model-independent analysis. Recently, though,
various attempts have been made to obtain phase shifts
from the cross section, mainly with the purpose to identi-
fy resonances from the energy dependence of the ampli-
tudes. For instance, a study of the phase shifts of
' C+' C has been performed recently in both the elastic
and inelastic channels. ' Since measurements were avail-
able over a wide angular range and at small energy inter-
vals, possible phase-shift ambiguities were believed to be
removed by the requirement of continuity with energy.
(Furthermore, in symmetric spin 0 systems such as
' C+ ' C only even partial waves contribute, and the
number of parameters is about half of what it would be
for comparable nonsymmetric cases. ) With the continu-
ously increasing accuracy of experimental data, an uncon-
strained determination of the scattering amplitude be-
comes sufficiently reliable in some situations (low energy
or strong absorption) to be of much physical interest, par-
ticularly if the results are used to supplement those of oth-
er approaches.

The purpose of this paper is to discuss feasibility and
reliability of unconstrained analysis of heavy-ion elastic-
scattering data. First, I will describe a fast algorithm,
essentially, a Newton-Raphson method, to determine the
partial-wave amplitudes. Application of the method to
the ' O+ Si elastic cross section will be presented. Then
I will study the error matrix and discuss to what extent
various parts of the elastic-scattering angular distribution
determine the partial-wave amplitudes. Ambiguities kn

the phase shifts as well as the scattering amplitude are

briefly discussed. Finally, I will make some suggestions
for future experiments and for model descriptions of
heavy-ion reactions.

A FAST ALGORITHM FOR UNCONSTRAINED
PHASE-SHIFT ANALYSIS

Here, the Coulomb amplitude, fc(8), is given by

I (1+&. ) e 2iyln[—sin(e/2)]
fc(~)=

2k I ( 1 —t y ) s jn2( g/2)
(2)

with wave number k and Sommerfeld parameter
y=Z&Z2pe /A k for heavy ions with reduced mass p and
charges Z& and Z2. The amplitude f~(8) is defined to be
the difference between the total and the Coulomb ampli-
tude and hence incorporates all the nuclear force effects.
It can be partial-wave expanded in terms of the ampli-
tudes sI,

fx(~) =fr(~»i)
max

(21+1)(si—1)si Pi(cos8),
2ik I =o

where s~ is the Coulomb partial-wave amplitude

I (I+1+iy)
I (l+1—iy)

(3)

(4)

Since all nuclear effects are finite in range, the sum in (3)
runs over a finite number of partial waves only. By the
definition (3) of the amplitudes si, the Coulomb phase is
removed and s~ approaches 1 asymptotically. The com-
plex variables si (0& 1 &1,„) are the ones we want to ob-
tain from a phase-shift analysis; hence, there are 2l,„+2
parameters.

The algorithm I am proposing is a Newton-Raphson
iteration for the amplitudes sI to reproduce the cross sec-
tion at the m measured angles 0; (i = 1, . . . , m )

First, I briefly review the heavy-ion scattering prob-
lem. The elastic-scattering cross section is determined by
the scattering amplitude which is a function of the
center-of-mass scattering angle 0,

f (~) =f~(~)+fc(~) .
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o(8 )= If~(8 si) I'+ Ifc(8 ) I'

+2Re[fx(«»i)fc(Br)] .

It is rapidly converging essentially because the Coulomb-
nuclear interference term, which is linear in the amplitude
s~, dominates over

I
f&(8)

I

for a large fraction of the
angular distribution. A sequence of values sI'"' that con-
verges to sI is generated using the assumption that the
cross section is locally linear in sI. That is, we obtain
s~"+" from s~"' by solving for hsI

—=s~'"+"—sI'"' in the
linear equations

2Re g As ((s'"')bsl o——(8;)—o'"'(8;), (6)

Ag) Ag(

respectively. Then Eq. (6) becomes

A(s'"')W =a~'"'. (9)

In favorable situations the matrix A is nonsquare (more
data than parameters) and we have to solve the linear
equation in a least squares manner. This is a standard
problem which involves simple matrix manipulation. I
will discuss the solution briefly only for later reference.

To find the appropriately weighted least-squares solu-
tion one has to introduce the (diagonal) error matrix 8'
for the measured cross section [8;.;= I/e(8;), e(8;) is
the error in o(8;)], and we have to minimize

$=(b,o —A b,s) S'(b,o AM) . — (10)

The solution for M is found after some trivial algebra,

As =(A WA) 'A W ho .

If we have obtained s' ' we can determine the error ma-
trix, 8'„ for the amplitudes from A =A (s'"'),

W, =A O'A. (12)

If the linear approximation is sufficiently accurate, diago-
nalization of W, yields eigenvectors m; (i =1, . . . , 21
+2) which represent the major axes of the error ellipsoid
in phase-shift space. The corresponding eigenvalues, A.;,
give the inverse square of the length of each of these axes.

A useful quantity in the type of analysis we are pursu-
ing is a norm for vectors in phase-shift space. We can
write

Iles II'= ggri »I'~i . (13)

with o'"' the approximation to the cross section obtained
from si"' and

Ae, r(s'"') =[fc(8 )+fx(8»'"')1

(2l +1)si P~(cosB; ) .
1 C

2l k

To simplify notation I identify the vector hs and the ma-
trix A with

where gII is a metric, yet to be defined. Although
g~~

——
6~~ would be an obvious choice, I will argue that

gg ——(21 + 1)5a (14)

(15)

Hence the metric (14) for the partial wave amplitudes im-
plies an angular independent measure for the norm of the
angular amplitude.

APPLICATION TO ELASTIC SCATTERING DATA

A completely model-independent analysis of heavy-ion
elastic scattering obviously requires the availability of
high quality data: a full angular distribution, a fine angu-
lar grid, and small statistical and systematic errors. In
addition the scattering energy cannot be too high or the
number of partial waves that are affected by the nuclear
potential (and hence the number of parameters) becomes
an unreasonably large fraction of the number of data
points. These considerations led me to choose the
' 0+ Si data at E,I =21.1 MeV given in Ref. 6.
Another reason for selecting this set of data is that it has
received much attention in the past few years and many
different model analyses have been performed. ' It
would be of interest to compare the results for the ampli-
tudes obtained here with those of previous studies.

The 21.1 MeV ' 0+ Si angular distribution is actually
composed of two independent measurements, one at the
more forward and one at the more backward angles (for
details see Ref. 6). The normalization for the former mea-
sured region was obtained from the condition that
o./o. ~„,h approaches 1 as 0~0; the normalization at the
latter was obtained by matching the two data sets in the
overlap region. This procedure can result in systematic
errors of the order of 10%. Clearly, it is extremely diffi-
cult to deal with such errors if their nature is not exactly
known. For the present paper I will ignore the possibility
of occurrence of systematic errors in the data under study.
Let me only remark that the normalization of a set (or
part of a set) of measurements can easily be included as a
free parameter in the type of phase-shift analysis I am
proposing. Since the cross section is linear in the extra
parameter this does not lead to additional complications.

The ' 0+ Si data that I will consider consist of
cross-section measurements at 72 angles ranging from
about 30' to 180. The partial wave that will experience a
nuclear potential strength which is Less than 2% of the
Coulomb is found from semiclassical arguments to lie be-
tween 16% and 17k. I do not pretend to be able to deter-
mine the nuclear amplitudes with a precision of more
than 2% and I choose l,„=16%. Hence there are 34 pa-
rameters. This is about half the number of available cross
section measurements.

is a more physical one (in addition to being more con-
venient in the context of later discussion). If

I
IM

I I
as it

appears in (13) is expressed in terms of the angular ampli-
tude, Af~(B), using Eq. (3), one obtains

kII~II'=2k' f «osBI ~f~(8) I'=" f«
I
&f~«) I'.
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FIG. 1. A comparison of the measured angular distribution
with the ones computed in the fitting procedure. From top to
bottom: the initial guess and the results of six successive itera-
tions (solid lines). Data are from Ref. 6.

TABLE I. Partial wave amplitudes for ' 0+ Si elastic
scattering at E, =21.1 MeV resulting from the unconstrained
analysis.

arg(si) (deg)

To obtain fits to the angular distribution I have imple-
mented the method described in the preceding section on a
personal computer (IBM PC-AT, 512k RAM) using the
linear equation solver f04jgf of the NAG-PC library (the
program is coded in FORTRAN). Figure 1 shows the angu-
lar distributions obtained from the initial guess and the
six successive iterations that were required to converge sa-
tisfactorily to the data. I started with partial wave ampli-
tudes given by a sharp cutoff model with cutoff angular
momentum 10 ——13 (s1=0 for l(13, si=l for l&13).
Each iteration took, on the average, approximately 60 sec
of central-processing-unit (CPU) time. Details on the re-
sulting phase shifts are given in Table I.

Several remarks concerning the fitting procedure should
be made at this point. Some initial experimentation with
the program had shown rather large oscillations at very
forward angles (0 (8(30 ) where no measurements are
available. In order to avoid these, I forced the fit to be
close to 1 in this region by adding some "measurements"
with magnitude 1 and error of the order of a few percent.
I will return to this oscillatory behavior later when I dis-
cuss the error matrix. In Table II I present the 7 per
data point for each of the iterations. It can be seen that it
decreases each time by an order of magnitude. Also

~
iM

~ ~

decreases rapidly going from one iteration to the
next. This, together with the observation that the data at
smaller angles are fitted in earlier iterations, seems to in-
dicate that the cross section becomes more and more sen-
sitive to changes in the partial wave amplitudes as 0 in-
creases. I will investigate this important point in more de-
tail in a later section. Finally I want to mention the re-
markable fact that the phase of the amplitude as given in
Table I for large I is slightly negative. Although I have
not performed a very extensive study, this seems to be
consistently the outcome of the analysis. One would ex-
pect the phase to be positive asymptotically since the nu-
clear potential is attractive. This effect might be a com-
pensation for the omission of small contributions from
partial waves with 1& 16. On the other hand, the effect
might be a physical one and caused by the absorption that
has already set in at 1=-16.

ERROR ANALYSIS

0
1

2
3
4
5
6
7

9
10
11
12
13
14
15
16

0.061
0.092
0.082
0.069
0.104
0.114
0.026
0.027
0.046
0.058
0.116
0.149
0.353
0.682
0.881
0.974
0.992

59.4
—92.2
—81.8
—15.6

72.0
—150.1

28.9
112.7
26.4

100.1

68.7
11.8

—4.7
—10.0
—8.9
—6.3
—2.6

First I will discuss the reliability of the fit presented in
the preceding section. Then I will turn to a more general
study of errors in the analysis of elastic scattering data.

Initial guess
Iteration 1

2
3
4
5
6

13 500
1680
110

5.93
3.22
1.02
0.60

TABLE II. g per data point for the cross sections obtained
in the iteration procedure.

g /m
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TABLE III. Lowest eigenvalues of the error matrix 8'.
4.4X 10-'
5.0X10-4
0.2
1.5

44.9
54.2

117
168
298
391
835
907

0+ Sl 2I. I MeV

I have dia onalized the error matrix W, [cf. Eq. (12)] at
the values si '—-s~'"' obtained in the last iteration of the
fit to the ' 0+ Si cross section. The lowest eigenvalues,
k;, are listed in Table III. It turns out that exceedingly
small values for A,; occur and hence enormously large er-
rors e; =1/(X;)'~ will be present (e~ =-150!). To investi-
gate the origin of these large errors I have computed the
cross section using

bR

s~ ( l ) =s~ +Asl ( i ), As ( i ) =w; /~A, ; (16) 10
0

L

30 60 90 120 150 180
where w; is the eigenvector corresponding to A.; (note that
the amplitudes sI(i) do not necessarily satisfy unitarity).
This set of phase shifts is on the edge of the 60% confi-
dence region and should provide a description of the data
with X not much larger than 1 (at least if the linear ap-
proximation is valid). The results for i = 1, . . . , 4 are
presented in Fig. 2 where the computed cross section is
compared with the data for each case. In Table IV I give
AS~(i) for the same values of i From F.ig. 2 one can ob-
serve enormous oscillations at the forward angles. These
are clearly unphysical but one cannot exclude their ex-
istence from just the data. If one replaces the cross sec-
tion by its linear approximation around s~'

' [cf. Eq. (6)]
the data are reproduced almost perfectly everywhere;
hence, the discrepancies one can observe in Fig. 2 at back-

C.fll.

FIG. 2. Angular distributions obtained from the amplitudes
(16) corresponding to the lowest four eigenvalues of the error
matrix (solid lines). The data are displayed for comparison.

ward angles are due to (actually, remarkably small) non-
linearities. To move back into the region of 60%%uo confi-
dence one only needs to make a small correction on M (i).
Although the condition of unitarity would severely reduce
the 60% confidence region, it seems that only some
knowledge of the behavior of the cross section for

TABLE IV. Error vectors As~(i ) corresponding to the smallest eigenvalues of 8; and hence the largest errors.

0
1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

Re(As')

54. 133
—45.615

27.273
0.991

—29.893
41.844

—25.048
—6.834
21.282

—7.051
—8.912

5.102
3.575

—1.455
—1.137

0.134
0.172

m(asr)

38.414
—45.401

54.336
—55.455

39.154
—5.989

—24.471
27.242

—3.467
—14.301

6.684
5.393

—3.191
—2.054

0.787
0.758
0.138

Re(asi )

11.225
—13.279

15.942
—16.390

11.605
—1.770
—7.399

8.280
—1.027
—4.450

2.101
1.751

—0.999
—0.682

0.203
0.191
0.020

1=2
Im(hsl )

—15.818
13.425

—7.995
—0.278

8.864
—12.510

7.529
2.099

—6.545
2. 174
2.821

—1.589
—1.096

0.535
0.397

—0.045
—0.058

Re(hs( )

0.369
—0.312

0.068
0.016
0.079

—0.309
0.276
0.252

—0.684
0.216
0.580

—0.349
—0.442

0.105
0.178

—0.016
—0.042

l=3
Im(hs( )

0.401
—0.366

0.296
—0.146
—0.060

0.003
0.379

—0.584
0.002
0.688

—0.289
—0.452

0.276
0.278

—0.131
—0.190
—0.054

Re(hsr )

0.163
—0.159

0.138
—0.051
—0.010
—0.000

0.161
—0.241
—0.016

0.289
—0.126
—0.202

0.131
0.144

—0.034
—0.058
—0.008

i=4
rm(as, )

—0.172
0.096

—0.046
—0.014
—0.025

0.119
—0.095
—0.100

0.281
—0.099
—0.261

0.146
0.168

—0.091
—0.089

0.031
0.034
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0&8&30' can lead to desirable confidence limits on the
partial-wave amplitudes.

A particularly salient feature of the error matrix ob-
tained for the ' 0+ Si data set, which may be generally
observed, is the enormous range in eigenvalues ( —10
—10 ), even if measurements would be extended to 0 with
the same trends in statistical errors ( —10—10 ). This im-
plies large errors in certain directions in phase-shift space
and exceedingly small errors in others. Hence, correla-
tions are important and errors cannot be represented ap-
propriately by diagonal elements of the error matrix.
However, nonlinear effects seem to be small in the exam-
ple analyzed here (probably due to the accurate measure-
ments at backward angles) and the few smallest eigen-
values of the error matrix and their corresponding eigen-
vectors are reliable measures for the uncertainties.

Despite the fact that errors in the phase shifts are con-
siderable, it turns out that the total elastic scattering am-
plitude, f(9), is well determined at angles where data are
available. I computed the error hf&(B) in the amplitude
from improved error vectors derived from those given in
Table IV and it appeared that the magnitude of hf~(8) is
small compared to the total amplitude for 0& 30. The er-
ror in the phase of f (8) is smaller than 10' everywhere in
that angular range. Note, though, that the error analysis
will not provide information on ambiguities stemming
from secondary minima in X . At 8=160', where a
minimum in the cross section occurs, I detected such an
ambiguity. At the position of that minimum the phase of
the total amplitude was able to make a rapid change of
2m. . A more thorough investigation of ambiguities will be
subject of a future publication.

I am now going to address the following question.
What (diagonal) error matrix, W, for the cross section
data will yield a hyperspherical or nearly hyperspherical
[under the norm given by Eqs. (13) and (14)] 60% confi-
dence region for the amplitudes'? The answer to this prob-
lem is relevant in two situations. First of all, it describes
the perfect experiment: one would like to perform a set of
measurements and obtain an error matrix of that form,
since only then would one most effectively exploit experi-
mental information to pin down the scattering amplitude.
Second, in certain model descriptions (usually with a lim-
ited set of parameters) the best fit to the data will yield a

much larger than 1 and the calculated cross section is
inconsistent with the data in a statistical sense. Despite
that, one hopes that the model will describe some of the
physics although it does not reproduce all of nature's de-
tails. If "physics" stands here for "scattering amplitude"
one obviously does not want to minimize 7, or
equivalently [cf. Eq. (10)]

S' =
i i

5s
i i

=5s tG 5s, (18)

where G is related to the metric (14),

(2l + 1)5g eG=- e (2l +1)5a (19)

That these two prescriptions are not the same one may see
from the linear relation between 6cr and 5s which is
correct if we are not too far away from the real amplitude
(5s small), 5cr =3 5s. Indeed (17) and (18) are only
equivalent if G =A 8'A; hence, only if the error matrix
for the amplitudes equals G.

The diagonal elements of the error matrix 8' can be
written as W;; =w(8;)=1/e(9;) . I will consider the situ-
ation in which cross-section measurements are performed
at equally spaced angles 0; which are close enough togeth-
er to justify the use of the continuum limit for 8. The
quantity S in Eq. (17) can now be written as

S= f dBw(8)5o(8)2. (20)

To make the discussion more transparent I will express S'
in (18) in terms of infinitesimal changes in the angular
amplitude,

kS'= f dQ
i
5f~(8) i

(21)

I will allow for small but otherwise general changes in the
amplitude f&(9). This corresponds to changes in the
phase shifts for all l and hence l,„~oo. Since 5f is re-
lated to 5o. in a simple fashion (for small 5f),

5o(9)=2 ReI [fc(8)+fg (8)]5f„(8)},
the error matrix, Wf, for f~ does not show correlations
for amplitudes at different values of 8. Because (22) re-
lates the real variables 5cr(8) to twice as many complex
variables 5f~(8), it is obvious that half of the eigenvalues
of 8'I equal 0. This is an expression of the fact that we
cannot determine the amplitudes from the cross section
unambiguously if we make no assumptions on the proper-
ties of the amplitude [like finite l,„, cf. Eq. (3)]. From
(20)—(22) it can be seen immediately that all nonzero
eigenvalues of Wf are degenerate if

S =5cr 8'6o. (17) 8) si118

o(8) (23)

and obtain a fit closest to the measurements (where
"closest" is determined by how accurately an experimen-
talist is willing to measure at certain angles), rather one
would like to find an amplitude that is not too far re-
moved from the physical one. Hence, instead, one would
like to minimize the distance

( I5s
~ ~

between the model and
physical amplitudes, or equivalently

e(8)
o(8)

1

o(8) V'w(8) 1/o(8)sinB
(24)

This value of w(8) corresponds to the following angle
dependence for the error in cross-section measurements,
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&0'

~00-

10

the scattering amplitude. Turning this around, (24) im-
plies that a model that accurately reproduces data at the
backward but not the forward or intermediate angles is
likely to yield a worse amplitude then a model that accu-
rately describes all the data except those at the very back-
ward angles.

10
CONCLUSIONS AND RECOMMENDATIONS

FOR EXPERIMENTS

~0 4
I

30
I

60 90
I 1

120 150 LBQ

If one wants to acquire an equal amount of information
on the scattering amplitude at all angles, (24) specifies the
required relative accuracy of cross-section measurements.
The factor sin9 in (24) stems from the cylindrical symme-
try of the scattering problem which allows one to perform
measurements at a fixed azimuthal angle P [it would be
absent if I had considered e(Q)]. The term 1/vcr will
automatically appear as a statistical error in experimental
situations since 0. is proportional to the count rate. There-
fore, one can neatly rephrase the simple result (24):

The flux of information on the scattering amplitude
released in a scattering process is independent of the
scattering ang1e.

In nuclear (heavy ion) reactions, the subject of the present
study, one knows that a finite number of partial waves are
contributing to the nuclear amplitude and the properties
of the error matrix as discussed above will be modified.
Although all its zero eigenvalues will become finite, they
may still be very small. How small will depend on the
particulars of the reaction (the exact form of the scatter-
ing amplitude) and it is difficult to make general quantita-
tive statements. It is expected, and numerical studies
seem to indicate, however, that experimental errors of the
form (24) will lead, if not to the smallest, to a very small
spread in eigenvalues of the amplitude's error matrix. In
Fig. 3 I have plotted the relative error (24) against 9. The
values for the ' 0+ Si data are also given in that plot. It
appears (at least from the viewpoint of a model-
independent approach) that in the experiment too much
emphasis has been put on the backward angles and rela-
tively too little on the forward ones.

Even in case l,„ is finite, Eq. (24) provides an upper
limit (which becomes better the larger l,„) for the rela-
tive changes in the cross section that are caused by arbi-
trary excursions of fixed length ~~5s~~ away from the
scattering amplitude. Hence (24) confirms what I ob-
served in the numerical studies: at the backward angles
the cross section is the most sensitive to small changes in

C.fA.

FIG. 3. The angular dependence of the ideal relative error in

the cross section (24) (arbitrarily normalized; solid line). The
relative error in the data is also plotted (dots).

I have tried to show in this paper that a fit to elastic
scattering angular distributions, using the many partial
wave amplitudes as free parameters, can be obtained with
little effort and can provide an excellent description of the
data. An analysis of statistical errors can also easily be
performed and is not quickly spoiled by nonlinearities.
Although I have not studied systematic errors here, I have
pointed out that one can deal with some of those straight-
forwardly within the presented framework. Despite the
fact that errors in the partial wave amplitudes are quite
large, it turns out that the total amplitude is well deter-
mined at angles where measurements are available. A
careful study of ambiguities has to be performed and will
be the subject of a future publication. Preliminary investi-
gations seem to suggest though that ambiguities will only
substantially affect the amplitude at backward angles.

Experimental attention should be more focused on
small scattering angles to increase the reliability of an un-
biased determination of the partial-wave amplitudes. It is
very probably difficult to adhere to the "ideal" accuracy
for cross-section measurements as expressed in Eq. (24).
However, any experimental information at forward angles
would already be of much interest.

In case a model is not capable of providing a consistent
description of elastic scattering data (P »1), it is very
likely that a better agreement with the (unknown) scatter-
ing amplitude is obtained if a least squares fit is per-
formed after the measured error e(9;) is replaced by
const X [o (9; ) /sin9; ] '

The methods outlined in this paper can be extremely
powerful if used in combination with scattering models.
For instance, amplitudes of partial waves that are only af-
fected by the tail of the nuclear potential may be reliably
obtained from an optical potential. Models may provide
information on the behavior of the nuclear part of the am-
plitude as 0~0 and, hence, ease the problem of the lack
of data in that region. If a model description of an angu-
lar distribution is obtained, one can study corrections to
the model's S matrix using the algorithm presented here.
Studies in that spirit to identify resonances have already
been performed. They can be extended to include more
partial waves and an error analysis can provide informa-
tion on the soundness of reached conclusions.
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