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A coupled-channel formalism for describing inelastic hadron scattering from soft nuclei is de-

rived. This formalism, applicable up to at least intermediate energies, employs collective many-body
wave functions built from constrained Hartree-Fock or Hartree-Fock-Bogolyubov intrinsic states.
Successive approximations are developed in order to derive simple expressions for transition form
factors to be used in coupled-channel calculations. These form factors carry the information on the
intrinsic structure of the nucleus since they depend explicitly on the intrinsic states

~ q ) and
~ q ) as

well as the overlap (q
~

q'). Under the narrow overlap approximation (q t
q') —6(q —q') this infor-

mation gets partly lost, and the present formalism reduces to a more familiar form. An illustration
is given in the context of phenomenological form factors for proton scattering from ' Pt considered
as a y-unstable nucleus.

I. INTRODUCTION

For many years, nucleons and other hadrons have been
used as probes of nuclear collective motion through in-
elastic scattering measurements. Vsually these measure-
ments have been interpreted in terms of simple collective
models (harmonic vibrational model, rigid axial and triax-
ial rotor models, etc.) with variable success. Sometimes it
happens that such models are inappropriate and therefore
need to be extended. These extensions are usually
achieved in an ad hoc manner, that is, for instance, by
varying arbitrarily nuclear reduced matrix elements or by
mixing vibrations carrying different phonon quantum
numbers. These kinds of extensions clearly indicate that
the simple collective models are actually too simple.

On the other hand, studies of nuclear collective motions
have reached a higher level of sophistication. Schemati-
cally, these nuclear structure works may be classified into
two categories. The first includes studies based on the
mean-field theory: random phase approximation (RPA)
theory' and generator coordinate method ' for collective
motions with small and large amplitudes, respectively.
The second category deals with macroscopic models
which are usually designed to describe large amplitude
collective motions. This category includes the Bohr Ham-
iltonian expressed either in the laboratory coordinate sys-
tem or in the intrinsic frame. It also contains the in-
teracting boson model Hamiltonian which may be writ-
ten (for the IBA-I) in the form of a Bohr Hamiltonian.

In principle these advanced nuclear structure models
could be tested in hadron scattering studies. A straight-
forward manner in which to do this consists of taking nu-
clear reduced matrix elements as predicted by these
models and selecting optical potential form factors from
simple prescriptions. The drawback of this method is that
collective wave functions and transition potentials are not
treated in a consistent manner. In addition, ill-motivated

assumptions regarding the radial behavior of potential
form factors may lead to misinterpretations of scattering
measurements.

A more consistent treatment of the whole scattering
process is desirable in order to take advantage of the addi-
tional information that can be obtained about advanced
collective models by scattering. These include details
about the radial shape of form factors [or, alternatively,
the behavior of the form factors in the momentum (g)
space beyond the low-Q region probed by y decay or
Coulomb excitation], and also the additional information
(in comparison with electron scattering) gained by the fact
that strong channel coupling implies interfering reaction
paths.

It is the purpose of the present work to set up a genera1
reaction formalism for inelastic scattering from large am-
plitude collective states, which treats potentials and wave
functions in a consistent manner. This treatment is made
in the framework of the coupled-channel (CC) formalism
which is known to work reasonably well up to at least in-
termediate energies. In Sec. II we briefly derive CC equa-
tions and define collective (rotational and vibrational)
states in the framework of the generator coordinate
method (GCM). This section is introduced in the present
paper for the sake for completeness. Section III illustrates
how to generate transition potentials from the many-body
wave functions defined previously. The actual calcula-
tions of these potentials represent a considerable numeri-
cal task. Consequently, in order to provide a manageable
framework for the calculations, a semiadiabatic approxi-
mation for the many-body wave functions is used to gen-
erate the transition potentials. This is described in Sec.
IV. Further simplifications are achieved by assuming that
the overlap between LCM intrinsic states is a 6 function.
This approximation is used in Sec. V for the CC calcula-
tion of (p, p') scattering from ' Pt considered as a y-
unstable nucleus.
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II. DEFINITIONS AND NOTATIONS IIM v&=X f f», (q)PM» I&(q)&dq (6)

A. GCM wave functions

and (3)

I(q, q') = (P(q)
l

P(q') &,

respectively, where Hz is the Hamiltonian of the interact-
ing many-body system.

Equations (1)—(3) can be specialized to the description
of nuclear collective spectra if one considers that the pa-
rameters q; (i = 1, . . . , n ) are those which generate collec-
tive modes in nuclei. Let us assume that the many-body
wave functions P(x, q) are made up of independent parti-
cles or quasiparticle states involved in Hartree-Fock (HF)
or Hartree-Fock-Bogolyubov (HFB) calculations, and that
q represents the set of constraint parameters. As is well
known, the rotational symmetry can be spontaneously
broken when use is made of the self-consistent field ap-
proximation; therefore, the HF or HFB solutions are de-
generate with respect to rotations. In order to break the
degeneracy on the angular momentum one replaces Eq. (1)
with the following linear combination:

l
P(x) & = f f dQf(q, Q)R(Q)

l
P(x, q) &dq, (4)

where R(Q) is the rotation operator. The amplitude
f(q, Q) is determined through a minimization similar to
that used to get Eq. (2), for each value of q. One can ex-
pand the amplitude f in the complete basis of signerr'
functions DMK,

f(q Q)=g, fM»(q»M»«»
2I+1 r r

IMK

and introduce the Peierls- Yoccoz projection operator
PM» to express

l g & as

In the generator coordinate method one considers a
family of N-particle functions P(x,q), where the symbol
x denotes all particle coordinates. In the most general
case, the parameter q stands for a set of n parameters
q~, . . . , q„. An approximate wave function g(x) of the
many-body system is obtained by making a linear com-
bination of the functions P as follows:

g(x)= f f(q)P(x, q)dq . (1)

The variational principle is then used to derive an integral
equation for f(q),

H q, q' q' dq'=E„ I q, q' q' dq', 2

where Ez is an eigenvalue of Eq. (2), and H(q, q') and
I(q, q') are the Hamiltonian and the overlap kernels de-
fined as

where v is an index introduced to distinguish states having
the same quantum numbers (I,M) .The amplitudes
f», (q) and eigenvalues EI" of the states are obtained from
the eigenvalue equations,

y f [H»» (q q') &IN—»» (q, q')lf», .(q')dq'=0,
K'

with the Hamiltonian and overlap kernels as defined by

2I+1
H»» (q q')=

8m

and

x f D»» (»&P(q) lH~«Q)
l
P(q') &dQ,

B. CC formalism

In the center-of-mass (c.m. ) system, the Hamiltonian H
of the interacting particles can be expressed as

H =T+H„(x ), . . . ,x„)+V(x ), . . . , x„),
where T is the kinetic energy, Hz the Hamiltonian of the
target nucleus, and V the interaction potential. It is as-
sumed that V is the sum of two-body effective interac-
tions between the incident particle and the target nu-
cleons, '

V= g u(x, x;),

where x and x; denote the particle coordinates. The ef-
fective interaction is in general nonlocal, complex and en-
ergy dependent. It contains a central term' as well as
spin-orbit" and tensor' terms,

u iq ——u'+ u (L.s)+ u $,2 .

This interaction is assumed to be a local approximation to
a t matrix' or 6 matrix. '

The Schrodinger equation

(H —E)/=0 (10)

is solved using standard techniques described, for in-
stance, in Ref. 10. These lead to the coupled equations for
the radial functions R, (r) regular at the origin,

N»» (q q') = f D»» (Q) &,4(q)
l
R(Q)

l
W(q') &d Q

8~

respectively.
In the present work it is assumed that the wave func-

tions lIM, v& are already known from the projection
method outlined above. Therefore, Eq. (6) is used
throughout in Sec. IIB as the definition of the physical
collective states [with f» (q) real].

l 0& = g f fM»(q)PM»
l 4(q) &dq .

IMK
g2

2m

d' l(1+1)
dr2 r2+ E+EI R, (r)—

Since H„ is rotationally invariant, f is independent of
M, and the physical state

l
IM & may be expressed as

= —g(lsjIJnM
l

V
l
l'sj 'I'JrrM &R, "(r), (11)

C
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where the ket
I
lsjIJnM) is a symbolic notation for the

eigenfunction of the total angular momentum J and pari-
ty m., and m is the reduced mass of the system. Moreover„
c is the label for a reaction channel defined in terms of the
quantum numbers v, l, s, j, and I.

III. MATRIX ELEMENTS OF V: GENERAL
CASE

for the total angular momentum wave functions:

I
lsjIJ~M) =g J f» (q)

I
lsjIK(q)J~M)dq, (12)

where Eq. (6), along with the symbolic expression

I
IM«q) & =I'M»

I 4(q) &

In order to get an explicit form of the matrix elements
(ME) of Eq. (11), let us introduce the following notation

is used. Inserting Eq. (12) into the ME of V shown in the
right hand side (RHS) of Eq. (11), one obtains

(IsjIJnM
I

VI1'sj 'I'J7rM &=g f f f» (q)f» (q')&1sjIK(q)JnM
I

V
I
1'sj'I'K'(q')JnM)dq dq' .

KK'
(13)

To proceed further, the potential V is expanded into mul-
tipoles. Rather than discuss the full effective interaction
[Eq. (9)], we illustrate the general procedure with a very
simple central interaction,

v(x, x;)=(vo+v &cr cr; )g(
I
r —r; I ), (14)

V ( i)L+5+x[T(Ls)k(r A ).T(Lsg(r )]
LSA,

(15)

where T' ' (r, A ) is an irreducible tensor operator of de-
gree A, ,

where g is a radial form factor. Isospin-dependent terms
have also been omitted for simplicity. Extensions to the
full effective interaction including spin-orbit and tensor
terms, and with appropriate approximations for exchange
between projectile and target nucleons, may be found else-
where. '~ The multipole expansion' of Eq. (14) yields

(IK(q)I IT' ' (r, A)III'K'(q')) (19)

where (j~,j2) are indexes running, for instance, over the
quasiparticle basis states of the HFB theory. The calcula-
tion of the spectroscopic amplitudes is quite involved and
will not be shown here. However, that calculation can be
performed using methods described by Amos et al. ' On

J~jzthe other hand, the transition form factor F~ may be
written as

shown in the RHS of Eq. (18) may be written' in terms
of products of a spectroscopic amplitude S~ and a form
factor F~. Using notations similar to those of Ref. 10,
Eq. (19) may be expressed formally as

( IK(q)
I I

T' '"(r, A )
I
II'K'(q') )

(20)

T( ' (r, A)= g vL(r, r;)T' ) (r;,o;), (16) (r q q')=R~ (r q q')&j illT' ' (r o )Ilj2&

in which vL(r, r; ) is a multipole of the radial form factor
g given in Eq. (14), and

where the reduced matrix element is a geometrical factor.
The radial form factor is

[~(s)( )C(L, )(~r )] (17) R&' '(r, q, q')=(2k+1) ' J U&(r', q)v~(r, r')

with X' ' and C' ' as defined in Ref. 10. The matrix ele-
ment of the interaction shown in the RHS of Eq. (15) can
be written as follows

( lsjIK(q) JrrM
I

V
I

1'sj 'I'K'(q') JvrM)

jIJ
V ( 1)L+s+iL+j'+I+1S I' 'X

LSA, j

x ( lsg
I I

T' ' (r, ~)
I I

1'sj' )

x(IK(q)IIT'""(r,A)III'K (q )) . (is)

x U2(r', q')r' dr', (22)

where U; is the radial part of the wave function for a par-
ticle or quasiparticle involved in the constrained HF or
HFB calculations mentioned earlier. In comparison with
the usual' coupled-channel treatment of scattering from
collective states, the essential complication arises from the
introduction of the dynamic collective coordinates q in
the double integral over q and q' in Eq. (13). That is, the
nuclear matrix elements are defined in terms of quantities
which are nonlocal in the collective coordinates.

IV. APPROXIMATIONS

The first reduced matrix element appearing in Eq. (18) is
just a geometrical factor. ' The second one is responsible
for the target nucleus transitions and is difficult to evalu-
ate. Whatever is the complexity of the nuclear excited
states, the reduced matrix element

A. Wave functions

The reaction formalism given in Sec. III implies a large
computational effort which, for medium and heavy nu-
clei, is not feasible on most computers. Consequently, it
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is necessary to develop some approximations in order to
achieve manageable calculations.

We restrict the discussion to quadrupole collective
motions. That is, the set of collective coordinates q only
contains qo and q2 defined as

2 2qo-r Fo

and

qq r-( Yq+ Y q),
which generate P and y vibrations in nuclei. Going a step
further, we also approximate the state

~

IM, v), Eq. (6), by

~
IM, v). This collective state, to within a normalization

factor, is defined as follows:

IM, v)=g f fz„(q)[DMz(A)+( —1) + DM z(Q)]
K

ration space where the coupled equations are actually
solved, this new potential is noted as 5. Calculations of
the matrix elements of 8 are performed through a mul-
tipole expansion similar to that shown in Sec. III. Again,
the matrix elements of 8 contain a geometrical factor, a
nuclear reduced matrix element, and a radial form factor.
This form factor has a kernel which depends on the col-
lective coordinates (q, q') as well as on the overlap (q

~

q')
between the intrinsic states

~
P(q ) ) and

~

P(q') ) .
Thus, the kernel K of the potential 8 can be written

formally as

K= U(r, o.,q, q')(q
~

q'),
where r and o. denote the space and spin coordinates of
the incident particle, respectively. After the multipole ex-
pansion of U has been performed, the matrix elements of
0 can be written as

X ~P(q))dq, (23) ( lsj IJvrM
~

0
~

l'sj 'I 'JmM )

and is invariant under time reversal. The physical as-
sumption underlying Eq. (23) is that the characteristic
time of rotations is longer than that of vibrations. This
leads to a semiadiabatic approximation for the collective
wave functions since the rotation and vibration com-
ponents of the wave functions are factorized out under the
integration symbol in Eq. (23). This approximation is of a
different nature from that involved in the Bohr and Mot-
telson Hamiltonian since, in that model, the rotational,
the vibrational, and intrinsic states are completely factor-
&zed.

X (j / /

Y (r )
/ /

j' ) ( IK
/ / Q &„& /

/I'K' ), (24)

with p =
/

K —K' /, and

UIIxlc'(
)

q K ~ q'U~&roqq'
B. Optical and transition potentials X(q

~

q')dq dq'. (25)

A consequence of the approximation, Eq. (23), is that a
new potential must be defined. In the truncated configu-

The coupled-channel equations, Eq. (15), can be finally
written as follows:

g2

2m
d l(1+1)+
dr r

E+EI+Uoo—(r, o) R, (r)

KK'c'A,
U~& ~ (r, o )(IK

~ ~ Q~&~ ~

~I'K') W(ljI, Ij''I', AJs )R, (r), (26)

where Uoo„~ is a diagonal term, W is a geometrical fac-
tor identical to that given in Ref. 19 except for a phase
factor to be discussed later, and (IK~ ~Q~„~ ]I'K') is a nu-
clear reduced matrix element for rotations.

The expression Eq. (26) is intended as a schematic
description of the projectile-nucleus interaction. Of
course, the following development also applies to a more
complete description of the interaction, including
Coulomb, spin-orbit, and tensor terms, and isospin as well
as energy and density dependences in the context of the
folding mode1.

C. Vibration amplitudes

(q)= J ((q
~

q'))' f „(q')dq' .

The g's fulfill the correct orthonormality condition

(27)

(28)

averaging a transition operator over the superposition am-
plitudes of the initial and final states. However, these am-
plitudes cannot stricto senso be considered as probability
amplitudes for a proper quantum mechanical system.

In order to get an object which can be interpreted as a
vibrational wave function, it is necessary to transform f
into g using the definition ' '

The most important result of the present work is ex-
pressed in Eq. (25): the transition potential results from

When dealing with the Gaussian overlap approximation
(GOA), the Griffin-Hill-Wheeler equation (2) for f [or
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Eq. (7) for f» „) can be expressed in the form of a collec-
tive Hamiltonian for g (or gx. ), and the "true" vibration
amplitudes gx. „(q), Eq. (27), can be inserted into Eq. (25)
using the gauss transform of fx, (q).

For the moment we discuss a more drastic approxima-
tion to Eq. (25), which can be readily used in actual CC
calculations. This approximation consists of setting

(q
~

q')-5(q —q') . (29)

In this case, f is identical to g, and Eq. (25) reduces to

U i„„„(r,cr}= 1 gz (q}gz, (q)Ui„„(",~,q, q)dq . (30)

It is easy to generate such form factors if one assumes
that the collective optical potential is parametrized in
terms of a "collective" radius R(Q') of the form [as-
suming q=(p, y)]

T

R (Q') =Ro 1+Pcos(y) Y'o(Q')

metric and asymmetric rotors. ' ' Wave functions of the
harmonic oscillator in five dimensions can also be tested.
In fact, these schematic models have been used to fix the
phase factor appearing on the RHS of Eq. (26), when the
CC calculations are performed with the computer pro-
gram ECIS.

V. ILLUSTRATION: y-UNSTABLE MODEL

We demonstrate the use of the extended coupled-
channel formalism, Eqs. (26)—(32), with a calculation of
35 MeV proton scattering from ' Pt, in which the collec-
tive structure of the nucleus is described by the Wilets and
Jean (WJ) model for gamma-unstable nuclei. This
model is similar to the O(6) limit of the IBA-1, which has
been shown to provide a useful first approximation to

The collective wave functions may be expressed in the
form

+ p»n(y)[&2(Q')+ &' 2(Q')] . (31)2

With an optical potential depending on the relative dis-
tance r —R(Q'), Eq. (30) becomes explicitly

i
IM, v)=+A~ (P,y) iIMK),

K

where the rotational eigenfunctions are
1/22I + 1

16' (1+5'.o)

(33)

Ui„q g (r, cr)

gK, y gK ~,y Ugp r, O, ,y d~', 32

where d~' includes the metric of the Bohr Hamiltonian.
For the original Bohr Hamiltonian,

dr'=g'
~
sin(3y)

~
dPdy .

It is through Eq. (32) that various collective models of
the nucleus can be tested in CC calculations, provided
that these models are expressed in the intrinsic coordinate
system. Such is the case of Bohr Hamiltonian which has
been solved numerically by Kumar and Baranger. In this
case, the multipole of the potential given on the RHS of
Eq. (32) is averaged over a P-y mesh involving 92
points.

Applications of Eq. (32) have been previously made to
several nuclei. Other collective models could indeed be
tested. One of them could be the interacting boson
model (IBA-1) provided that it is expressed in terms of
(p, y) collective coordinates. Using this model requires a
different definition of the collective radius R(Q ) since
the IBA-1 deformation parameters (/3, y) describe the
shape of valence nucleon distributions outside an inert
core.

More schematic collective models could also be tested.
For even-Z even-X rotors with axially and nonaxially
symmetric rigid shapes, the vibration amplitude is

gx, (P r)=@P—Po»(r —0»xsc&xo

and

gx.(p, r }=~x, .(r»(p p,o+(r r—o»—
respectively. These amplitudes, when inserted in Eq. (30),
restore familiar forms of transition potentials for sym-

&[DMS(Q')+( —1) + &~—x(Q'))

(IM, v~ IM, v) =g f dp J dy
~
Q~ „(/3,y)

~

2=1

The functions y~x. (y) are available in closed form 3o The.
functions f„A(p) may also be expressed in analytic form if
a parabolic expansion is made about the minimum of the
potential energy in the equation describing the p motion,
as suggested by Wilets and Jean. For the states coupled
in the present calculations (Oi+,2i+,22+,4i+ ), there are no ex-
citations of the p degree of freedom (i.e., n =0), and con-
sequently the p functions may be expressed as

' —I /4

fo~(P) = fi

Bco
—I/4 ) /4~ —2

7T CtPA /3

1/2 2
1

)& exp ——co~
2

The constant iii/Bco and the parameter sets (co~,xA) are
determined from the low-lying level spacing and the ex-
perimental value ' of the reduced transition probability
8(E2;Oi+ ~2i+ ). Their values were (fi/Bc@)' =0.050,
(co&»coi, co2) =(1.063,1.141,1.212), and (xo,x, ,x2) =(2.61,
2.78,2.96).

The diagonal and transition potentials were calculated
by integrating multipoles of the deformed optical poten-

in which 0' represents the Euler angles. For the WJ
model, the p and y dependences may be factored, so that

~~,.(P, y) =(6)'"P'[sin(3r )]'"f.~(P)q A~(r»
in which the quantum numbers v=(n, A) complete the
description of the state. The normalization has been
chosen so that
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tial U~„(r,a, lj, y) with the initial- and final-state collec-
tive wave functions, Eq. (33), over the intrinsic variables P
and y, according to the Kumar ansatz. ' The potential
parameters used were those of Deason et al. , who have
made a coupled-channel analysis of (p, p') scattering from

Pt using matrix elements from the IBA-1 and form fac-
tors from the symmetric rotor model. The spin-orbit and
Coulomb parts of the potential were deformed and treated
in the same way as the central parts, and the whole poten-
tial was expanded into spherical harmonics up to A, =S.
In addition, the possibility of a fixed hexadecapole defor-
mation P4 as allowed for by including a term RoP4yo in
the expression for the nuclear radius R(Q'), Eq. (31). The
CC calculations were performed with a computer code
that accepts optical model parameters and the appropriate
collective wave functions (given in terms of P and y) as
input, and generates as output a file that may be used
directly as input to EcIS. A copy of this program is

available on request.
With no further adjustments and no hexadecapole de-

formation, the WJ model (solid curves in Figs. 1 and 2)
yields excellent results for the ground (0,+) and first-
excited (2&+) state differential cross sections. There are
obvious difficulties with the phasing of the calculated
(do/dQ)(2&+) and the magnitude of (do. /dQ)(4i+). At
this point, it is not possible to recognize the origin of
these difficulties; they may be tied with the very narrow
overlap approximation, Eq. (29), or the WJ model, or
both. However, the excitation of the 4&+ state is described
satisfactorily (dashed curve in Fig. 1) by adding a small,
static hexadecapole deformation (P4 ———0.04) that is con-
sistent with other results in this mass region. This addi-
tional parameter has negligible effect on the other transi-
tions. The difficulty with the 2z+ transition may be
remedied by a slight mixing of the 2&+ and 2&+ WJ collec-
tive wave functions, which implies a departure from the
Wilets and Jean model. In the IBA language, this means
that the O(6) dynamical symmetry is slightly broken, as
found by Casten et al. The dashed curves in Figs. 1 and
2 represent a further calculation in which the physical 2&+

state is given by

12 ~+ & =0.9»
I

2z+ &
—0. 100

I
2i+ &

I

i0

L

Vl
rq

E—iQ
C:
Cl

'0
D

0)

2

2
2

where the states on the RHS are taken from the WJ
model, and

~

2 i+ & is the orthogonal combination of them.
It may be noted in Figs. 1 and 2 that both the differential
cross section and the analyzing power observable predic-
tions for the 2&+ state are very sensitive to a small pertur-
bation of the wave functions. The admixture of the 2+
states yields a very small static quadrupole moment for
the 2&+ state (Qq ———0.22 eb), which, however, is of the
opposite sign from that determined by experiment
(Qz ——0.63+0.06 eb). We do not view this as a serious
discrepancy, since the small quadrupole moment is a
consequence of the cancellation of two large terms, and it
may be anticipated that coupling to higher-lying states, as
well as further mixing of other 2+ states, may correct this
problem.

Even within the restricted context of the 6-function
overlap, Kumar ansatz, ' and standard (i.e., Woods-
Saxon) optical potentials, this example shows that the

4&

10

1 1 l I I I

20 40 60 80 100 120

~cm (d'~)

jf l ff

g
I I

l
l

I

1

Pt(p, p') 2&

I 1 I I I I

60 80 100 120 140 160
(9C ~ ~«Qj

FIG. 1. Differential cross sections for elastic scattering and
inelastic scattering of 35 MeV protons from the first and second
2+ states as well as first 4+ state of ' Pt. The measurements
are taken from Ref. 31. The full curves represent coupled-
channel predictions based on the y-unstable model (Ref. 28).
For the dashed curves, see text.

i

0 20 40

FIG. 2. Analyzing power for (p, p') scattering from the
second 2+ state of ' Pt at 35 MeV. The full and dashed curves
are CC predictions (see Fig. 1 and text for explanations).
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treatment of scattering from "soft" nuclei described in
this paper yields useful results. It has allowed a direct test
(for the first time, to our knowledge) for the Wilets and
Jean collective model ~ Also, the slight deviation from the
model (state mixing) and the introduction of a hexade-
capole deformation have a clear physical interpretation in
terms of the nuclear geometry, which is not always true
for CC calculations in which reduced matrix elements are
varied arbitrarily to achieve an optimum fit to the data.

A
CT

CJ

V

0.2
3Q0

VI. CON CLUDINCr REMARKS

A coupled-channel formalism for inelastic scattering
from soft nuclei has been developed. An important in-
gredient of this formalism is the definition of collective
many-body wave functions in terms of constrained HF or
HFB intrinsic states. Starting from a t or G—m— atrix
two-body effective interaction, an effective collective po-
tential is formally built through successive approxima-
tions described in Sec. III and Sec. IV. These approxima-
tions lead to the definition, Eq. (26), of a system of cou-
pled equations containing radial diagonal as well as off-
diagonal potentials, Eq. (25), which result from the
averaging of transition operators over the superposition
amplitudes for initial and final states.

Equation (25) also involves the overlap (q
~

q') between
intrinsic states. This feature is a by-product of having
adopted collective states such as built from the well-
known generator-coordinate method (GCM). Since the
intrinsic as well as collective motions are treated on the
same grounds in the GCM framework, our description of
the inelastic scattering from collective levels differs from,
and is more complete than, that suggested earlier. The
significance of our formalism depends in particular on the
narrowness of (q

~

q'). Whether (q
~

q') is narrow for
nuclei spread over a wide mass range has not been ad-
dressed yet. However, the example shown in Fig. 3 for

Ge illustrates that (q
~

q') as determined from HFB cal-
culations is not very narrow, and suggests that our for-
malism is suitable for the treatment of inelastic scattering
from this soft nucleus.

CC calculations for (p, p') scattering from ' Pt con-
sidered as a y-unstable nucleus have been performed at 35
MeV and compared with angular distribution measure-
ments. In the present context, these calculations based on
the assumption that (q ~q')-5(q —q'), and shown in
Figs. 1 and 2, should be viewed as the first step in our ef-
fort to treat the whole and rather complex scattering pro-
cess.

The full treatment of Eq. (25) requires in particular that
the potential kernels U~&(r, o,q, q') be known. These .ker-
nels are nonlocal with respect to collective coordinates
and must be built explicitly. A possible approach to that
goal consists in folding a two-body effective interaction

h
C3"

CJ

V

Y=&

{3={3'=

t

~20 2~0
{Y'-Y}{deg}

360

FICJ. 3. Overlap kernel (q
~

q') for Ge as determined from
constrained Hartree-Fock-Bogolyubov calculations. " The col-
lective coordinates are q =(P, )') and q'=(P', )").
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with matter density distributions p~&(r, rr, q, q ) obtained
from constrained HF or HFB calculations. This issue is
presently under consideration.

Finally, the general formalism developed in the present
work may also be used (in principle) to describe con-
sistently inelastic scattering from low-lying states and lev-
els at high excitation energy (giant resonances). This is
possible because the GCM can be applied to many prob-
lems of nuclear structure, such as giant resonances and
shape vibrations, and to coupling mechanism between dif-
ferent modes of excitation. In this case, the approxima-
tions developed in Sec. IV are no longer valid and, there-
fore, one faces the full complexity of the coupled-channel
formalism developed in Sec. III.
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