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We review the current status of the extraction of the deuteron D-state to S-state ratio, g, from
measurements of the tensor polarized cross section, o.T», in elastic d+ p scattering. We examine
various extrapolation techniques for obtaining g and conclude in several independent ways that such
techniques suffer from large truncation errors. First we show that different methods for determin-

ing g give rise to very different results. Second, we use a theoretical model which estimates g to
demonstrate the magnitude of the truncation error. Third, high-precision analyzing power data also
generate large changes when compared with the results from earlier, less precise measurements. The
original estimates of g appeared to agree with theory; we show that such agreement was fortuitous,
and was the result of the simultaneous neglect of large Coulomb penetrability corrections and large
truncation errors. We conclude that the uncertainty in g is considerably larger than was suggested
by the errors quoted in the literature.

I. INTRODUCTION

In recent years there has been considerable interest in a
precise determination of the asymptotic D- to S-state ra-
tio q for the deuteron, especially since the D-state proba-
bility is now regarded as a highly model-dependent quanti-
ty. ' Two methods have now emerged which potentially
can yield this sort of information. One, based on a
distorted-wave Born approximation (DWBA) analysis of
sub-Coulomb (d,p) reactions on heavy targets, gives the
closely related parameter D2 (Ref. 3). Refinements were
made, both experimentally and theoretically, providing
an average value for the D- to S state ratio of
g =0.0271+0.0008. Recent improvements in the mea-
surement of tensor beam polarization have led to a new
value of q=0.0256+0.0004. However, there is concern
that channel coupling between the elastic and transfer re-
action channels of the type presented in Ref. 5 may alter
some of the corrections and change the value deduced for
g o

The second method, first proposed by Amado, Locher,
and Simonius (and subsequently refined ), extracts the
asymptotic D- to S-state ratio by the angular extrapola-
tion of the tensor polarized cross section o-T22 in d + p
elastic scattering. In this method, the measurements are
reproduced by a polynomial series expansion in
z =cosO, . Then the polynomial is evaluated at the lo-
cation of the neutron exchange singularity in the unphysi-
cal region where z & —1. There it equals the pole residue,
which is proportional in lowest order to the D-state cou-
pling constant. Division by the S-state coupling constant
yields the D- to S-state ratio g. Subsequent measure-
ments' '" gave values for g that appeared to be relatively

constant with deuteron bombarding energy from 5 to 45.3
MeV, in accordance with the expectation that the value of
this residue depended only on the structure of the deute-
ron. An extrapolation has also been made of the tensor
polarized cross sections from the low energy H(d, p) H re-
action, ' with similar results.

In addition to these "direct" measurements of the pa-
rameter g, there are "indirect" values which can be in-
ferred from the close connection between g and other
deuteron observables, particularly the deuteron quadru-
pole moment Q. The close relation between g and Q has
long been known, ' and useful summaries of our present
knowledge of these observables are given in Refs. 14—17.
Although short-range effects give some uncertainty in the
indirect determination of q, it would be virtually impossi-
ble for any changes to be greater than about 10%. There-
fore, we can ask the following questions.

(1) Does the "direct" determination of il agree with the
"indirect" constraints on ii due to its relation with Q?

(2) Can the "direct" determination of rl yield a value
which is more precise than the value inferred from our
knowledge of Q?

Here we are mainly interested in the angular extrapolation
method, particularly since it has been advertised as a
"model-independent" determination of g.

Reference 14 contains a useful summary of the values
of (n ) which can be extracted by various techniques. Of
these values, one obtains g=0.0263 from the Paris poten-
tial. ' Klarsfeld et al. ' ' obtain limits 0.0261 & g
& 0.0275 by considering potential interactions which
reduce to one-pion exchange (OPE) outside some radius
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and are constrained to reproduce Q and the deuteron rms
radius. Ericson and Rosa-Clot' contend that the univer-
sal relation between Q and q suggests the very strong in-
direct relation (il ) =0.0264+0.0003. Experimental
analysis of polarized deuteron reactions by extrapolation
or the equivalent "method of asymptotical coefficients"
(discussed in Appendix 8) have led to claims that such
methods give a precise determination of (i)). For exam-
ple, Ref. 14 quotes values (r) ) =0.0263+0.0009 from
d + p elastic scattering and (r)) =0.0272+0.0004 from
the H(d, p) H reaction. If such claims are correct, then
the resulting value for i) deserves considerable study.
First, the extrapolation method would definitely provide
the most precise direct determination of i). Second, if the
value of i) can truly be extracted to this precision, then
one should pay very close attention to corrections and re-
finements to these techniques, at the level of 1% or small-
er.

In this paper we carefully analyze the details of the ex-
trapolation procedure. We conclude that the errors in this
process are considerably larger than have been claimed in
the literature. The reason for this, as we will demonstrate,
is that the extrapolation procedure excludes certain errors
("truncation errors") when the uncertainty in rI is calcu-
lated. We will demonstrate in two ways that the trunca-
tion errors tend to be large relative to the quoted errors.
First, we will use a theoretical model' to estimate the
truncation errors, and we will compare these errors to
those quoted for g. Second, we will examine a recent
high-precision measurement of d + p scattering. This
measurement allows us to make an experimental estimate
of some of the truncation error corrections to the value of
g determined from previous experiments. Both the model
and the high-precision experiment demonstrate that the
published errors from the extrapolation method signifi-
cantly underestimate the true error in this procedure;
furthermore, we shall show that estimates of the trunca-
tion error provided by the model and by the precision data
agree, and are consistent with other independent estimates
of the truncation errors. '

Unfortunately, our conclusions are negative: We find
that the extrapolation method has considerably larger er-
rors than have been claimed. However, since such claims
continue to be made in the literature, ' and since con-
siderable theoretical effort has been expended on the as-
sumption that the published values and errors for q are
accurate, we believe that it is worth the effort to correct
this impression. This will require a fair amount of re-
view, and a rather detailed discussion of the errors in this
procedure.

In Sec. II we review the standard angular extrapolation
technique. We will pay special attention to the errors in-
herent in this process, particularly the truncation error.
We also mention the difficulties posed by the Rutherford
singularity at forward angles in the d + p scattering. In
Sec. III we present a model for the scattering amplitude
which we have used to study the convergence of the poly-
nomial series for d+ p scattering. We expand the scatter-
ing amplitude in terms of the nearest singularities in the
complex variable z, and sum up these amplitudes with
adjustable coefficients to reproduce the measured polar-

ized cross section. Section III briefly describes the choice
of singularities for the model, the fitting procedure, and
our conclusions. A full description of the model is given
in Appendix A.

In Sec. IV we discuss two methods for removing the
Rutherford singularity at z= 1: suppression of the singu-
larity in the extrapolation function, and conformal map-
ping of the data prior to extrapolation. We discuss in de-
tail the advantages and disadvantages of both methods.
An overview of these results, when compared with model
values, provides an insight into the size of the truncation
error. In Sec. V we compare the high-precision data of
Casavant et al. with the earlier measurements of d + p
scattering, and with our model. This comparison also re-
veals that the truncation errors are large relative to the er-
rors quoted in the literature. Also, by comparing our
model (adjusted using the older data) with the more pre-
cise data, we show that our model is capable of predicting
the contribution from higher-order terms in the polynomi-
al series. In Sec. VI we compare different experimental
results with one another, and comment on the present
state of the data for these extrapolation procedures.

In Sec. VII we summarize our results and present our
conclusions. In Appendix B we review the "method of
asymptotical coefficients. " This method has been present-
ed as an alternative to the angular extrapolation
model. ' We discuss briefly any advantages which this
method might have in determining g.

II. REVIEW OF THE STANDARD ANGULAR
EXTRAPOLATION TECHNIQUE

where B is the deuteron binding energy and Ed is the
deuteron laboratory bombarding energy. The extrapola-
tion function is

(z —z~ )
F(z)=p oT22.

1 —z
(2)

The factor ( z —z„ ) removes the divergence associated
with the neutron exchange singularity, making F(z~) fi-
nite. The second rank character of the tensor analyzing
power Tz2 requires that the leading term in the residue
contains one D-state dnp vertex function. Thus, F(z~) is
proportional to the dnp D-state coupling constant in first
order. Kinematic zeros in o.T22 at L9=0 and 180 are re-

The techniques of angular extrapolation have been re-
viewed by Locher and Mizutani. We review here the
application of these techniques to the extraction of g from
d +p scattering measurements.

The scattering amplitude is assumed to be analytic in
the variable z=cos8, , and thus completely specified by
the locations of its singularities (branch cuts) and their
residues (spectral functions). The residue for neutron ex-
change between two protons depends solely on the deute-
ron dnp vertex function; its value at the exchange pole is
related to the deuteron coupling constant, or the asymp-
totic normalization of the deuteron wave function. In
the usual extrapolation analysis, this pole lies at
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moved by the 1 —z =sin (0) factor in the denominator.
Lastly, the square of the center-of-mass momentum, p,
ensures that F(z) is dimensionless.

At each deuteron bombarding energy, measurements of
the cross section and tensor analyzing power are used to
generate experimental values of the extrapolation func-
tion, F(z) T. hese values are then reproduced by a polyno-
mial series of finite order whose coefficients are chosen to
minimize the value of chi square based on the difference
between the measurements and the extrapolation polyno-
mial. One can write the function F(z) as a power series
containing two parts:

F(z)= g a~P~(z)+ g a~P~(z)=F(z, L)+F„.
1=0 1=L+1

(3)

The polynomials P~(z) are Ith order polynomials in z.
The most useful basis functions are polynomials orthonor-
malized on the data (as will be shown at the end of this
section). The first contribution to F(z), which we have
called F(z,L), can be measured experimentally. For any
set of data, L is the maximum order which can be deter-
mined from the data (i.e., the order at which chi square
per degree of freedom equals 1; or, the point where the chi
square stabilizes as a function of increasing L). The coef-
ficients a~ and their errors 6a& can be determined from the
data for l &L. Additional terms are statistically insignifi-
cant in the physical region, and have customarily been
omitted from the extrapolation procedure. Thus, the
"truncation error" F,„, in Eq. (3) is the (unmeasurable)
remainder term.

In the physical region
~

z
~

(1, the truncation error is
small and oscillatory. However, to determine the quantity
g by extrapolation, we must extrapolate F to the unphysi-
cal angle zz, where zz & —1. Since the polynomials grow
as z, high-order terms which might be very small in the
physical region can become quite large in the unphysical
region.

If the deuteron S-state vertex constant is known, then
the D- to S-state ratio q can be extracted from

1/2
1 3 2 0.0541
P 128 ~ P

(1 Air) F(z )= —— ' F(z ) .

(4)

In Eq. (4), R is the triplet effective range in n + p scatter-
ing, v is the deuteron internal wave number, and P is the
Coulomb penetrability, as calculated by Santos and Col-
by. ' P is given by the expression

r4~ye 2pP= exp 4g ~tan (5)
e —1

K'

where gc is the usual Coulomb parameter.
Since we cannot calculate the truncation correction to

the extrapolation function F, F(z~,L) is substituted for
F(z~) when rI is calculated through Eq. (4). There are
thus two types of error associated with this approxima-
tion. First, there are the experimental errors, the errors in
F(z&,L) which arise from the uncertainties in the coeffi-
cients aI extracted from the data in the physical region.
Second, there is the truncation error, the error caused by

neglecting F„. In the published papers which employ an-
gle extrapolation, the quoted error is the experimental er-
ror only. Clearly, this procedure underestimates the
"true" errors in extrapolation; in the remainder of this pa-
per we will give several estimates of the truncation error,
and we will conclude that the truncation error is generally
large relative to the quoted experimental error.

Angular distribution measurements of a T22 in
deuteron-proton elastic scattering have been made at
deuteron incident energies between 5 and 56 MeV. The
measurements at 5, 7, 10, 13, and 20 MeV from Zurich
(Ref. 11, and shown in Ref. 31), at 35 and 45.3 MeV from
Berkeley (Ref. 10), at 56 MeV from Osaka (Ref. 30), and
at 10 MeV from Wisconsin (Ref. 20) are the only ones
available in tabular form with errors. The cross sections
to complement the T22 measurements of Refs. 20 and 31
at 5—20 MeV are taken from Kocher and Clegg. The
values of F(z) at each energy are shown in Fig. 1, where a
logarithmic scale is used to clarify the quality of the poly-
nomial fit at all values of z. Because of the large number
of data points, we have used the measurements at 10 and
45.3 MeV for detailed studies.

For each data set we have repeated the extrapolation
procedure outlined above. The polynomial coefficients ai
of Eq. (3) were determined using matrix inversion tech-
niques. For this first stage, we used Legendre polyno-
mials for expanding the function F(z,L). We could have
used any independent set of polynomials for expanding
the function. A proper error analysis including parameter
correlations will always yield identical values for F(z&,L)
and its error. The final values for each energy are given
in Table I, and Fig. 1 shows the "best fit" polynomial,
along with a rectangle indicating the magnitude of the ex-
perimental error at the position of the neutron exchange
pole.

As an example, the values of q, the usual error dq, and
the reduced chi square, 7 /v, as a function of L are
shown in Fig. 2 for measurements at a deuteron lab ener-

gy of 45.3 MeV. As L increases, the data are reproduced
to higher precision. The last major improvement occurs
for L =4, where 7 /v falls below 1. Following the
method of Refs. 10 and 11, the polynomial series is trun-
cated at this point, and F(z&,L) is converted into a value
for q using Eq. (4).

As L increases, Fig. 2 shows that the error dg increases
exponentially, providing a strong motivation to choose L
to be as small as possible. Between 5 and 56 MeV, only
even values (either 2 or 4) have been chosen for L, since
(as seen in Fig. 2, for 45.3 MeV) these values correspond
to steps which produce a large improvement in 7 /v. In
general, the errors decrease with increasing energy; how-
ever, a large increase in the decreasing trend occurs when
L increases from 2 to 4 at 20 MeV.

The original extrapolation results for q produced values
which seemed independent of the deuteron bombarding
energy, and which were in good agreement with values of

obtained from two-nucleon models. '' However, it
was pointed out by Santos and Colby that the Coulomb
penetrability P had to be included in these formulas.
When this correction was made, the extracted value of g
increased, particularly at low bombarding energies. The
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results are shown in Table I and Fig. 3, along with addi-
tional residues from Ref. 11 (open points) for which we do
not have tabular angular distributions. Below 30 MeV
these values are all substantially larger than the best
theoretical value of g.

Especially smalI errors are often obtained by averaging
together measurements at several energies. Without
Coulomb penetrability corrections we obtain
( g ) =0.0270+0.0005 from our polynomial extrapolations
(the contribution of each point to the average is weighted
in accordance with its respective error). With the
Coulomb correction, this average rises to (r)) =0.0293
+0.0006, a value inconsistent with the first average.

The errors which we quote with each average are clear-
ly underestimates of the true errors. First, they neglect
the truncation errors. In addition, each experimental
point is treated independently without regard to possible
systematic normalization or calibration problems which
may be common to more than one measurement. This
latter question will be treated briefly in Sec. VI.

Earlier in this section we stated that for a given order
L, the quantity g and its experimental error were indepen-
dent of the type of polynomial used to expand Eq. (3).
This is true; however, the expansion coefficients a~ are
usually highly correlated, even for Legendre polynomials.
We can eliminate these correlations by expanding Eq. (3)
in a set of polynomials orthonormalized over the data.

Such orthonormal polynomials Q~ are defined by the re-
lation

I.O

0.2

0.5

O.I

0.2

0.5

0.02

eV

V

Zi k Zi
~1k

l

where the sum includes the set of data points, b, ;
represents the error in each point, and k spans the set of
all polynomials of order up to l. If we now redefine the
polynomial expansion in terms of the Q&,

L
F(z)= g alQ~(z)+F„,

l=o

then the expansion coefficients are given by the measure-
ments F(z;) as

Qi(z; )
aI ——QF(z;)

Q2

In this series expansion, the coefficients aI are uncorrelat-
ed, and each has a statistical error of +1.

We have stressed the potential importance of the trun-
cation error, and the fact that this cannot be deduced
from one set of measurements. We will find it useful to
estimate these corrections with the use of a theoretical
model for the polarization cross section amplitudes. Such
a model will be reviewed briefly in the next section.

FIG. 1. Measurements of the extrapolation function F(z)
from the measurements of Refs. 10, 11, and 30. The smooth
curves are the power series extrapolations discussed in the text.
The rectangular points at z & —1 are centered on the values of
the residue (their height spans the experimental error) deter-
mined by each extrapolation.

III. A MODEL FOR THE STUDY OF POLARIZED
CROSS SECTION EXTRAPOLATION

A. Model amplitudes for d +p elastic scattering

In d +p elastic scattering, the most rapid z dependence
of the observables will come from those amplitudes whose
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p ()293+p ppp6 (see text fo«xplanaial fitting with F(z). AverageTABLE I. Results of polynomia i i g
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(b)

(c)

d

~3

FIG. 4. Diagrams considered in the model for the z depen-
dence of the polarized cross section. They are (a) Rutherford,
(b) neutron exchange, (c) rescattering, and (d) pion triangle. The
locations of the singularities (or branch cuts) for each amplitude
along the z axis are shown at the bottom of the figure for a
deuteron energy of 45.3 MeV (the neutron exchange singularity
is shown here as a pole, rather than as a branch cut, for simpli-
city).

contribution to the tensor-polarized cross section; howev-
er, it does contribute through interference with other spin
dependent amplitudes. Consequently, the extrapolation
function F(z) defined in Eq. (2) will be singular at z= l.
This has consequences for any method which attempts to
extrapolate the polarized cross sections to unphysical an-
gles. The singularity at z=1 restricts the radius of con-
vergence for any expansion of F(z) to 1; for

~

z
~

& 1, the
expansion is guaranteed to diverge. We will return in Sec.
IV to methods for dealing with this problem in extrapolat-
ing to the neutron exchange pole.

The third term is the rescattering diagram shown in
Fig. 4(c). This consists of a dpn vertex, scattering of a nu-
cleon from the incident proton, and recombination of the
two nucleons at a second dpn vertex. Our model incorpo-
rates the S- and D-state dpn vertices to first order in g,
and we have used a simple N-N effective amplitude con-
sisting of both a spin-independent and a spin-dependent
term. In genera1, the rescattering amplitude is given by an
integral involving the spectral function along the z-axis
cut. For the S-state part, each vertex has been made
pointlike, eliminating the integral. This is not adequate
for the D state. In this case, the momentum dependence
of the dpn vertex is taken from the Yamaguchi wave
function, and the integration is done explicitly [see Eqs.
(A 15)—(A19)].

The last amplitude with a nearby singularity is the
"pion" amplitude shown in Fig. 4(d). It represents virtual
deuteron dissociation and a (highly) off-shell NN~md
amplitude followed by absorption of the virtual pion. In
our model we are able to construct a reasonable estimate
of the spin dependence of the Rutherford, neutron-
exchange, and rescattering terms with amplitudes which
have poles or cuts at the correct locations in z. For the
"pion" amplitude, however, we have no reasonable model

of the spin dependence at low energies. However, the
most important contribution to crT22 from this term is
likely to occur through interference of the 1=0 piece of
this amplitude with the I=2 piece of the neutron-
exchange Born term. We have chosen for our model a
simple, spin-independent "pion" amplitude constructed
from point form factors for every vertex. ' The expres-
sion for crT22 contains the interference term between this
amplitude and the 1=2 neutron exchange amplitude (with
a free parameter for the overall strength).

All amplitudes which are not shown in Fig. 4 have
singularities considerably farther from the physical re-
gion. The contribution of these terms to the polarized
cross section is relatively slowly varying as a function of
z. We approximated the effect of these distant singulari-
ties with two additional contributions to oT22. The first
contribution is a smooth background term, and the second
is the interference of this background and the neutron-
exchange Born term. Since the phase of the background
amplitude relative to the preceding four amplitudes is not
known, these two contributions are added incoherently to
the polarized cross section with separate model coeffi-
cients.

The resulting model for the polarized cross section con-
tains six free parameters representing the strength of vari-
ous terms, one of which is the D-state normalization, g.
While a more complicated form could have been used, it
would be difficult for the experimental measurements to
determine more than six free parameters. As can be seen
from Table I, the polynomial expansions are able to fix
between three and five parameters, depending on the
deuteron energy.

The spin dependence of our model is oversimplified.
Although this model is sufficient to reproduce observed
o Tq2 angular distributions, it is not sufficiently general to
make a simultaneous fit of all spin observables in this re-
action. We could therefore remain skeptical of the quality
of the results even though the values of g provided by this
model seem reasonable. In Sec. V we perform a limited
test of the model's reliability by using parameters obtained
from less precise measurements ' ' to predict the results
of the more precise experiment from Wisconsin.

B. Fitting procedure and convergence
of the power series

For each angular distribution of o.T22, the six model
parameters in Eq. (A23) were adjusted by the program
M?NUIT (Ref. 40) to minimize the chi square with respect
to the data. At all energies a good representation of the
measurements was obtained. An example of the data and
the model fit at 45.3 MeV is shown in Fig. 5 and the final
parameters for three representative energies are listed in
Table II. '

The coefficient a for the effective N-N spin-
independent term in the rescattering amplitude was very
poorly determined by the data, as is evident from the very
large errors shown in Table II. For the fina1 parameter
minimization we chose to fix it at a value of a=30. This
is consistent with the results obtained by Locher and
Mitzutani, who used a simple model to fit n+ d elastic
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FIG. 5. Measurements of the tensor polarized cross section
o-T» at 45.3 MeV. The smooth curve is the model fit to the
data.

cross sections at low energies. The remaining parameters,
given in Table III, exhibit a smooth variation with energy.
Neither the value of g nor the X /v of the fit depend
strongly on whether a is fixed or variable. Figure 6 shows
the final values of g and their uncertainties at each ener-

gy.
Despite problems within individual angular distribu-

tions, the values of q form a consistent set, and the
weighted average with Coulomb corrections is
(rl) =0.0267+0.0009. This value is several "standard de-
viations" from our extrapolated value ( 71,„)=0.0293
+0.0006. In part because there are more free parameters
in our model than there are coefficients in the polynomial
extrapolation, a larger error is obtained for the model
determination of g. Our model value is close to that ob-
tained from potential models of the deuteron. '

Since our model provides a high quality reproduction of
the measurements of o.T22, we may use its functional
form to investigate the convergence of the polynomial ex-
trapolation. Using the model parameters fixed from ex-
periment, we expanded the model amplitude in the ortho-
normalized polynomials of Eq. (6). Since the model am-
plitude can be calculated to any order in l, we can exam-
ine the convergence properties of the resulting polynomial
expansion. We define F(z,L) to be the polynomial ap-
proximation of order L to our model function:

where the ai in Eq. (9) are the model expansion coeffi-
cients. If we extrapolate this truncated expansion to the
neutron exchange pole, z~, then plotting F(z~,L) as a
function of L will demonstrate the convergence properties
of our model.

In Fig. 7 we plot the quantity —0.0541F(z,L) as a
function of L (solid circles), for deuteron energies of 20
and 45.3 MeV. From Eq. (4) this should equal g=PYI.
For each energy the function does not converge at large
L, but continues to oscillate about the value determined
by the minimization. This problem is quickly traced to
the presence of the Rutherford amplitude in the model
cross section. There is no convergence at the exchange
pole because the radius of convergence is bounded by the
Rutherford singularity at z= 1.

IV. REMOVAL OF THE RUTHERFORD SINGULARITY
AND TRUNCATION ERRORS

As we saw from Sec. III, the Rutherford singularity at
z=1 prevented us from extrapolating to the neutron ex-
change pole. Methods for dealing with the Rutherford
singularity are well known. One can

(1) suppress the singularity by multiplying the extrapo-
lation function by an appropriate suppression factor; '

(2) use conformal mapping to map the Rutherford
singularity away from the physical region, so that one can
extrapolate the mapped function to the neutron exchange

.44, 26

or, one can use both methods (1) and (2) together.
In the process we will compare the measurements with

the extrapolations based on substituting model values for
the original measurements. This will provide us with in-
formation on the truncation errors, and we will see why
the original extrapolation procedure produced answers
close to the theoretical values.

A. Suppression of the Rutherford singularity

Using method (1), we have removed the nonlogarithmic
part of the Rutherford singularity by defining a new ex-
trapolation function G (z) through'

I
F(z,L)= g aigi(z),

I =0
(9)

(z —zz) (1—z)
G(z)=p OT22

(1—z')(1 —z~ )
(10)

7l

a
b
C

d
e

X /v

20
Energy (MeV)

35 45.3

0.0250+0.0019
70 +60

—2.7 +8.2
—3.59 +0.82

0.020 +0.002
0.52 +0.41
2.95

0.0260+0.0014
30 +50

—2.7 +4.8
—3.67 +0.67

0.020 +0.007
0.49 +0.28
1.05

0.0259+0.0009
16 +25

—2.3 +1.2
—3.84 +0.64

0.020 +0.003
0.63 +0.28
0.89

TABLE II. Initial results of model minimization.

The new function G(z) has the same value at the ex-
change pole as F(z). In Fig. 8 we show the data for G(z)
as a function of z. The solid curves are the best fit poly-
nomials we used for extrapolation. The solid rectangle at
z ~ —1 gives the position of the neutron exchange singu-
larity, and marks the extrapolated value G(z~, L) and its
error at this point.

In Table IV we give the results of the power series fit to
the new function G (z). At energies where the reduced chi
square is greater than 1, the error in parentheses includes
the additional effects of chi square. The values of q are
corrected for the Coulomb penetrability. Because of the
new 1 —z factor in the numerator of Eq. (10), the op-
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TABLE III. Final results of model minimization. Average (g ) =0.026720.0009 (see text for explanation).

10
Energy (MeV)

13 20 35 45.3 56

7l

d'g
a
b
C

d
e
X'/~

0.0280
0.0200

30
—15
—4.0

0.022
0.2
1.37

0.0300
0.0060

30
—0.32
—4.7

0.025
0.3
0.87

0.0298
0.0050

30
—4.4
—2.8

0.015
0.1

1.01

0.0307
0.0030

30
—6.5
—5.0

0.027
0.4
1.06

0.0249
0.0025

30
—4.7
—3.7

0.020
0.3
2.87

0.0260
0.0019

30
—2.75
—3.7

0.020
0.5
1.00

0.0259
0.0014

30
—2.2
—3.7

0.020
0.6
0.87

0.0276
0.0022

30
—1.1
—2.4

0.013
0.3
1.52

timum value of I. increases by one unit over the corre-
sponding value of L needed with the function F(z). In
Fig. 3(b) we show a graph of the values and errors for g
using the function G (z). Except for the value at 20 MeV,
the determined values of g are remarkably similar in the
two cases shown in Fig. 3. This may be related to the
similar choice of L values for the power series extrapola-
tions at each energy.

The new average value of g is (rl ) =0.0296+0.0006, a
value close to that obtained with F(z). The new function
does, however, give results more consistent with energy.
The 7 /v for the average (g ) is 0.29 with G (z), as com-
pared to 2.06 for F(z). This is, in part, a result of the
uniformly larger errors obtained with G(z), which re-
quired one additional polynomial coefficient in the fitting
process.

In order to show the convergence properties of the new
extrapolation function, we have calculated G(z) with our

model and expanded that function in orthonormal polyno-
mials, as we had done previously with F(z). If we trun-
cate the polynomial expansion of the model at order L,
this gives us a function G(z, L) The .open circles in Fig. 7
show —0.0541G(z~, L) as a function of L. The conver-
gence of G(z, L) with L is dramatically improved. At
both 20 and 45.3 MeV, G(z,L) has converged to within
l%%uo of the model value of g for 1.~ 6.

From Fig. 7 we see that, for the original extrapolation
of F(z), the values deduced for ri (the solid rectangles in
Fig. 7) are actually quite close to the final values obtained
using the convergent function G. However, by observing
the oscillations as a function of I., we see that these re-
sults were really quite fortuitous: it just happened that

20 MeV

0.030 ll

&7' &5 &5J/7 J'7'J777TT7 ~F7'7'~ J78 d d 6 8 d 8 d 8 4 d 8 8 8&( 8 2 Zj( 2 d Z

0.020—

O
C)

)

CL F
G

0.010—

0 2 4 6 8 IO

20

E (Mev)

t

40 60

FIG. 6. Values of q obtained from our model at eight ener-
gies. The solid line and the shaded region are the weighted aver-
age and its error.

FIG. 7. Values of the residue Pg as a function of L, the
maximum order of the extrapolating polynomial. The solid cir-
cles are taken from our model of the extrapolation function
F(z,L) of Eq. (9). The rectangular points are the points chosen
in the analysis of Refs. 10 and 11; the height of the rectangle
represents the quoted experimental error. The open circles are
taken from our model for the function G (z,L ) defined in the
text.
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the data produced a value of I where the extrapolation
function F coincided with a "good" value for g. Thus,
the confidence which arose due to the agreement between
the theoretical and extrapolated values of q was mis-
placed.

The truncation error arises from higher-order terms
which cannot be inferred from a measurement of the po-
larized cross sections. With a single set of measurements,
the precision of the data sets a limit on I, and we have no
direct way of estimating the truncation error. We will in-
vestigate two possible methods for estimating this error.

The first involves subsequent measurements of data at
the same energy, but with significantly greater precision.
This will allow us to calculate higher-order terms in a po-
lynomial expansion of the data. In this way we can exper-
imentally check the convergence of the polynomial series.
Although there will always remain a truncation error, we
would be reassured if we could see that successive terms
in a polynomial expansion contributed less and less to the
final answer.

The second method estimates the size of the higher-
order terms and the truncation error from our model ~

Such a procedure is model dependent. The high-precision
measurements from Casavant et al. at Wisconsin allow
us to check both of these methods. We will discuss this in
detail in Sec. V.

B. Conformal mapping of the data

I.O

(b)

0.2
MeV

0.5

O. t

3 MeV

0.2
5 MeV

0.5

MeV

0.02

FIG. 8. Measurements of the extrapolation function G(z)
from Refs. 10, 11, and 30. The smooth curves are the power
series extrapolations discussed in the text. The rectangular
points at z & —l indicate the values of the residue and its error
for each extrapolation.

A second technique to ensure convergence of a polyno-
mial expansion is to apply a conformal mapping in the
angle variable z before expanding the data. Conformal
mapping techniques have two advantages. First, they can
increase the radius of convergence of a polynomial expan-
sion. Second, they can speed up the rate of convergence.
For these reasons, conformal mapping techniques can be
powerful tools even for inelastic reactions where no Ruth-
erford singularity is present.

In this context the optimal conformal mapping tech-
nique introduced by Cutkosky and Deo offers an ex-
tremely useful method for expanding any set of data. If
we have a function which is analytic between the points
z& and z2, then the optimal conformal mapping technique
guarantees that the function expanded in the mapped vari-
able will converge faster than any other expansion in the
region z, &z &zq (hence this particular conformal map-
ping is "optimal" ). Since this method is so important to
the extrapolation problem, we will consider it in detail.

For the moment, we will neglect the effects of Coulomb
distortions on the neutron exchange singularity and return
to them later in this section. In this case the extrapolation
function F(z) is regular at the pole position z~. To imple-
ment the Cutkosky-Deo procedure, we perform three
transformations of the variable z. First, we use a linear
transformation to map the region containing the data onto
the interval ( —1, 1), as suggested in Ref. 19. Next, we
perform a transformation which symmetrizes the location
of the two nearest singularities of F(z) about z=O. The
closest singularities of F(z) are the Rutherford singularity
(originally at z= 1, but located at z& 1 following the first
transformation), and the "pion" singularity at z & —l.
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TABLE IV. Results of polynomial fitting with a suppression factor. Average (tl ) =0.0296+0.0008.

10
Energy (MeV)

13 20 35 45.3 56

L
X'/~
7l

dn

3
1.25
0.0398
0.0080

(0.0088)

3
0.65
0.0303
0.0036

3
0.84
0.0300
0.0020

3
0.98
0.0298
0.0013

2.24
0.0363
0.0043
(0.0064)

5

0.91
0.0286
0.0026

5
0.79
0.0277
0.0017

5

1.24
0.0305
0.0019
(0.0021)

L
F (z,L)= g aPQI (z ),

1=0
(12)

E
h4

0.5—
LL

Finally, the symmetrized plane is mapped onto a unifocal
ellipse using the iterative approximation scheme described
in Ref. 44. The last two steps of this procedure leave the
endpoints of the data region (at z =+1) unchanged. The
Rutherford singularity has thus been mapped away from
the "physical" region, and the neutron exchange point is
left within the resulting convergence ellipse. In Fig. 9 we
show the data points and the position of the neutron ex-
change pole following the conformal mapping. In Table
V we list the position of the neutron-exchange pole before
and after mapping, and the position of the "pion" pole be-
fore mapping.

In order to determine the effects of conformal mapping,
we recalculated the orthogonal polynomials defined in Eq.
(6),

l zi k zi™
~lk

I

using the mapped angle variable z . Then we repeated
the polynomial expansion of the data,

and of the model,
L

F (z,L)= g a ) QP(z ),
1=0

(13)

and we extrapolated each expansion to the exchange pole.
In Fig. 9 the solid curve shows the best polynomial repro-
duction of the mapped data at 45.3 MeV obtained using
L=5.

We can now compare results of conformal mapping
with those obtained with a suppression factor. The
mapped values of g and their errors are listed in Table VI,
and shown as the solid dots in Fig. 10. Values obtained
with a suppression factor (listed in Table IV) are shown as
the open circles in Fig. 10 for comparison. Corrections
have been made for Coulomb penetrability. Both map-
ping and suppression require the same value of L. The
mapped values are consistently about 20% lower, as
shown by the average (71 ) =0.0244+0.0006 for mapping
compared to (g) =0.0296+0.0008 with a suppression
factor.

First, we see that the experimental errors are far smaller
than the true uncertainty. Two essentially equivalent
methods for determining g give results which differ by
about seven "standard deviations"; these vastly different
results are inferred from the same data set! Unless one of
the methods is poorly founded, the small error estimates
obtained from polynomial extrapolation are clearly unreli-
able.

We can obtain estimates of the truncation error in each
procedure from our model. When we expand our model
amplitudes in the orthonormal polynomials from Eq. (6),
the lower partial waves are constrained by the data. We
have examined model extrapolation using a suppression

TABLE V. Location of singularities (before and after confor-
mal mapping).

0.002

Zm

FIG. 9. Values of the conformally mapped extrapolation
function F (z ) at 45.3 MeV. The smooth curve shows the best
power series extrapolation. The rectangular point at z & —1

denotes the value of the residue and its error as determined by
extrapolation in the conformally mapped variable.

Energy
(MeV)

56
45.3
35
20
13
10
7
5

Zp

—1.34
—1.36
—1.39
—1.50
—1.64
—1.75
—1.96
—2.25

—1.28
—1.24
—1.26
—1.26
—1.20
—1.22
—1.25
—1.46

—2.64
—2.98
—3.49
—5.16
—7.27
—9.08

—12.43
—16.90
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TABLE VI. Results of polynomial fitting with conformal mapping. Average (g) =0.0244+0.0006.

10
Energy (MeV)

13 20 35 45.3 56

L
X'/~
7l

de

3
1.26
0.0239
0.0036
(0.0040)

4
0.56
0.0252
0.0033

4
0.85
0.0277
0.0020

4
1.02
0.0244
0.0014

5
2.32
0.0254
0.0016
(0.0024)

5

0.98
0.0244
0.0013

5

0.99
0.0237
0.0010

5

1.49
0.0269
0.0013
(0.00163

factor and conformal mapping. The model results (the
open circles in Fig. 7 and the open squares in Fig. 11)
smoothly approach the asymptotic values for g; for any L
the truncation correction is the difference between the
value in our model, and the value of g obtained by trun-
cating at L. These corrections are listed in Table VII.
For all cases considered, our model with adjusted parame-
ters provides a good description of the data, as well as the
various extrapolated versions of it. Thus if we apply a
"truncation correction" derived from our model to any
extrapolated value, we will always obtain the same
answer: the model value. Thus, the differences among
extrapolation techniques, such as those shown in Fig. 10,
can be attributed entirely to the effects of truncation.

Borbely et al. have used comparisons such as that in
Fig. 10 in situations where the difference between the two
methods is small, and they argue that the underlying trun-
cation errors must be negligible. This method may not be
effective, as there is no assurance that any set of methods
will bracket the correct value.

In our introduction to conformal mapping, we neglect-
ed the Coulomb distortion effects at the neutron exchange
singularity. Inclusion of these effects has serious conse-
quences for our choice of mapping function. In Fig. 12(a)
we show the Coulomb distortions for the d+p neutron
exchange amplitude. These effects convert the neutron
exchange pole into a cut which begins at the pole position
z . In Fig. 12(b) we show the singularity structure for
I'(z) at 45.3 MeV when this cut is included. In our con-
formal mapping procedure, we used the "pion" singularity
as the boundary of our ellipse; therefore, the mapped
function F(z) is not analytic inside the ellipse. The
theorems of Cutkosky and Deo require the mapped
function to be analytic inside the convergence region.
Since our extrapolation function violates this condition,
the theorems which prove optimal convergence do not ap-
ply; therefore we have no guarantee that the conformal
tnapping procedure will give the fastest convergence of a
polynomial expansion. Note that the same problem arises
as well for inelastic reactions like H(d, p) H.

In the final analysis, the "optimal conformal mapping"
technique is also plagued by ambiguity. Like the original
extrapolation problem, the truncation errors cannot be
measured for any one set of data. Coulomb distortions

0.04- ()

0.03=
I

45.3 MeV

0.02—

0, «IL

O. I 0 40
(Mev)

'o
I

2
l

4
I

6
t

8

FIG. 10. Values of g obtained by extrapolation at eight ener-
gies. The solid circles are obtained using the con formally
mapped function F (z ) of Eq. (11). The open circles are the
values obtained using the suppression factor of Eq. (10). The
long- and short-dashed lines show the average ( tl ) using
suppression factor or conformal mapping, respectively.

FIG. 11. Dependence of q on L for conformally mapped ex-
trapolation. The solid circles give values of g determined from
the polynomial extrapolation of Eq. (11). The open squares give
values of q obtained by extrapolating our model. The solid cir-
cle with an error bar denotes the best polynomial value and its
experimental error.
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TABLE VII. Truncation corrections.

10
Energy (MeV)

13 20 35 45.3

F(z)
G(z)

(z )

—0.0153
—0.0118

0.0041

—0.0017
—0.0003

0.0048

—0.0001
—0.0002

0.0071

—0.0003
0.0009
0.0063

—0.0026
—0.0114

0.0005

—0.0009
—0.0026

0.0016

—0.0011
—0.0018

0.0022

—0.0013
—0.0031

0.0006

convert the neutron exchange pole into a cut. If we extra-
polate the function F(z) to this point, we are extrapolat-
ing to an "incompletely removed" singularity, a risky pro-
cedure.

V. EXPERIMENTAL VERIFICATION
OF LARGE TRUNCATION ERRORS

(a)

(b)
E

I

Z= -'5 -2 -I 0

FIG. 12. (a) Diagram of the Coulomb distortion effect on the
neutron-exchange amplitude for d+ p elastic scattering. These
Coulomb effects convert the neutron-exchange "pole" of Fig.
4(b) into a cut. (b) Singularity structure of the function F(z) of
Eq. (2) when the neutron exchange singularity is converted into
a cut (the location of singularities is appropriate for a deuteron
energy of 45.3 MeV).

In Sec. IV we suggested that truncation errors were
likely to be considerably larger than the experimental er-
rors. At that point we were using model calculations for
the polarized cross sections. Clearly, our results depended
on the reliability of our model. In order to evaluate our
claims, it would be useful to have independent measure-
ments of the tensor-polarized cross sections, taken at an
energy where a set of data already existed, and more pre-
cise than the previous data. With such data we would be
able to check whether our model correctly predicted
higher-order terms, and from that estimate the quality of
the truncation corrections.

We have found the data of Casavant et al. , taken at
Wisconsin, to be extremely useful in this regard. The au-

thors have measured polarized d+p scattering for 10
MeV deuterons, an energy previously measured by
Gruebler et al. " The Wisconsin group achieved an ex-
perimental precision five times better than previously ob-
tained, allowing them to obtain two more terms in a poly-
nomial extrapolation. One can then ask the following
questions:

(1) How large is the contribution associated with these
two additional terms, relative to the experimental error
obtained by Griiebler?

(2) Is the extrapolated value for ri converging rapidly,
so that higher-order terms become progressively smaller
as the order L increases?

(3) How useful was our model for the polarized cross
sections? If we fit our model to the Griiebler polarized
cross sections, will it correctly predict the contributions
from higher-order terms?

We have determined g from the Wisconsin measure-
ments using "optimal" conformal mapping techniques.
The results are shown in Table VIII, where they are com-
pared with g from the data of Gruebler et al. at the same
energy. The Wisconsin data are sufficiently precise that
we may calculate two more terms in the polynomial ex-
pansion.

These two determinations of g at 10 MeV differ sub-
stantially. Using the data of Griiebler et al. we obtained
a value for g of 0.0227+0.0020, while the Wisconsin data
gave a value of 0.0284+0.0011. Note that the new value
of g is almost three "standard deviations" away from the
old value (using the standard deviation from Ref. 11).
Therefore, the experimental errors are unreliable indica-
tors of the precision with which we can determine g.

In Ref. 20 Casavant et al. saw no sign of convergence
for the standard extrapolation technique. As shown in
Sec. IV, this is due in part to the presence of the Ruther-
ford singularity at z=1. The same extrapolation is shown
in Fig. 13, this time with the Rutherford singularity re-
moved through conformal mapping. Past L =3, the
values steadily decline, suggesting a trend towards conver-
gence.

Figure 13 also includes the terms suggested by our
model, whose parameters were determined from the less
precise measurements of Ref. 11. The model predictions
for L =5 and 6 are within the errors given by the Casa-
vant measurements, thus indicating that the model may be
reliably used to estimate additional extrapolation terms
and the resulting truncation corrections. To obtain results
with the presently quoted "experimental errors, " our
model suggests that at least three additional terms must
be measured experimentally. This would require a reduc-
tion of an order of magnitude in the size of the experi-
mental errors, which is not presently feasible.

Two other theoretical model studies have estimated the
size of the truncation corrections. Locher and Mizutani '

used a simple model for n+ d scattering, and estimated
that truncation corrections could be as large as 15 Jo for
angle-extrapolation procedures. Berthold and Zankel
solved the Faddeev equations for n+ d scattering N-N
potentials with a known value for g. They then extrapo-
lated o.Tzz to the proton exchange pole using polynomials
fitted to a set of calculated points. They found that the
extrapolated value typically differed from the input value
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TABLE VIII. Comparison of extrapolation and the method of asymptotical coefficients.

Energy (MeV)

56
45 ~ 3
35
20
10 (Ciruebler)
10 (Casavant)

Extrapolation
L

0.0269+0.0013
0.0237+0.0010
0.0244+0.0013
0.0254+0.0016
0.0227+0.0020
0.0284+0.0011

1.49
0.99
0.98
2.32
0.88
1.16

MAC

0.0248+0.0017
0.0225+0.0013
0.0242+0.0018
0.0266+0.0025
0.0257+0.0037
0.0295+0.0020

Average ( g ) =0.0255+0.0005 (q ) =0.0248+0.0008

of q by several percent. The best agreement was obtained
with the Graz-II N-N potential. The difference between
"true" and "extrapolated" values for g were 5.25%%uo and
5.62% for neutron lab energies of 5 and 10 MeV. This is
comparable to the present experimental errors at these en-

ergies. Other N-N potentials produced even larger differ-
ences. Both of these works support our qualitative con-
clusions that the truncation errors are likely to be several
times larger than the experimental errors.

VI. SYSTEMATIC EXPERIMENTAL ERRORS
IN THE POLARIZED CROSS SECTION

The experiments for deuteron-proton elastic scattering
are subject to systematic errors besides those arising from
the statistical angular distribution errors considered in the
analysis of Ref. 8. The cross section usually carries a nor-
malization error of at least 3%. The calibration of the
beam polarization is based on a bootstrap method brought

up from lower energy, and is expected to be accurate to
roughly 3% as well.

However, even such general careful estimates have
clearly overlooked problems in the agreement between

0.010

0.005

0.000

—0.005

measurements from different experimental groups. A
comparison of the Tz2 measurements of Refs. 10 and 11,
as shown in Ref. 48, gives differences in the measure-
ments at the largest values of T22 of about 15%. Similar
discrepancies exist between the measurements at 33 MeV
from Ref. 11 and at 35 MeV from Ref. 10. Yet both
groups extract essentially the same value of g at these en-

ergies! A closer examination of the two sets of data re-
veals that both magnitude and zero shifts are present.
The extrapolation function matters most where it is large.
At those angles, the experimental differences happen to be
small and the values for crT22 are coincidentally the
same. (The cross sections agree very well. )

The beam polarizations at the higher energies were
determined from d + He elastic scattering where the
analyzing powers are very large. Comparing the measure-
ments of the groups from Berkeley and SIN reveals
that, for this calibration experiment, results differ at all
energies and in ways that are not systematic with energy,
angle, or observable. Thus there are problems not only
with the beam polarization, but also with the extraction of
the polarized cross sections from the experimental
measurments. Again, both scale factor and zero shifts ap-
pear to be involved. The calibration used at SIN gives the
larger value of Tz2 at 45 MeV. This calibration has
been used as the basis for the Osaka measurements at 56
MeV. The extrapolated value of g at 56 MeV thus ap-
pears somewhat higher in all of our analyses, just as the
35 and 45.3 meV points from Berkeley appear low. It is
clear that systematic experimental errors considerably
exceed the statistical precision of the d + p data, especial-
ly at the higher energies, and now constitute yet another
limitation in the reliability of q taken from d + p angular
extrapolations. Before any further conclusions can be
drawn regarding the precision of the angular extrapolation
technique by comparisons with the theoretical values of g,
these experimental differences must be resolved.

—0.010

FICr. 13. Values of g vs L for the high-precision Wisconsin
data of Ref. 20 (diamonds with error bars), and values from our
model in which the parameters were determined from the less

precise data of Ref. 11 (squares).

VII. CONCLUSIONS

At first glance, extrapolation of cross sections for po-

larized d + p elastic scattering [or the H(d, p) H reac-
tion] appears to give a very precise direct determination of
g with small errors. However, closer examination reveals
that this procedure contains a number of hidden sources
of error which we have attempted to delineate in this pa-
per. The earliest attempts to determine q neglected
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Coulomb penetrability effects and truncation corrections,
both of which are relatively large. In more recent mea-
surements, the truncation corrections are neglected, lead-
ing to quoted errors which are far smaller than the "true"
uncertainties in this procedure.

In order to demonstrate the size of the uncertainties in
this process, we have used several different methods.
First, we showed that different procedures for extrapola-
tion (conformal mapping and singularity suppression)
gave very different values for g. Second, we showed that
a theoretical model for the d +p amplitude predicts large
truncation errors in the extrapolation procedures. Finally,
we show that recent high-precision data for d +p scatter-
ing allows us to "measure" some of the truncation error
from previous experiments. These experimental correc-
tions are large and in quantitative agreement with the pre-
dictions from our theoretical model.

Another vexing problem for systematic error estimates
is found in the disagreement among various experimental

groups regarding d + p analyzing powers. These
discrepancies have complex origins, and the close agree-
ment in values of g quoted from independent sets of mea-
surements tended to provide a false sense of confidence in
the consistency of the data. Until these differences are
resolved, no precise value of g from these experiments can
be regarded as credible. Both the values of the beam po-
larization and the extraction of analyzing powers from
count rates need to be addressed. Such an enterprise
would be considerably easier if a primary standard for in-
termediate energy deuteron beam polarization was avail-
able. "

Progress in determining g from extrapolation will prob-
ably come only by simultaneously investigating the errors
by several methods. The high-precision Wisconsin data
at 10 MeV gave a direct measure of the truncation error
in previous experiments. These data show a slow trend
toward convergence, although we suggest that even more
precise data will be necessary before truncation errors can
be neglected. Theoretical models for the polarized ampli-
tudes are very useful in suggesting the magnitudes of the
truncation errors.

We believe that the present uncertainties in g from ex-
trapolation are at least as large as 10%, due to uncertain-
ties in the data and to large truncation errors. This is cer-

tainly true in the d +p data which we have analyzed at

length; similar corrections are likely to be present in the
H(d, p) H reaction data. At this level of uncertainty, an-

gular extrapolation does not compare favorably with the
direct determination of g from sub-Coulomb stripping re-
actions, ' nor with the indirect determination of
through the close connection between 7) and Q (the deute-
ron quadrupole moment). '
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APPENDIX A. MODEL
FOR THE POLARIZED CROSS SECTION

As we discussed in Sec. III, our model includes a pa-
rametrization of the diagrams for d+p scattering with
the closest singularities to the physical region. The four
diagrams discussed here are shown in Fig. 4, along with
the locations of their singularities on the z axis for 45.3
MeV deuteron bombarding energy. These diagrams in-
clude the Rutherford amplitude, neutron-exchange term,
nucleon-nucleon rescattering term, and a "pion" term. In
addition, we include a smooth background to represent
the effect of all other more distant singularities. This ap-
pendix summarizes the amplitudes in our model.

The polarized cross section can be conveniently ex-
pressed in terms of the helicity representation for the
scattering amplitudes. With m and M being the helicities
of the proton and deuteron, respectively (primed in the
outgoing channel), we obtain

crTk„=ok = (2k+1)v3 1/2

6 M
&
M2mm'M'

1 1 k
( —1) ~ ~ t~ M mM (O,E)t~ M M (O,E), (A 1)

t =tc+tx+tm+taa (A2)

where the quantum number indices have been suppressea
and the specific amplitudes refer to the Rutherford,
neutron-exchange, and the S- and D-state parts of the re-

where t, the scattering amplitude, is a function of the
scattering angle and energy. As a first approximation, the
scattering amplitude is expressed as the sum of four
terms,

scattering diagram. It was felt that enough was known
about these diagrams so that their relative phases could be
included explicitly. The z dependence of the pion ex-
change term and the background were assumed to carry
unknown phases, and these terms were added incoherently
when the contribution to the polarized cross section from
Eq. (A2) was calculated.

The tensor character of the polarized cross section
demands that each term in the expression for the polar-
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ized cross section contain at least one 1=2 component.
Assuming that the asymptotic D- to S-state ratio, g, is
small, we kept only the first order terms in the l=2 com-
ponent. Thus, only terms linear in g were retained. This
allowed us to make a considerable reduction in the num-
ber of terms present and in the recoupling algebra associ-
ated with each one. Since interference terms can occur
within the amplitude given in Eq. (A2), both l=0 and 2
pieces of the individual amplitudes were initially calculat-
ed.

The amplitude associated with Rutherford scattering is

and

q=p' —p, q'=2p'(1 —cos8), (A5)

tx ——txs+tx (A6)

with p the center of mass momentum (primed in the out-
going channel), q the momentum transfer, and a= „, is
the fine structure constant.

The neutron-exchange amplitude contains both t'=0
and 2 components, separated as (using r)=Pg throughout)

tC = —&mm &MM

where

2P'Qc q
2

2 exp —ig~ln +2jg
4 2 P

(A3)
2 2

1
)M+M' g

m n

I 1

2 2

—M' m' m„

These amplitudes are, respectively,

—M,

oo=argl (1+itic)& pc=
1/2

P

jV
(A4)

and

(A7)

1 1

2 2

1

2
1

21 2

m„—M, m' m„—M I, I
—M' Pz (n))

1 I

2 2

+ m m„

1 1

2 2

m' m„ (A8)

where the exchange pole is
23m pfpgx=-

4mp (z —z~)

and qi =p+p'» q2 P~2+P

I qi I

=
I q~ I

=p( —.'+z)'".

(A9)

(A 10)

t» ——a +bO. &-qCr2 q . (A 1 1)

tt s =gt, (a5 6~~ +btt ), (A12)

Although traditionally determined from nucleon-nucleon
scattering, the coefficients a and b will be two of the vari-
able parameters in the fitting process. The amplitude
arising from the S-state vertex is taken to be

The S-state coupling constant is chosen to be yo ——1.656, a
value consistent with the triplet effective range parameter
R = 1.75 fm (Ref. 9).

The nucleon triangle rescattering amplitude again con-
tains both /=0 and 2 deuteron vertex functions. They are
combined with a nucleon-nucleon scattering amplitude
that is parametrized as

where
2

7o
g&

—— sin4' (q2+ 16~2)1/2
(A13)

is the spin averaged form given by Locher and Mitzu-
tani, and

1

2
]
21 1 1 1

( )1'* ( )( —1)
2 ~ —M M —p2 m —m p) ) 1 l 2

P 192

(A14)

The D-state vertex is included as an integration, through

taD=(att, +btt, ),

where the amplitudes are

(A15)

2

3
4m

1/2
1 2 1 1 2

M' —MP P
(A16)
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1/2
3

tg ——6
4m

p&@~M

1

2 1
I

2

—m' p~ m

&& ( —1) ' 1 1 1

—M M, —P2 M, P —M'

1 1 1 1 2 1

+( 1) M M ~ Ms P2 S
(A17)

The integral f~„ is given by

fa„=&2„(q) f dy C d(y)
oo y

2' Q
0 y +

xg, +K +g /4
(A18)

where gc is the Rutherford amplitude of Eq. (A3) without
the 5 ~ 5MM factor.

The pion-exchange diagram is assumed to contain both
1=0 and 2 parts. Since it is the most distant diagram
considered, only the shape of its interference with the
neutron-exchange diagram is included. The pion-
exchange amplitude is taken only in spin-averaged form,

where Q2 is a Legendre function of the second kind. The
deuteron wave function was taken from Yamaguchi and
Yamaguchi, and is

2

(A19)
(q2+r2)2

where cd ———2.828 fm and y=309.44 MeV.
The amplitudes given above [Eqs. (A3), (A6), (A12),

and (A15)] are general and can be simplified for any elas-
tic scattering observable. In the particular case of oT22,
keeping only terms to first order in their l=2 contribu-
tion, we obtain

cr T2q ——(uT» )'+ cPs+dP9+ eP~0, (A23)

1 9'2
g~ = sin

q2 [q, +(~+m )']'~'

Because of its importance for the shape of the polarized
cross section near z = —1, we also included a term for the
interference of the exchange diagram with the back-
ground. With arbitrary magnitude and phase, the contri-
butions to the polarized cross section of the smooth back-
ground and the interference of the neutron-exchange dia-
gram with the background and the pion exchange diagram
are

(oT»)'=N(bP)+b P2+7IP3+arlP4

+bgP5+a P6+aP7),
(A20)

where

Ps=g„g (1—z ),
P9 ——g„(1—z ), (A24)

q' ref~
3v'10 8 ~2

q' q'
& «+ ~2 r&~ »(q)4a 10m K K 7T

P3 ——

P4 ———
3~5
vs~

6

1

24~5m.

2

2 RegC +g ) ~22 (q )
K

2

, g.g~ l'2z(q),

2

g ga(9p 5'q ) ~22(q»
K

(A21)

P6 ——

P7 ——

1~ rogaf ~ 1'z2(q)

2
3 0 1-fa Regc+ -g. &»(q),

~vr v' 3

where the adjustable parameters have been factored out.
The normalization to units of mblsr is N = 10(Pic)
=3.89 & 10 . The individual terms are

Pio —— (1—z ),=1 2

p
2

and c, d, and e are adjustable parameters.
The form given by Eq. (A23) contains six free parame-

ters which can be adjusted to reproduce the polarized
cross section. They include g, the value of the D-state
normalization we seek. While a more complicated form
could have been tried, it was anticipated that it would be
difficult for the measurements to determine more than six
free parameters. The polynomial series itself contains at
most five.

APPENDIX B: THE METHOD
OF ASYMPTOTICAL COEFFICIENTS

The angle extrapolation technique, which we have ex-
amined in this paper, has shortcomings which we have
discussed at length. First, this method requires extrapo-
lating an observable into a region where higher-order po-
lynomials grow in an unbounded manner. Second, trunca-
tion errors, which are extremely difficult to estimate, have
been shown to be large relative to experimental errors. Fi-
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nally, as we have mentioned in Sec. IV, the neutron-
exchange "pole" becomes a branch cut when Coulomb
distortions are included. This means that the extrapola-
tion function is no longer analytic at the pole position.
Borbely has suggested an alternative to angle extrapola-
tion, which he terms the "method of asymptotical coeffi-
cients, " or MAC. In this appendix we will examine the
use of this method.

For the sake of simplicity, we neglect for the moment
the Coulomb distortion effects; we will also neglect some
overall normalization factors in order to introduce the
basic features of the method. The angle extrapolation
method involves the construction of a function Fz(z),

F2(z)=(z —zq) O.T22 . (81)

The (z —z~) factor removes the double pole in the cross
section at the (unphysical) angle corresponding to zz. We
can expand the function F2 in a set of orthonormalized
polynomials [ P( I,

L 00

Fp(z) = g a(P((z)+ g a(P((z) . (82)
1=0 1=L+1

From Eqs. (82) and (84), we can write

F2(z)=q+ g a([P((z) P—((zz)],
l=o

and therefore

(87)

Fi(z)= + Q a(
7l

zP l =0

P((z) P((z~—)

z —zp

(88)

F2(z) =rI+ g a([P((z) P((z—p)] (89)

and

F((z) = + g a(
z ZP l =0

P((z) P((zp )—
z —zP

(810)

We can expand the pole term in Eq. (89) in terms of the
same polynomials,

The first order pole in F& is seen explicitly in Eq. (88). If,
in the expansion of F2, al-0 for all l) W then we can
write

In Eq. (82), L is the highest value for which the coeffi-
cients a( can be reliably determined for a given set of
measurements; i.e., for 1 )I.,

z —zP

= g c(P((z);
l =0

therefore we have

(811)

5al
(83)

l =01=0
F, (z) =rI g c(P((z)+ g a(

P, (z) P, (z, )—
Z —ZP

(812)

where 5al is the error associated with the coefficient al.
The second term in Eq. (82), which cannot be determined
from a given set of data, is called the truncation error in
F2.

The coefficient g is determined by extrapolation of Fq
to the unphysical angle zp.

Fp(z„):—q= g a(P((z~)
l=o

= g a(P((z~)+ g a(P((z~) .
1=0 /=L+1

(84)

F
&
(z) = (z —zz )cr T22, (85)

which has a simple pole at z~ (it also has a branch cut be-
ginning at zz, but the pole term is basically unaltered).
We can expand this function as well in the polynomials

I P(I as

F, (z) = g b,P, (z) .
1=0

(86)

Clearly, since the last term in Eq. (84) cannot be deter-
mined from the measurements, determination of g by ex-
trapolation suffers from the problem of truncation error.
This method also suffers because F2 is not analytic at z~,
due to the branch cut caused by the Coulomb corrections.
The "method of asymptotical coefficients" is an attempt
to determine g while avoiding at least some of these diffi-
culties.

The MAC involves the definition of an auxiliary func-
tion F((z)

The last term in Eq. (812) is a polynomial of degree
W —1, so the assumption that the coefficients al vanish
for I )W requires that

b(=r(c( for l) W . (813)

W(z) = W(z, )+ g —(z —z, )(W'"(z„),
l=1

p (814)

where H(z~ ) =P, the penetrability defined in Eq. (4), and
H'"(z~) is the Ith derivative of H evaluated at z~. Ab-
sorbing the I= 1 and higher terms of Eq. (814), Eq. (810)
can be rewritten as

gp ~ P((z) P((zp)—+ ~i
P (=(

(815)

Therefore, the Coulomb effects require that the coeffi-
cients of the pole term be scaled by gP, where P is the
Coulomb penetrability.

The MAC has a superficial appeal. One never has to
mention the word extrapolation„' one can also imagine us-

Consequently, the coefficient g can be obtained by com-
paring the high-order coefficients of a polynomial expan-
sion of F1 with the corresponding coefficients of
(z —z, )-'.

Coulomb distortions in the initial and final states have
two effects on the MAC. First, the coefficient q in Eq.
(89) gets replaced by an angle dependent function g H (z).
Second, the nonpole terms in Eq. (89) develop a branch
cut at zz. The function H(z) is analytic at zz and can be
expanded in a Taylor series about that point,
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ing this technique when the function is not analytic at the
extrapolation point. However, both this method and the
extrapolation technique have the same difficulty with
truncation errors. Our demonstration of the relation be-
tween the extrapolation method and the MAC relied on
the assumption that the truncation error was zero. How-
ever, if the truncation error is non-negligible, then the
second term in Eq. (B8) will contribute higher order terms
which will invalidate Eq. (B13).

To compare these two methods, we have applied them

to determine g from many sets of d+p scattering data.
We have almost always found the values obtained by the
two techniques to be identical to within one standard devi-
ation (frequently the two results are virtually equal).
Therefore, the large truncation errors which we found in
the extrapolation method should reappear with the MAC.
To show the effects of truncation error for the MAC, we

have used six data sets for d +p at energies from 10 to 56
MeV. Results for both conformal mapping and MAC are
shown in Table VIII.

The MAC average is (g) =0.0248+0.0008, compared

with (g) =0.0255+0.0005 for the conformal mapping,
using this subset of the data. These two results are com-
pletely consistent with one another, in agreement with our
claim that these two methods are very similar. However,
if we apply the pole suppression method to these same
data, we obtain (ri) =0.0296+0.0010. This value for
(rl ) is six "standard deviations" from the MAC value, for
exactly the same data base!

%'e conclude that the MAC exhibits the same defects as

the conformal mapping procedure for d+p. The two
methods give results which are essentially equivalent, and
both methods give serious underestimates of the trunca-
tion error. Note that if we had compared the MAC and
conformal mapping to one another (without using our
model or the pole suppression factor), we might have ar-
rived at the quite erroneous conclusion that the agreement
between these two values of (tl ) implied that the trunca-
tion errors were small. This further illustrates the limita-
tions of attempting to deduce the truncation error by
comparing different methods of extracting (g).
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