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Quantal equivalent local potentials from resonating group method n+a nonlocal interactions
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A quantal method to construct equivalent local potentials for the resonating group method nonlo-
cal kernels is presented. The method requires two linearly independent solutions of the resonating
group method integrodifferential equation. This Wronskian equivalent local potential is generally
smooth, well behaved at all energies and partial waves, and is free of singularities. Therefore it can
be used for interpreting purposes where the semiclassical method of Horiuchi either fails (low ener-

gies, small size of nuclei, comparable ranges of nonlocality and nucleus, etc.) or is multivalued. The
necessity and importance of renormalization of the wave functions are discussed. The kernel need
not be renormalized. Results are given for an n+a system and the 1, E, r, and parity dependence of
the system is investigated.

I. INTRODUCTION

Equivalent local potentials (ELP's) have been widely
used to gain an intuitive physical understanding of com-
plicated nonlocal interactions, in particular, those ob-
tained in the microscopic resonating group model (RGM)
approach. In most investigations the trivial equivalent lo-
cal potential (TELP) or semiclassical Wentzel-Kramers-
Brillouin (WKB) approximations have been successfully
used. Examples of successes of these ELP's in extracting
important information and features of internuclei interac-
tions in investigations which employ the RGM have been
the following.

(i) The elucidation of the parity dependence of the in-
ternucleus potential by Tang and co-workers by means of
ELP's obtained in the Born approximation' or by using
the TELP.2

(ii) The discovery of the orthogonality of the RGM
wave functions to the (almost) Pauli forbidden states and
the subsequent development of the orthogonality condi-
tion model (OCM) by Saito and the development of
ELP's based on the OCM. "' These have played an im-
portant role in cluster model studies of light nuclei.

(iii) Horiuchi s more recent derivation of a semiclassi-
cal ELP (Ref. 6) for RGM intercluster interaction which
enabled him and his collaborators to show how the basic
properties of the RGM nonlocal potentials manifest them-
selves in terms of a more easily visualized and intuitively
understandable loca1 potential. In particular, questions
concerning the parity dependence of the ELP (confirming
the results of Refs. 1 and 2), the size and shape of dif-
ferent exchange contributions in the RCxM and their ener-

gy dependence, and the controversy concerning deep and
shallow potentials have been elucidated in this way.

Despite these successes, however, both the TELP and
the WKB approximations have their drawbacks. The
former, although exact, is usually ill behaved and there-
fore, in general, cannot be used for interpreting the nonlo-
cal interaction. The TELP has singularities at the node of
the wave function (which is real in the RGM case) and in
addition rapidly varies as a function of all variables r, I,

and E. Consequently, it does not lend itself to an intuitive
and clear interpretation of the intercluster interaction.
This is even the case for nonlocalities which are consider-
ably simpler than those occurring in the RGM studies,
e.g. , the Frahn-Lemmer-type of nonlocality which has
been widely used in nuclear reactions.

On the other hand, it has been found that the ELP in
the WKB approximation reproduces the ROM phase
shifts rather accurately. ' Usually, changes of the poten-
tial strength within 5% suffice for a nearly exact repro-
duction even for very light systems like x+~He (where x
is any Os-shell nucleus). " The one exception is the light-
est system, i.e., the n+ He scattering in which case a
modification of about 30%%uo in the strength of the potential
was required for the s wave. "' In other cases at low en-
ergies the WKB approximation even breaks down and re-
sults in multivalued potentials. ' In such cases an exact
quantal determination of the ELP is required.

To circumvent the aforementioned difficulties, an exact
or quantal ELP can be constructed using the Wronskian
of any two independent solutions of the nonlocal interac-
tion. ' ' This quantal Wronskian ELP is generally
smooth, we11 behaved, and free of singularities. Further,
it has a close relationship with the ELP of Horiuchi de-
rived in the partial wave WKB approximation, as has
been demonstrated in Ref. 9 for Frahn-Lemmer-type non-
locality. In that case Horiuchi's ELP calculated in the
three-dimensional WKB approximation reduces to the
ELP of Percy and Buck. ' If the WKB approximation is
applied to the nonlocal interactions after the partial wave
expansion, the resulting ELP's have a stronger / depen-
dence and at higher energies closely approximate the
Wronskian ELP. The potentials derived in the partial
wave and three-dimensional WKB approximations closely
resemble each other in the outer regions, but differ inside
the classical turning point. However, their phase shifts do
not differ much. In general the partial wave ELP's are
more accurate.

The Wronskian ELP has been recently applied' to
n+o. scattering at 10 and 20 MeV using the semimicro-
scopic nonlocal n+a interactions of Lassaut and Vinh
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II. FORMALISM

The work of Tang and collaborators' indicates that
the single channel RGM calculation of n+a scattering re-
sults only in a moderately good fit to the data and has
been superseded by coupled channel RGM calculations.
Noncentral nucleon-nucleon forces have also been used. '

The wave function of the n+u system is assumed to be

4„=A[/X(R —r, )g(o,r)], (2 1)

where A is the antisymmetrization operator and P de-
scribes the spatial behavior of the a cluster

4

P =exp ——,'a g(r; —R ) (2.2)

The width parameter a is determined by the fit to the a-
particle root-mean-square (rms) radius while R is the po-
sition vector of the c.m. of the cx cluster. The function

Mau for comparison with the approximate ELP's of
Horiuchi in the partial wave WKB approximation, the
Percy-Buck, and the Peirls-Vinh Mau' approximations.
Such comparison was possible since the n+a interaction
of Lassaut and Vinh Mau can be written as a sum of
Frahn-Lemmer-type terms. The ELP of Horiuchi (three-
dimensional WKB approximation) although inadequate
even in this case, does not fail to the same extent as for
the RGM interaction which has a much more complicat-
ed nonlocal structure. For an n+a interaction of the
RGM type (or even more complicated ones), the quantal
method therefore appears to be the only suitable alterna-
tive at low energies.

In this paper we consider a one-channel RGM kernel
for n+a scattering employed by Thompson and Tang' to
determine the ELP's phase equivalent to the RGM poten-
tials in the Born approximation. In earlier work Thomp-
son et al. employed the TELP to interpret their resu1ts.
To get rid of the singularities a hard core with a radius
given by the outermost node of the wave function is em-
ployed, i.e., the region where the clusters overlap, was
thus avoided. Since, however, this is precisely the region
of greatest physical interest, we prefer to employ the
Wronskian ELP in this paper at energies where Horiuchi's
WKB potential fail, for purposes of physical interpreta-
tion. It also has the advantage of allowing the calculation
of the damping factor. Such an approach was also advo-
cated by Ali, Ahmad, and Ferdous' in their recent and
very comprehensive survey of the literature concerning
the n+a interaction. For the physical interpretation it is
particularly useful that the Wronskian ELP's tend to the
partial wave WKB equivalent local potentials of Horiuchi
at higher energies. This allows one to present a unified
physical picture over the whole energy range.

In Sec. II the formalism of the RGM n+cz interaction
is briefly summarized, the renormalization of the wave
function is discussed, and the method of constructing the
Wronskian ELP is presented. The results of the calcula-
tions are presented in Sec. III and their physical interpre-
tation is discussed. Our conclusions are summarized in
Sec. IV.

X(r } describes the relative motion of the n+a system and
is determined from the variational principle

(2.3)

where H is the Hamiltonian of the system and ET the to-
tal energy. The nucleon-nucleon interaction is given by

(2.4)

with

and

Vp ——72.98 MeV, &=0.46 fm

or equivalently

g2 V'+ VD(R) EX(R)+—f K(R,R')X(R')dR'=0,
2p

(2.6}

where E is the relative energy of the two clusters in the
c.m. system, i.e., E=ET Eand N—(R,R') represents
the norm kernel while VD(R) represents the direct poten-
tial. In operator notation we have

(H —EN)X =0 . (2.7)

Explicit expressions for K(R,R') in the case of n+a
scattering are given in Ref. 2. From this kernel, Thomp-
son et a$. ' constructed ELP's which in the Born approxi-
mation yield the same scattering amplitude as the RGM
calculations.

The partial wave counterpart of Eq. (2.6) is

d
2p dr

1(1+1) +E VD(r) -xi(r)—
2

(2.8)

A wave function equivalent ELP, the so-called TELP, can
then be constructed as follows:

" (E,r) = VD(r) ~ f K~(r, r')xi(r')dr',
xi(r)

(2.9)

to assist in the interpretation of the nonlocal RGM in-
teraction, and was employed by Thompson et al. for this
purpose. However, the TELP as mentioned, apart from
the singularities arising from the zeros of the (real) func-
tion x~(r), in general, shows a rapid and irregular depen-
dence on E, I, and r. Thompson et ah. used, instead, a
phase equivalent potential defined by

w+m +b+h =1,
m+m —b —h =0.63 .

For simplicity, a pure Serber force is taken as in Ref. 1,
i.e., w =m, b =h, and the Coulomb interaction has been
omitted.

From Eq. (2.3) one obtains the integral equation

H R,R' —EN R, R' 7 R' dR'=0 25
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VI (Er), r)ro
VI'(E, r) =

+ (g), r (rp (2.10)
(4

~

qi) = (X
~

N
i X), (2.1 1)

with N =1—N'" being the overlap kernel and N'" the
norm kernel. It is seen that the function

where rp is the position of the outermost singularity of
the TELP.

It is clear that with this choice the most interesting re-
gion where the clusters overlap can be excluded (inside the
repulsive core). The Born ELP's proved to be more useful
in this respect. A further difficulty with the TELP of Eq.
(2.9) arises from the fact that the wave functions of Eqs.
(2.6) and (2.9) do not have the correct probabilistic inter-
pretation, i.e., strictly speaking, the RGM TELP is not
off shell equivalent. In the single channel case one can
obtain

X =&I—N'"X (2.12)

has the proper probability density interpretation. A
elegant discussion on this matter was given by Schmid in
a review talk at the Karlsruhe conference. Before we
describe how this problem is tackled we briefly describe
how the E- and l-dependent Wronskian ELP is construct-
ed. By employing the Wronskian of two independent
solutions of the integrodifferential equation (2.8), which
are taken to be the regular ui(r) and irregular vi(r) solu-
tions, we construct '

Wi (u, U) 3 Wi(u, v)(r)= — + — + f KI(r, r')[ui'(r)ui(r') uI(r')U—I'(r)]dr' . (2.13)

While for the non-RGM kernels the construction of the
ELP is straightforward and without any serious numerical
difficulties, this is not the case for the RGM cases. The
local equivalent obtained with the unnormalized [accord-
ing to Eq. (2.13)] is wildly behaved and has a Wronskian
8' which can be even negative. Thus is constructing the
Wronskian ELP—as well as the trivial —the properly nor-
malized solutions must be used.

For this we write (we omit the l)

u =v Nu~

+ g [(I—~.)'"-1]
l e.) (O. I

(2.18)

Noting that for the Pauli forbidden states, (P~ i uz ) =0,
we get

u= ~+ y[(1—~ )'"—1]le &&a I&NI

u~(r) =(1 N'")'i u(r)—,

v~(r) =(1—N'")' U(r) .

Following Saito we define '

(2.14)
Thus finally

uN u g ~a
I du) ~

(2.19)

(2.20)

N'"0a = re'a . (2.15) with

Eigenvalues with g~=1 are the Pauli forbidden states
(FS's) while those with g (1 are the partly Pauli forbid-
den states (PFS's). We may now rewrite Eq. (2.14) as fol-
lows:

u~(r) =u+(v N —1)u

=u+ g[(1—g )'i —1]
i P~)(P i

u), (2.16)

u =Nu, (2.17)

which is free from 5-function (square root) singularities.
Then we get

and similarly for v&. This procedure is quite practical for
cases where u~ does not differ much from u. We found,
however, that the irregular solution v(r) has a completely
different behavior than v&(r); the use of (2.16) in this case
gave rise to numerical problems. Instead, the following
renormalization procedure has been adopted. We firstly
define the function u by

~.=[(1—~.)'"—I]V'I —~.(y.
~

u ) . (2.21)

ELP 2 l(l + 1) 1

2
2

+—3 W'(u, v)

4 W(u, v)

W"(u, v)

W(u, v)

W(u', v')

W(u, v)
(2.22)

The advantage of Eq. (2.20) over (2.16) is obvious. The
Pauli forbidden states which contribute to much of the
difference between u~ and u are included exactly by
means of Eq. (2.17), while using Eq. (2.20) one makes the
refinements stemming from the PFS. Further, while in
(2.16) we renormalize by modifying u (which might differ
considerably from u~, as is the case for the irregular solu-
tion), in Eq. (2.20) we start from u which always is a good
approximation to u&.

One further point should be made here. Equation (2.13)
is applicable when not only the wave functions ui(r) and
UI(r) are renormalized but also the kernel Ki(r, r'). To
overcome this difficulty we employ instead the relation
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The derivation of this relation is given in the Appendix.
The nonlocal wave function u&

" can then be recovered
by using the solution

VEVDP( )
m VELP( )

Ml" (r)
Ml(r) 2 Ml(r)

2
Ml"(r)

4 Ml(r)

(&)=fl(r)ul (r), (2.23) M, (r)—k 1—
m

1 M;(r)
+—

M
' (2.26)rMr&

where ul (r) is the regular wave function corresponding to
the effective local interaction Vl (r) and fl(r) the damp-
ing (or Percy) factor,

For the RCxM kernels we derive [we work as in the case of
Eq. (2.22)]

fl(r)=QW(ulv, vtv) ~ 1 . (2.24)

VEVDP( ) k 2 1

W(u, u)

V V+ k Y(r) = V (r)X(r)
M(r)

(2.25)

with the local part (in its partial wave form) given by

In other words, the V " can provide us not only with
on-shell information but also, by means of Eq. (2.23), the
wave function of the system. However, a wave function
equivalent velocity dependent potential (EVDP) satisfying
the velocity-dependent wave equation can be readily ob-
tained. Recall first the equivalent form of Eq. (2.6).

l(l+1) W(u', v') 1 W'(u, u)+r2 W(u, u) r W(u, v)

(2.27)

which is of the form used in nuclear optical model calcu-
lations.

In conclusion, we may construct on- and off-shell
equivalent interactions using the (renormalized) regular
and irregular solutions and their derivatives only. In or-
der to get these solutions, Eq. (8) is transformed first into
an integral equation of Voltera type for uI and v~, or
equivalently for the Jost solutions,

fl—(k, r) =fl ''(k, r) —f— dr'gl(k, r, r') VD(r')fl (k, r') —f— dr'gl(k, r, r') f dr "Kl(r', r")fl (k,r")— (2.28)

from which we get

&l(k~&) = . (Fl fl+ Fl+fl-
2ik

with

Vl(k r)=
2 (Fl+fl +Fl fl+)

2
f
Fl(k)

i

F,(k) =F+ 'sl'"'

(2.29)

(2.30)

(2.31)

obtained after renormalization, is shown in Fig. 1 for
E = 10 MeV and for I =O. It is seen that there is a broad
singularity in the contact region which rules out the use of
TELP without employing any arbitrary extrapolation
across the singularity. Further, the difference between the
normalized and unnormalized TELP is remarkable; while
in the interior region the normalized TELP is more at-

The Jost solutions fl ''(k, r), Gre—en's functions gl(k, r, r'),
and the Jost function Fl-(k) are given in Ref. 25 and will
not be repeated here.

r (fm)
2i 0
I LL 1

III. RESULTS

The Schmid-Wildermuth parametrization of the two-
body interaction, Eq. (2.4), has been used. In order to
avoid unessential numerical complications the Coulomb
interaction has been omitted while the width parameter a
was taken to be 0.514 fm, which gives the correct value
of 1.48 fm for the a-particle rms radius and a binding en-
ergy of -27.41 MeV, which is quite close to the experimen-
tal value. The norm kernel eigenvalues are 21 =( ——, )

with a=0, 2,4 for even partial waves and a=1,3,S, . . .
for odd partial values. In all calculations the first five
were used for renormalization, the rest being too insignifi-
cant.

A typical example for a trivial ELP obtained using the
unnormalized wave function [Eq. (2.9)], as well as the one

-zo
X

= ia MeV

I- o
-40

~ ~

FIG. 1. The trivial equivalent local potential for 1=0 and
E, =10 MeV before ( ———) and after ( ——~ ~ ——) renor-
malization.
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tractive and only about 6% deeper, in the important re-
gion of 3—4 fm the renormalized TELP is comparatively
shallower by more than 50%. For more complicated non-
local kernels, such as those of a+a or He+ He, one
must expect amplification of such phenomena. For
higher partial wave channels, where there are no forbid-
den states, the renormalized and unnormalized TELP's
are quite close to each other except in regions close to
singularities.

In Fig. 2 we present the results for Wronskian ELP for
1=0 and for c.m. energies 10, 20, and 50 MeV. As al-
ready mentioned, it was impossible to obtain an ELP be-
fore renormalization of the wave functions, the reason be-
ing the behavior of the irregular wave function in the inte-
rior region. We shall return to this point later. The
difference between the VD and the ELP is quite large em-
phasizing once more the importance of the antisymmetri-
zation effects. The energy dependence is important in the
outer region of the ELP and confirms the results obtained
previously by Horiuchi concerning the energy dependence
of the interaction and the question of deep and shallow
potentials. The characteristic dip of the potentials is
around the position of the node of the wave function
(singularity of the TELP). One of the main concerns in
constructing an ELP is to prohibit the relative wave func-
tion from occupying an FS which is equivalent to ortho-
gonalizing the wave function to the FS. This orthogonali-
zation must be reflected in a deep local potential sufficient
to support all the FS and in accordance with the Levinson
theorem, the latter demanding that the relation
51(0)—51( oo ) =(gz+gF)m, where the .re are the physical
bound states and qF are the FS's. It is noted that similar
dips in the interaction have been obtained in Ref. 16 using
the nonlocal n+a potential of Lassaut and Vinh Mau
calculated in an antisymmetrized folding model for dif-

r (fm)

ferent effective nucleon-nucleon interactions. However,
while the node of the wave function is around «=2 fm
the characteristic dip was in the region of «=1 fm, which
means that the dip is not related to the position of the
wave function node, but from the dynamics of the nonlo-
cality considered. It is interesting to observe the repulsion
which appears in the range 3.5—6 fm at all energies,
which, in turn, causes the effective mass M(r) to be
slightly greater than m in the same region.

In Fig. 3 the results obtained for the I =1 channel are
presented for the same energies, i.e., 10, 20, and 50 MeV.
The (renormalized) TELP at 20 MeV is also shown. We
notice that the energy dependence is rather weak in this
channel, but shows the same trends as in the I =0 case,
i.e., insignificant energy dependence in the interior region,
and that higher energies give shallower potentials. Note
that the exact ELP and the trivial ELP differ considerably
in the interior region ( (1.5 fm). The l dependence and
parity dependence are shown in Fig. 4 for E, =10 MeV
and for partial waves I =0, 1, and 2. The 1 dependence is
quite important, while the parity dependence is limited to
the outside region where the l =0 and 2 interactions ex-
hibit the same behavior, namely, the height of the repul-
sion and its spatial extension is the same.

The regular wave function results for I =0 and E=20
MeV are given in Fig. 5 together with the corresponding
Wronskian W'~ 0(r). The u~&(r) represents the nonlocal
wave function after being renormalized as described in
Sec. II. It is seen that the uI& and the unnormalized
wave function uI(r) do not differ much. Although the
u~

" (r) differs from the exact wave function for the sys-
tem, the u~&(r) can be recovered from u~" (r) using the
relation (2.23).

It is worth noting that the nodes of all wave functions
are preserved. Similar results are obtained at all energies.
For l =1 the difference between the various wave func-
tions is much less. This is due to the fact that in this
channel only PFS's are present. For the I =0 case the po-

3
~ rr t

1

s r (fm}

-20

-40

-80—

\ )

I

- !s
tt

ti i&

li- /

= 0 lO

Z -zo

-40

FIG. 2. The Wronskian equivalent loml potential for 1=0
and for energies E= 10 MeV ( ———), E=20 MeV
( —~ —~ —~ ), and E=50 MeV ( ——~ ~ ——).

FIG. 3. Same as for FIG. 2 but for l =1. The trivial EI.P
( ~ ~ ~ ~ ) for 20 MeV is also shown.
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0
s r (fm)

-20 0.5-5j
I

I

= lO MeV
O

-40
-0.5—

-80-

j

I

I

l j
j

I

c.m.

FIG. 6. Same as for Fig. 5 but for the irregular solution. The
interior scale in the upper half corresponds to part 2 of the U~(r)

( ———)

FIG. 4. The Wronskian equivalent local potential for 1=0
( ——- ~ ——), 1=1 ( —~ —- —-), and 1=2 ( ———). The 1depen-
dence and parity dependence (r ) 3.6) should be noted.

sition of node exhibits very weak energy dependence, the
difference between the 1 and 50 MeV cases being -0.2
fm. This is not the case with the l =1 channel, where for
the I MeV case no node appears in the region less than 10
fm, while for higher energies it was found that one or two
nodes appear having a strong energy dependence.

In Fig. 6 the behavior of the irregular solution for l =0
and E =20 MeV is shown. The unnormalized wave func-
tion differs completely in the interior region where even

the node is not present and with large values for its mag-
nitude. However, after normalization the irregular solu-
tion has normal behavior. As a consequence of such large
deviations no Wronskian could be constructed and hence
no ELP from Eq. (2.13) could be obtained. Furthermore,
the iterative procedure in solving the RGM integrodif-
ferential equation fails due to this behavior of the irregu-
lar solution.

Finally we mention that the phase shifts obtained by
solving Eq. (2.8) are practically the same as the one given
in Ref. 2, while the phase shifts obtained using V
differ from the exact values by less than 0.5%%uo the small
difference being attributed to purely numerical inaccuracy
as well as to the fact that only five terms have been used
in the renormalization series, Eq. (2.20).

IV. CONCLUSION

I.O

0.5—

- I. O-

FIG. 5. Regular wave function and Wronskian results for
1=0 and E=20 MeV: the normalized nonlocal u~& ( ),
the unnormalized ul (r ) ( ———), and the ELP UI ( r )

( ——"—"—) wave functions. The Wronskian results are plotted
in the lower region for comparison.

Our main conclusion is that the use of the fully quantal
Wronskian is not only possible for the RGM nonlocal in-
teractions but also unavoidable when the WKB approxi-
mation of Horiuchi either fails (at low energies, small size
of nuclei, comparable ranges of nonlocality and nucleus,
etc.) or is multivalued.

The other alternative, namely the construction of the
TELP (although on- and off-shell equivalent to the origi-
nal nonlocal interaction), is only of academic interest be-
cause of the singularities occurring in the overlap region
and its irregular behavior. The latter point is clearly
demonstrated in Fig. 1, where information about the
physically interesting region cannot be obtained from the
TELP. An arbitrary extrapolation or the introduction of
hard cores by Thompson et al. to construct an effective
interaction is not a solution as both are not based on an
exact dynamical calculation and, in addition, the off-shell
equivalence is destroyed and, unlike the case of the Wron-
skian ELP, cannot be restored by employing the damping
factor.

The constructed ELP's are all smooth at all energies
and partial waves and easily reveal the intercluster charac-
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teristics and the dependence on l, E, and r. The energy
dependence of the interaction is clearly demonstrated in
Figs. 2 and 3, while the I and parity dependences are
shown in Fig. 4. The r dependence for l =0 and I =1 is
also interesting. For l =0 there is a characteristic dip in
the interaction in the region 1.6—2.0 fm. This attraction
seems to be necessary to produce the Pauli forbidden
state. In / =1 case, where there is no forbidden state, a
repulsive core appears at very short distances —a
phenomenon which was previously observed in the inves-
tigation of the Frahn-Lemmer-type nonlocality for the
n + Ca system and for 1)0 (Ref. 9) as well as in the
study of the semimicroscopic nonlocal n+e interactions
of Lassaut and Vinh Mau. '

We must emphasize here the importance of the renor-
malization procedure; for l =0 the unnormalized Wron-
skian varies wildly and no effective local interaction can
be constructed. The cause of such behavior is found to be
the irregular wave function which displays completely dif-
ferent characteristics in the interior region as compared to
the characteristics of the renormalized one. For the same
reason the Voltera-type equation was employed in order to
obtain the two independent solutions ut(r) and vi(r).

The fact that the constructed ELP is not off-shell
equivalent is not a major difficulty since the ELP is main-
ly intended for interpretation purposes. When, however,
the off-shell behavior is needed, a wave function
equivalent velocity dependent interaction can be con-
structed using Eq. (2.27).
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and thus

oo
I=— K(r, r')[u'(r)u(r') —u(r')u'(r)]dr'

2
I +It

VELP( ) (A2)

On the other hand, using Eq. (2.8) we get

W(u', v') 2 l(l +1)k—
W(u, v) r2 (A3)

It is easy to see that Eqs. (A2) and (A3) are identical. For
this we set

u (r) =f(r)ui(r),
u (r) =f (r)uL(r),

(A4)

Thus, using the relations

W(uL, vL)=1, W'(uL, vL)=0,
and

(A5)

where ul and vL are the regular and irregular solutions
for the interaction V~ (r). Using Eq. (A4) the Wronski-
an W(u ', v') can easily be evaluated:

W(u', u')=ff"(ut uL —uLuL)+2f' (uLvL —vLut )

+ff'(ut. uL —ui'uL )+f (uLut —uLuL)
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l(l+1) ELPuL'vt —vL uL ——k —V
r2

we get
2

(A6)

APPENDIX

We may use the relations

W=f, =2—,8'
8

W(u', u')
2 l(l+1)k'—

W(u, u) r~

or using (Al) we finally get

f"
2

f'
f f + yELP

(A7)

and
2W" f'

2
f"

W f f

(A 1)=2

to rewrite the Wronskian terms of Eq. (2.13) as follows:

1 8"' 3 W'

2 W' 4 W f

EL
( ) k l(l+1)

r2

3 W'(u, v)+—
4 W(u, u)

1 W"(u, u)

2 W'(u, u)
2

W(u ', u')

W(u, u)
(A8)

In this way the nonlocal kernel is elim nated from the cal-
culation in constructing the quantal equivalent local po-
tential.
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