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With the assumption that the Brueckner g matrix provides the suitable renormalization of the
nucleon-nucleon interaction due to medium effects in the collision term of the nuclear Landau-
Vlassov equation, we use the results of our Brueckner calculation for nuclear matter at finite tem-
perature to evaluate the renormalization factor in a local and thermal approximation.

In the last months, there has been an intensive search for a suitable (and still tractable) transport equation for heavy
ion collisions in the so-called intermediate energy regime, !~ following a similar effort in the high-energy domain.*® Ap-
parently, a rather large consensus emerges on the fact that such an equation should have a Landau-Vlassov (LV) struc-

ture:
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[Equation (1), however, presents some weak points, the
most important of which is the lack of memory effects in
the collision terms. This has the bad consequence of un-
physically small damping in some particular situations.’]
In this equation, f(r,p,t) can be considered as the proba-
bility of finding a particle with momentum p at position r
(or at least as the usual quantal Wigner function) normal-
ized as
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where A is the mass number of the system, U is the aver-
age single particle field, w(pp,— pips) is the transition
probability for a collision between two particles of momen-
ta p and p; to give a final state with momenta p3 and ps,
and f; stands symbolically for f(r,p;,). Finally, e(p) is
the single-particle energy.

The situation is, however, confused concerning what is
the exact meaning of the “input” quantities of Eq. (1),
and, especially of the transition matrix @. The theoretical
basis for the LV equation has been studied by several au-
thors.#7!! In general, the LV equation is obtained in the
weak coupling limit, for fermions interacting through po-
tentials v. In that case

o(pp2— p3ps) = |<pp2|v | psps) | 2 . (5)
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In nuclear physics, the interaction is too strong for this
limit to be valid. Rather, it is considered that the free
transition matrix

o(ppr— p3ps) =1{pp2| T | pspa) | 2 (6)

would be a more appropriate choice. The state vectors in
Eq. (6) are referring to free plane waves. But, medium
corrections which are well studied in equilibrium situations
(for a review, see Ref. 12, e.g.) are also expected in not too
far from equilibrium situations, like in medium-energy
heavy ion collisions. Recently, Botermans and Malfliet '3
have shown that the usual Brueckner resummation of
ladder diagrams can be made in very much the same way
as in equilibrium situations. Therefore, the most reason-
able choice seems to be

o(ppr— pips) ={pp2lg|psps’ | %, @)

where g is the usual Brueckner reaction matrix, describing
the scattering of two nucleons in a nuclear medium. In
principle, g should be recalculated for the instantaneous
occupation in phase space, described by f (r,p,z). Howev-
er, this is a tremendous task which can be avoided if the
momentum distribution can be approximated by a Fermi-
Dirac distribution at temperature 7', which seems reason-
able for not too far from equilibrium situations. Indeed,
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for these conditions, the g matrix has been calculated for several densities and temperatures, typical of the medium ener-

gy domain.

Here, we use our recent calculation'4 to present the factors by which the collision term with the free transition matrix
[Eq. (6)] should be multiplied in order to incorporate medium corrections. In the conditions described above, the loss

term reads
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where p is the local baryon density. It is interesting to note that Eq. (8) can be rewritten as'?
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where W is the imaginary part of the optical-model potential (evaluated in second order in g) for a particle of momentum
p traveling in a medium of density p at temperature 7. We will denote by a the ratio

o= 2.pT) (10)
W (p,p,T)
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is the value the imaginary part would take if the interac-
tion were not influenced by the medium. It is clear that
medium effects are operating in two places. (i) The
phase-space is distorted because the particles are feeling a
mean field, which is embodied by the energy-conserving 6
function in Eq. (8). (ii) The interaction itself is modified,
which is responsible for the replacement of the 7" matrix
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FIG. 1. Renormalization factor a(p,p,T) correcting for medi-
um effects [Eq. (10)], for several densities and for two tempera-
tures: 7 =0 (full curves) and T =10 MeV (dashed curves). The
quantity a is given as a function of the momentum p. The quan-
tity pr is the usual Fermi momentum for the considered density.

|
by the g matrix. This modification comes in turn from two
effects, as is well known. (1) The Pauli principle forbids
having intermediate states that are already occupied. (2)
The particles are feeling the mean field in the intermediate
states.

It is clear from Eq. (10) that a is the required multipli-
cative factor that accounts for medium corrections in the
loss term (in the conditions mentioned above) compared
to the commonly used Eq. (11). We have extracted the
numerical values of W (p,p,T) from our Breuckner calcu-
lation.'* The quantity W has been calculated by Eq. (11)
with the use of Fermi-Dirac distributions. In order to sim-
plify the numerical task, we have used the so-called angle-
averaged Pauli operator, which amounts to replacing
(1 —f3)(1 —f4) by its average over the angles between p;
and ps. This approximation is quite sufficient for our pur-
pose here and will be discussed extensively in a separate
publication. In that case, the integration over one of the
variables yields the integrated nucleon-nucleon cross sec-
tion, as it is well known.!> We have used the phenomeno-
logical values of Ref. 16.

TABLE 1. Coefficients entering in the representation of the
factor a [see Eq. (16)], in fm/ units, for two temperatures.

Qnj Jj=1 j=2 j=3 j=4

T=0

n=1] —15.560 19.655 99.017 —140.75

n=2 —14.896 417.00 —1437.10 1268.8

n=3 253.26 —1754.9 3919.8 —2795.9
T=10

n=1 13.966 —69.733 103.54 —41.842

n=2 —21.829 104.86 —156.78 54.296

n=3 9.8803 —50.211 78.582 —26.551
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Our results are contained in Fig. 1. There is a consider-
able correction at small density, especially for cold matter.
Surprisingly, the renormalization at p=0.090 fm ~3 and
T =0 is small, but this is accidental, as we shall see below.
For ordinary density and for p=0.277 fm ~3, the renor-
malization factor a is essentially below unity. As one can
see, the temperature dependence is less and less important

(essentially at low density) or reduce (at high density) the
effective scattering cross section, and therefore the loss
term, contrary to the Pauli blocking factor
(1 —£3)(1 — f4) which always reduces the scattering prob-
ability in the conditions studied here, as can be deduced
from the results of Ref. 17. To make the comparison with
the latter work clearer, we denote by a© the following ra-

as the density increases. At p=0.277 fm ~3, it is almost tio: .
negligible, except, of course, that at 70 a nucleon with © — W(E,B,T) (12)
momentum less than the Fermi momentum kr can induce a WNP(p.p,T)
real transitions. The medium correction may enhance  with
I
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As we said, this ratio is always smaller than unity, and in Ref. 17, the quantity a®M =aa® is actually calculated.
In order to present our results in a convenient form, we have fitted the function a by the following algebraic form:
PoT) =1+ 3 3 ay (1)L (14)
alp,p,T)=1+ ani (T , . 14
== (plpe)"

where the coefficients a,; are given in Table I for T =0 and 7 =10 MeV. The fit is of very good quality, except close to
p =pr. But in that particular case, the loss term is very small anyway. In general, the loss term is small for k = kr and

decreases with decreasing density.

The medium effect on the single-particle energies can be incorporated readily in the collision term. The “free scatter-
ing” loss term would then be given by Eq. (9) with the following expression of the optical-model potential:

dp, dp; d3p4f
2n)3 @)} @n)37?

W (p,p,T) -f

instead of Eq. (11). In the simplest case, the single-
particle energies can be taken in the constant effective
mass approximation

2
e(p)=—L—+u, , (16)
2m*

where Uy is a constant. The quantity m* is extracted from
Ref. 14 for the same conditions of density and tempera-
ture. Its value is given in Table II.

The ratio of Wto W,

o= p.p.T)
W(p,p,T)

then really represents the importance of the medium re-
normalization of the scattering of two nucleons, weighted
by the appropriate kinematical conditions. It is given in
Fig. 2 for illustration. This renormalization coefficient
may also lie above or below unity.

Note that, due to the approximation (16) with a con-
stant m*, the ratio a’ has not the proper asymptotic limit
for large k. However, it is known that in a realistic calcu-
lation, m* comes close to unity for larger values of k than
those considered in Fig. 2.

a7)

TABLE II. m™*/m values.

p(fm ~3)
T (MeV) 0.023 0.09 0.17 0.28
0 0.853 0.725 0.733 0.671
10 0.787 0.770 0.778 0.752

(U —=f3)U —1£4) |<pp2| T | paps) | 283 (p)éle (p) +e(p2) —e(p3) —e(pa)l ,

15)

-

In the conditions considered above, i.e., in the thermal
equilibrium limit, the gain term is equal to the loss term.
Since this is independent of the transition probability, the
same renormalization has to be applied to the gain term.
This renormalization is presumably not very much dif-
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Same as Fig. 1 for the factor a’ [see text and Eq.
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ferent if one departs from equilibrium. Let us remind our-
selves that in the intermediate energy domain, the system
is never far from equilibrium. This is confirmed by the
fact that the matter, if totally thermalized would reach
temperatures of 10 MeV or less.

In conclusion, we have calculated, using the local densi-
ty approximation, the medium renormalization of the col-
lision term in a LV-type transport equation. In the density
and temperature domain studied here, which is typical of
the medium-energy heavy ion collision, this renormaliza-
tion is not negligible and may be an important influence on
the equilibration process. Let us remind ourselves that the
average equilibration time, ~10 fm/c, is smaller but not

much smaller than the collision time.!® Finally, we stress
that the renormalization factor can be larger or smaller
than unity, depending upon the kinematical conditions.
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