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Pairing effects at finite temperature: Fermionic and bosonic contributions
to the specific heat of a nucleus
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The behavior of the specific heat, for a system with a finite number of nucleons interacting
through a pairing force, is studied. The formalism is based on the finite temperature Bardeen-
Cooper-Schrieffer plus random phase approximation treatment of the interaction. The fermionic
and bosonic excitations are described, as a function of the temperature, both in the superfluid and
normal phases.

I. INTRODUCTION

The study of nuclear properties at nonzero ternpera-
tures has been the subject of recent publications. ' The
interest in the problem has been motivated in part by the
available experimental information about compound nu-
cleus reactions at high energy. From the theoretical side
different approaches have been reported in connection
with temperature dependent mean field ' and collective '

descriptions in schematic' and realistic models.
The microscopic description of pairing effects in finite

systems has the obvious advantage of a unified picture
where fermionic and bosonic degrees of freedom result
from the treatment of the same interaction within the
Bardeen-Cooper-Schrieffer (BCS) and random phase ap-
proximation (RPA) methods, respectively.

The meaning of these effective degrees of freedom,
namely, the quasiparticle (fermionic) and correlated RPA
(bosonic) excitations, can be understood in terms of the
contributions arising from the two-body interaction,
which in the present case will be represented by a separ-
able pairing force. The structure of these degrees of free-
dom, and their evolution at finite temperature, have been
discussed in detail in a series of papers which deal with a
functional integral representation of the nuclear many-
body grand partition function. From the results of these
references and from previously reported treatments of
pairing effects at finite temperatures, ' ' we shall assume
that at relatively low temperatures the most important
change with respect to the zero temperature case is given
by the collapse of the pairing gap. The consequences of
this collapse upon the quasiparticle spectrum are notice-
able, and it could be possible to establish some analogies
between this effect and the well-known phase transitions
in extended systems. ' ' Therefore, we have to treat the
fermionic and bosonic sectors of the pairing Hamiltonian
in two temperature domains, namely, at low temperature,
before the collapse of the pairing gap, where the fermionic
degrees of freedom are described by the BCS approxima-
tion, and the bosonic ones, pairing phonons, are described
by the quasiparticle RPA; and at high temperatures,
where the fermions obey the Fermi-Dirac statistics and
the pairing phonons, of the addition and removal type,
obey the Planck statistics. In the first case both the quasi-

particle and phonon energies are temperature dependent,
while in the second case, only the phonon energies are
temperature dependent. This is a very important feature
which, as we are going to show, influences the low and
high temperature behavior of the specific heat. A similar
description was advanced years ago by Matsubara, ' and
in his work the pairing Hamiltonian is treated perturba-
tively, also with the inclusion of a coupling term between
fermions and bosons. In our case, since we have adopted
the BCS plus RPA treatment, we have neglected this cou-
pling, which is, for finite nucleon numbers, smaller than
the independent quasiparticle and phonon terms.

The paper is organized in the following way: in Sec. II
we present the theoretical elements of our description; the
results are shown in Sec. III; and finally some conclusions
are drawn in Sec. IV. For the sake of convenience the de-
tails of the formalism are presented in the Appendix.

II. FORMALISM

To start with, let us write the monopole pairing Hamil-
tonian

0= g ejaj aj —G g aj a —. aktakt
jm j,m &0

I@,1 &0

where e~ are the single particle energies; a~ (ai ) are the
creation (annihilation) operators for fermions in the single
particle orbits denoted by the index j; G is the strength of
the monopole pairing force; and the states denoted by jm
are time reversed single particle states. The Hamiltonian
(I) can be written in the quasiparticle basis by following
the standard BCS approach at finite temperature, ' and
the result is (the details are given in the Appendix)

H =Hp +H & ] +Hpp +H22+Hgp +H3] +Hqp qp e (2)

The behavior of the finite temperature BCS solutions has
been discussed in detail in Refs. 1 and 9, and the main
difference between this approach and the zero tempera-
ture one is due to the thermal collapse of the pairing gap
parameter 6, which occurs at temperatures of the order of
T, =0.5b, (T =0).' Therefore we have to consider two
different phases, namely, the superAuid phase, for T & T„
and the normal one, for T & T, . The normal phase would

35 812 1987 The American Physical Society



35 PAIRING EFFECTS AT FINITE TEMPERATURE: 813

correspond, for the single particle degrees of freedom, to
an open shell system partially filled with fermions which
obey the Fermi-Dirac statistics. The two quasiparticle ex-
citations, treated in the finite temperature RPA (Refs. 3,
7, and 9) are the solutions of the Hamiltonian

Ho(RPA) =Ho —g YJ„QJ(1 2f—1 ) W„,

and the phonon creation (annihilation) operators I „(I„)
are given by

H (RPA) =H (qp)+H»+H4o,
which can be written as the harmonic one

H(RPA)=H (RPA)+ g W„I „I„,
where

(3)

(4)

r'„= g (X,„I,t Y,„S—, ),
J

The corresponding definitions are given in the Appendix.
The energies W„are solutions of the determinant

—1+G g 2QJK)~EJ. (1 2fj )I—dj
J

GW„g QJKJ(1 2fj )Idk-
J

GW„Q QJ.KJ.(1 2f& )Idj-
J

—1+G+2QIEJ(1 2fJ )ldj—.
J

(7)

where K~ = ( UJ —VJ ) and dl =4EJ W'„. —
For values of T & T, we have to describe explicitly the addition and removal modes' of an open shell system, where

the phonon energies are given by the solutions of the following equations:

g Q~ (1 2n~ ) /—(2' —W, „)—g Qk(1 —2nk ) /(2@k + W, „)= 1/G,
j&F k&F

g QJ(1 2nj —)/(2e~+ W„„)—g Qk(1 —2nk)/(2ek —W'„„)= 1/6,
j&F k&F

where ej=eJ —A, for j & F and ek ——A, —ek for k (F. With
the index F we have denoted the position of the Fermi
level A, , and W, „(W„„) are the energies of the addition
(removal) excitations. The factors nj are the fermionic
occupation numbers,

nj ——[1+exp(ej —A, )/T]

respectively. The operators B~ (BI) create (annihilate) a
pair of fermions. The amplitudes a„and r„are defined in
the Appendix. For T & T„and in the basis of addition
and removal modes, the RPA Hamiltonian can be written

H(RPA) =Ho(RPA)+ g W „I„(a)l „(a)

and the phonon addition (removal) creation operators are
given by

I,„= g a„(j )Bj + g a„(k)Bk,
j&F k&F

(9)
r, „=g r„(j)B+ g r„(k)B„,

j&F k&F where

+ g W„r' (r)r (r), (10)

Ho(RPA)=Ho(s. p. ) — g Q, (1—2n, )~„~
~
r~(j)

~

'+ g Qk(1 —2nk)W«
~
a„(k)

~

m, j &F n, k&F

is the RPA contribution to the ground state energy, 'which in the superfluid case corresponds to the quantity Ho(RPA)
given by Eq. (5). Both in the normal and superfluid cases the terms Ho(s. p. ) and Ho are the contributions originating in
the fermionic sector of the Hamiltonian.

With the above described formalism we can calculate the specific heat. We obtain the following results:
(a) Fermionic contributions to the specific heat at T & T, :

C= +2QJ(1 fj )fJEJ /T +(dkldT) N+—g QJ I(e~ —A)[2(1 fj )fj/T+(1 2fj )IEJ]—1—I—
J J

+b, (dhldT) (2/G) —g Q~[2(l fj)fj./T+(1 2fj)—/EJ]—
J

(b) Fermionic contributions to the specific heat at T & T, :

(12)
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C= g 2QJez nz(1 —nj. ) — g 2QJnz(1 n—j)ej
J J

g 20J.nj(1 —nj. ) T2.

+phonons Ho( ) + g Wn phonons (14)

and the contribution to the specific heat is given by the
value of the derivative

C =dEphQQQng/dT .

(d) Bosonic contributions at T & T, : again in this case
the addition and removal phonons obey the Planck statis-
tics, given by the occupation numbers nph, „,„„where the
energies W„are the solutions of Eq. (8). In consequence
we can calculate the contribution to the specific heat from
the energy

Eph:Ho(RPA) + g W„nph ( W„)

+ g Wa n
phonons ( Wa )

We have omitted the detailed formulae of the bosonic
contributions because of their lengthy expressions in terms
of the formal solutions of the RPA equations.

The other terms of the Hamiltonian, H3& and Hqpqp,
can be treated perturbatively. The first term, H»,
represents the coupling between quasiparticles (fermions)
and phonons (bosons), while the second one, Hqp „p, is a
residual quasiparticle-quasiparticle interaction. '

Let us summarize the results of this section: starting
from the Hamiltonian, Eq. (1), we have introduced fer-
mionic and bosonic degrees of freedom by performing the
temperature dependent BCS and RPA transformations;
the fermionic and bosonic sectors of the transformed
Hamiltonian contribute to the total excitation energy and
with them we have evaluated the temperature dependence
of the specific heat; both fermionic and bosonic contribu-
tions have been obtained for values of T above and below
the critical value T, .

(c) Bosonic contributions at T & T, : in this case the
phonons obey the statistical distribution given by the oc-
cupation numbers

n h,„,„,——[ exp( W„/T ) —I ]
and in consequence the mean value of the energy can be
written as

tions of the finite temperature BCS equations are shown
in Fig. 1, where the temperature dependent gap parameter
is shown as a function of the nuclear temperature T.
From the results shown in Fig. 1 we can extract the value
T, =0.85 MeV for the critical temperature. The contri-
bution to the excitation energy due to quasiparticle excita-
tions is shown in Fig. 2, together with the bosonic contri-
butions. The dominant contribution to the total excitation
energy corresponds to fermionic degrees of freedom,
which for T & T, depends almost linearly on T. The pho-
non contribution to the total excitation energy is also a
linear function of T for T & T, . The behavior of the
RPA solutions at both sides of the critical point T = T, is
shown in Fig. 3. In this figure, the temperature depen-
dence of the RPA energies is shown, and, as expected, the
more pronounced change as a function of T is exhibited
by the superfluid phase, which displays the collapse of the
first RPA root, and for the low-energy excitations, a trend
similar to that of the gap is observed. For T & T, the en-
ergy splitting of the roots between addition and removal
phonons is observed, with the decrease of the excitation
energies corresponding to removal phonons and the in-
crease of the excitation energies to addition phonons. The
fermionic and bosonic excitations included in this way are
the building blocks for the estimate of the total specific
heat of the system, which is shown in Fig. 4.

The temperature dependence of the total specific heat,
as shown in Fig. 4, suggests a strong analogy with the re-
sults of the treatment of pairing correlations in extended
systems, particularly with the results of the Landau' and
Feyman' theories of A transitions.

In the present case, however, some differences appear as
a consequence of the finite size of the single particle space
and due to the presence of a finite number of particles.
Although the transition between the superfluid ( T & T, )

III. RESULTS AND DISCUSSION

In this section we shall discuss the results of our calcu-
lations for the case of neutrons in the nucleus " Sn. We
have considered the neutron closed shell N =50 as the in-
ert core and the particles which are interacting through
the pairing force are 15 neutrons in the shell 50 &N & 82.
The single particle levels are taken from Ref. 18 and the
pairing coupling constant G is fixed at the value G =0.16
MeV. We have obtained for the gap parameter at zero
temperature the value b, (T =0)=1.56 MeV. The solu-

0.0
0.0 0.5, , 'I.O

T MeV

FICr. 1. Pairing gap 5 as a function of the temperature T.
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0.0 0.5, , 1.0 1.5

FIG. 2. Excitation energy E* for the fermionic (F) and bo-
sonic (RPA) degrees of freedom as a function of T. The total
value is indicated (Total). The dashed line denotes the value of
Tc'

and the normal ( T & T, ) phases is dominated by the col-
lapse of the pairing gap, at the fermionic level, the boson-
ic contributions, especially due to the appearance of a van-
ishing collective energy at the critical temperature, are
also important. In fact, the total specific heat receives an
appreciable contribution from the bosons near the critical

a

0.0 0.$, 1.0
T M(.V

1.5

FIG. 4. Specific heat C as a function of the temperature T.
The bosonic (RPA) and fermionic (F) contributions are denoted
by open and filled circles, respectively, at both sides of the criti-
cal temperature T„which is denoted by the dashed line. The
solid lines at each side of T, correspond to the total value (To-
tal) of C.

temperature. The value of the derivative of the specific
heat is of the order of 40 MeV ', while for infinite sys-

—1 13tems, the same derivative is of the order of 60 MeV
a value which is obtained when the corresponding formu-
lae are written in comparable units, again a remarkable
analogy to the above-mentioned theories of A transitions.
This is a particularly interesting result because we are not
dealing here with real bosons; instead, the bosonic degrees
of freedom result from the linearization of two quasiparti-
cle excitations within the RPA method. Finally, it should
be noted that the specific heat displays a peak value as a
function of T, a feature which has been associated with
the fact that we are dealing with nucleons which are
bound. '

IV. CONCLUSIONS

0.0 0.5 ~ 1.0
T MeV

1.5

FIG. 3. Temperature dependent RPA solutions. The dashed
line indicates the value of T„and in the normal phase ( T & T, )

the solid lines correspond to addition modes and the dotted lines
correspond to removal modes.

In order to summarize the results of the preceding sec-
tion we can conclude as follows:

(l) The fermionic excitations display a transition from
the superfluid to the normal phase which occurs at the
critical temperature T, . The signature of this phase tran-
sition is given by the increase of the specific heat near the
critical temperature. The bosonic, temperature dependent
spectrum shows the effect of the collapse of pairing corre-
lations and also contributes to the specific heat near the
critical temperature.

(2) At T & T, two quasiparticle excitations split up into
addition and removal modes built on top of partially fiHed
single particle states.



816 F. ALASIA, O. CIVITARESE, AND M. REBOIRO 35

(3) The features of the fermionic and bosonic contribu-
tions to the specific heat near the critical point T =T, are
similar to the same contributions in extended systems.
We hope that these results can be of some use in connec-
tion with the problem of the temperature dependence of
nuclear level densities, ' particularly in view of the rela-
tionship between the specific heat and the level density
parameter.

nihilation) operators and the thermal averages fz a.re de-
fined by the expectation value

(A3)

The structure of the gap parameter 6, the BCS occupa-
tion numbers UJ and Vj, and the quasiparticle energies EJ
are determined by the variational treatment of the Hamil-
tonian

APPENDIX

A. Temperature dependent BCS equations

The finite temperature BCS treatment of the monopole
pairing Hamiltonian gives the following results

H (qp) =H „+H20 ——g Ejaj~a,m,
jm

with the condition H20 ——0; their values are given by

Ej=[(ej—k) +b, ]'

Uj = —,
' [1+(ej A, )IEj—],

(A4)

Ho ——g (ej —k)2flj[Uj f1+ Vj (1 fj)] —b, IG, —
J

H~~ ——g [(ej—A, )(Uj2 Vj )+2—Uj Vj].Nj
J

Hp() ——g [(ej—A, )2Uj Vj+( Uj. —Vj )6](Pj +P, ),

H» —g [ (G/2)(U, 'U, '—+ V,'V,')(P, P, +P, P, )],

H4O ——g [(G/2)(Uj V~+ U; Vj2)(P; Pj+PjP;)],

(A 1)

VJ
——1 —UJ,

b = 6 g Qj Uj Vj(1 2fj ), —
J

with Qj ——j+—,, and

fj=[1+exp(Ej/T)]

(A5)

(A6)

where the temperature T is given in units of energy.
The parameter A. is the Lagrange multiplier associated

with the conservation of the average number of particles,
which at finite T can be written as

H3i ——g [GU; V;( Uj —
V& )(N;Pj+.Pj N; )],

N= g 20j[Uj2fj+(1 fj)Vj2] . —
J

(A7)

H,„„=g( GU, U, V, V NN—, ),

where

B. Finite temperature RPA equations

The forward and backward going amplitudes of the
correlated two quasiparticle excitations are defined by

A
Nj ——gaj aj

m

Pj =(Pj )

The operators aj

, P, = $a, a,—.

m &0
(A2)

(aj ) are quasiparticle creation (an-

Xj„=A„[a„(Uj —Vj ) b„]l(2Ej —. 8—'„),
Y~„=A„[a„(Uj —Vj ) +b„]l(2Ej + W„),

(A8)

respectively. The normalization constant A„ is given by

[a„(Uj —Vj2)+ b„]
(2Ej+ W„)

[a„(Uj —
Vj2) b„]-

A„= g Qj(1 2fj)—
(2Ej —W„)

—1/2

(A9)

where

a„=GW'„g

b„=—1+6g

(Uj —Vj. )Qj(1 2f&)—.

4EJ —8'„

(Uj —Vj2) 2EjQj(1 2fj)—
4EJ —8 „

(A 10)

a„(j)=A„(a)l(2ej —8', „),
a„(k)= —A„(a)/(2ek+ W, „),
r„(j ) = A„(r) l(2e&+ W„„—),
r„(k)=A„(r)l(2el, —W, „),

(A 1 1)

For temperatures higher than T, the amplitudes of the
addition and removal pairing modes are given by

with the normalization factors for addition and removal
modes
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A„(a ) = g Ql( I —2n&. ) /(2e/ —W, „)
j&F

+ g Qk(1 2—n k)/(2E k+ 8, „)
k&F

A„(r)= —g AJ(1 —2n~. )/(2@~+ W„„)
j&F

—g Ak(1 2—nk)/(2et, —W„„)
k&F

—1/2

(A12)

respectively. Equations (Al 1) and (A12) correspond to
the finite temperature version of the formalism which has
been presented in Ref. 16.
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