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Dyson boson mapping of a system of 2n fermions distributed among k single-particle states uses

a space generated by two-index ideal bosons. We define a unitary group U(k) to classify this ideal-

boson space. The physical subspace is shown to correspond to the antisymmetric irreducible repre-
sentation [1 "]. This classification enables one to introduce a "Majorana" operator S which is a
linear combination of one- and two-body Casimir operators of U(k). A zero eigenvalue of S charac-
terizes the physical subspace while positive eigenvalues identify all other irreducible representations
that occur. The Hermitian boson image of the Hamiltonian does not connect physical and spurious
states because it is a function of the generators of U(k). All the nonphysical eigenvalues and eigen-

states of a physical boson Hamiltonian (Dyson boson image of a physical fermion Hamiltonian)
which could be Hermitian or non-Hermitian, can be removed without affecting the physical eigen-

values and eigenvectors, by adding a suitable multiple of S to the Hamiltonian.

B =span[ ~0),b 13 ~0),b &b & ~0), . . . ] . (2)

To classify the basis states in B, let us find appropriate
groups for which B forms a representation space. Let

G&
——span[b ttb (3)

then the generators of G& form a unitary algebra in
k (k + 1)/2 dimensions. Thus, G& ——U[ k (k + 1)/2].
Since G& does not connect the boson spaces with different
boson numbers, each boson space with a given number n

The Dyson boson mapping method has been introduced
to study low lying collective states. ' Recently, it has
been used to study the microscopic support for the in-
teracting boson (IBM) model. In order to define such a
boson mapping, an ideal boson space is introduced. The
physical boson states, i.e., those that are in one-to-one
correspondence with the fermion states, span a subspace
of the ideal boson space. Subsequently, working in the en-
tire boson space, instead of the physical subspace, intro-
duces the problem of identifying the nonphysical (spuri-
ous) states. The spurious states cannot easily be identified
and removed except in certain special cases.

Geyer et al. have shown that even in the general case,
diagonalization of a physical boson operator in the full
ideal boson space still produces all the correct physical
eigenvalues and their corresponding physical eigenvectors.
In this paper we go one step further by introducing an
operator S to remove all spurious states. This operator
turns out to be effectively the same as the one introduced
by Janssen et al. '

The ideal boson space B is defined using ideal boson
creation operators b ~p with corresponding Hermitian con-
jugate b p. They have the following properties

b p ———bp
(1)

[bap ba'p'] =&aa'&pp' ~ap'&pa'

where a,P= 1,2, . . . , k. Then,

of bosons is invariant under G&. Since it is generated by
boson operators, it belongs to the symmetric irreducible
representation [n] of G&. Thus we have decomposed the
ideal boson space B into subspaces

B„=span Qb t3 l0) -. (4)

In order to distinguish physical and nonphysical boson
spaces, it is useful to introduce a subalgebra G2 of G& de-
fined by

Gz ——span g b rbttr
r

(n)
T( —

p)
—b~ p b~ p

To determine the group structure of Gz, we exploit the

isomorphic fermion algebra Gz whose boson image under
Dyson boson mapping is G2. As is clear from Eq. (9), the

fermion algebra G2 ——span I c cttI gives Gz under the
Dyson mapping. Here c and its Hermitian conjugate c
are fermion creation and destruction operators. Since G2
forms a unitary algebra U(k), G2 also forms U(k). The
tensor property of b p with respect to G2 is also found in
a similar way. The fact that the fermion pair operator
cactt carries an irreducible tensor property [1 ] with

respect to Gq implies its boson image [c c&]D =B ft also
carries the same tensor property with respect to Gz. Also,
it is simple to show that Btp and b p have the same com-
mutation relations with respect to the generators of G2.
Thus we have shown that B~p and b p are irreducible ten-

sor operators belonging to [1 ] of G2.
Having determined the tensor properties of ideal boson

creation operators to be [1 ], ideal boson space with n bo-
sons is easily decomposed into the irreducible representa-
tions of G2 by studying the reduction of the n-boson ten-
sor operator
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As remarked previously, it is totally symmetric under G&.
Under G2, it is a symmetrized product of antisymmetric
pair tensors, i.e.,

a;
I

a;
2

ar
n

X p
X'' X p

where ([ ]X [ ]X X [ ] ) denotes the tensor product of
antisymmetric pair tensors. From the well-known results
on representation of the general linear group using irredu-
cible tensors, basis states belonging to a given irreducible
representation of G2 have a definite permutation symme-
try [f]=[f„.. . ,fk] which can be used to label the G2
irreducible representations. Thus the G2 irreducible rep-
resentations are labeled by the permutation symmetries of

the ideal boson indices (a(fi( . a„P„),which we some-
times denote as the "G2 symmetry. " Now, the decompo-
sition of n-boson space into the irreducible representations
of G2 is reduced to finding the allowed G2 symmetries in
the nth rank tensor given by Eq. (7).

Perhaps, the reduction of symmetrized product of an-
tisymmetric pair tensors is less familiar than the reduction
of the symmetrized product of symmetric pair tensors
used both in the SU(6) &SU(3) reduction of the IBM bo-
son space and in the Sp(3,R) D SU(3) classification of the
symplectic shell model space. The above reductions are
closely related by conjugate symmetry. ' The conjugate
symmetry [f] of [f] is found by interchanging rows and
columns of the Young tableau corresponding to [f]. Ap-
plying the above result with the restriction that the num-
ber of rows cannot exceed k, n-boson space B„ is decom-
posed into the irreducible subspace B„[f) The allowed G2
symmetries [f] are given as

[f]=[fi, . . . ,fk] ~ f( f2) f3 f——4) )——fk (=fk)0 and gf;=2n, . (8)

An explicit example for the k = 8 case is shown in Table I
where the dimension of each space is also shown. It is
easily verified that the dimensions of the decomposed
spaces add up correctly.

The Dyson mapping of bifermion operators is given as

c~cp~B~p b~p —g——b~yb psb~s,
r, 6

C~CIB~b p

c~cp g b~~bp~ .
r

This maps the 2n-fermion states c cp
. . c cp i

0)
1 1 n n

onto B p
. B p i

0). The space spanned by these

Dyson boson images of n-pair fermion states is defined to
be the physical boson space. Similarly, the Dyson boson
image of any fermion operator constructed using the bi-
fermion operators is defined to be a physical boson opera-
tor. Since 2n-fermion states carry [1 "] symmetry with

respect to Gz, their boson images also belong to the [1 "]
irreducible representation of G2. Alternatively, one can
show explicitly that physical boson states are proportional
to the antisymmetrized ideal boson states, '

B~ p B~ p ~0)~ g( —1)~pb~ p, b~ p ~0),

(10)

where p is a permutation operator on the 2n objects

TABLE I. Decomposition of ideal boson space using subgroup chain G] ——U(28) DG2 ——U(8) for the

j =
2 (i.e., k=8) case. The numbers in parentheses are the dimensions of the space and the last column

gives the eigenvalues of S. The physical boson spaces correspond to completely antisymmetric spaces.

U(28)
[n]

[2]

[4]

dim[ n]

(28)

(406)

(4060)

(31 465)

[F]

[2']
[&']

[3']
[2' 1']

[4']
[32 12]

[2 ]
[22 14]

[&']

U(8)
dim[F]

(28)

(336)
(70)

(2520)
(1512)

(28)

(13 860)
(15 120)

(1764)
(720)

(1)

(S)(Fj

0

12
0

36
20
0

72
52
40
28

0
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(a))g) a„P„). Thus, all the physical boson states have
a definite Gq symmetry and belong to the completely an-
tisymmetric irreducible representation of 62. For exam-
ple, in the k=8 case, the boson spaces with more than
four bosons are all nonphysical, and in general the physi-
cal boson spaces constitute a relatively small fraction of
the ideal boson space, as one can observe from Table I.

Now, we inquire how one can determine the G2 sym-
metry of a given n-boson state if it is known to have a de-
finite G2 symmetry. This can be done by defining a G2-
scalar operator. Consider the following fermion operator:

A.

S=N~ —N~H

where
A. 2 f $ A.

NH ——gc c cpcp, NH ——gc c —gc cpc cp.
a, p a a, p

A A.
In fact, the above S=O because N)vH is simply the N H
written in normal ordered form. Its Dyson image, found
from Eq. (9), is

bap apbysbys QBapbap g bap ap
a, p, y, 5 ap ap

=N —N —K, (12)

where

Q pij = Qpij d yd[f][f] [f] N (18)

S =N —N(k + 1 )+ K+(k)

The eigenvalues for K„[k]are
k

( Ã g (k) ) [f]—g f;(f; +k + 1 —2i)

(20)

(21)

where d[f] is the dimension of irreducible representation
[f] of S2„. Taking the trace of Eq. (18) and using the re-
sult that traces of all [p;1 ][f]have the same value X[f],

(g p,j n——(2n —1)j('.
[j] Id [f], (19)

[f]
where X~f] is commonly called a character corresponding
to the single two-cycle class of the permutation group S2„.

The physical interpretation of S is clear from Eq. (16).
It is a Majorana type operator whose eigenvalues depend
only on G2 symmetries; in particular, it has eigenvalue
zero for physical boson states.

Equations (17) and (19) are not very useful in actual
calculation of eigenvalues of S because the characters, in
general, are not easy to compute. Equations (12) and (17)
imply S is composed of one- and two-body boson opera-
tors and it is scalar with respect to G2. Thus, we expect S
could also be written as a linear combination of one- and
two-body Casimir operators of G2. It is given as

K=N —2g g(p p +p ),
i =1k~i

2n N n n

Xp, = ——,+ X X (p-, -, +p-, p, )
I (J i =1 k~i

so that

(13)

(14)

N = g b pb p, K = g B pb p .
a, p a, p

The above K is the same as S of Janssen et al. ' Thus it is
interesting that the boson image of Eq. (11) gives the same
operator used in Eq. (3.26) of Ref. 1. Using the results of
Ref. 1, X and the permutation operator can be expressed
as

from which eigenvalues of S can easily be calculated. The
last column in Table I shows the eigenvalues of S for up
to four bosons. Hence, given an n-boson state that is
known to have good G2 symmetry, we can determine its
G2 symmetry by calculating its eigenvalue of S and corn-
paring it to the known eigenvalues.

Let us inquire under what conditions the nonphysical
states can be removed by adding a suitable multiple of S
to the Hamiltonian. Suppose we are given a number-

conserving fermion Hamiltonian H =Ho+ V, where Ho
and V are one- and two-body operators, respectively. For
V, there exist two different Dyson boson images. The
first is found by mapping the normal ordered form of V,
denoted by

2n

K= —2+p;, , (15) V)vH ——V(c c ,cc) . (22)

S =2 N(N —1)

(J
(16)

Alternatively, we can rearrange the fermion creation and
destruction operators, so that V contains only c c type bi-
fermion operators, to get a form denoted by

The eigenvalue of S for the n-boson states with G2 sym-
metry [f) is

VH ——V(c c) .

Let us denote the Dyson boson images of H by

(23)

(S)~f&=2 (gpJ +n(2n —1)
(fl

(17)

h)vH ——h 0+ [ V)vH ]D,

hH =ho+[ VH]D

(24)

(25)

The eigenvalue ( gp;J. )[f] is calculated using the fact
that gp;j is invariant with respect to the permutation
group, so that from Shur's lemma its irreducible matrix
representation [ gp, z][f] must be a multiple of the identi-
ty matrix, i.e.,

where ho ——[Ho]D and [ ]i) denotes Dyson boson image.
It is to be noted that hH is Hermitian whereas h&H is not,
due to the nonunitary property of the Dyson boson map-
ping.

Since VH is a function of only c c type operators,
[VH]D and hence hH is a function of generators of G2.
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Therefore, the eigenfunctions of hH have definite G2
symmetry, and using the operator S one can determine the
G2 symmetry of each eigenfunction of hH. Also, if one is
interested only in physical boson states, the energies of
nonphysical eigenstates can be shifted up by adding A,S
(A, &0) to hH such that all the low lying eigenstates are
physical. In the large k limit, the lowest nonphysical state
is expected to belong to the [F]=[2,1 " ] irreducible
representation, which has unperturbed energy

A, (S)„...„,
)
——A, (8n —4) . (26)

X
1

E —Q(AS+h~H )Q
~xHP, (27)

where P and Q are the projection operators onto the sub-
space M and its orthogonal complement space, respective-
ly. Corresponding eigenvectors are given as

k

E —S» (28)

where
~

E ) =P
~

E). To determine the effect of non-
physical states on physical states, let M be the physical
boson space. Since Qh~HP=O due to the invariance of
physical space under h~H, Eqs. (27) and (28) become

One can estimate a suitable value to choose for A, by com-
paring the unperturbed energy of Eq. (26) to the excitation
energies of h& in physical subspace.

However, for h&H the situation is more complicated be-
cause h» is a function of B ~ and b 13, which are not
generators of G2, so that h~H will, in general, mix dif-
ferent irreducible representations of G2. Nevertheless, it
is still possible to remove all nonphysical states due to a
special property of the physical boson space with respect
to physical boson operators —it is an invariant subspace.
This property is easily seen from the fact that the Dyson
boson images of the bifermion operators given in Eq. (9)
close under commutation and form an algebra [SO(2k)].
The physical boson states span an irreducible representa-
tion of the same algebra, since physical boson states are
precisely those generated from the vacuum state by apply-
ing raising operators. Thus acting on a physical ket with
a physical boson operator h», which is a function of
generators of the algebra, will give another physical ket.
The invariance property of physical boson space is most
conveniently exploited using an effective operator method
for the analysis of h&H.

'

The effective operator, when restricted to the "model
space" M with kS as unperturbed component of the
operator kS +h», is given as

h' =P(AS+h~ )PH+Ph~HQ

ical space. Then the second term in Eq. (27) vanishes be-
cause Ph~HQ=O for this choice of model space, so that
the effective Hamiltonian for nonphysical space is

h Np P—(—A,S +h~H )P . (30)

In the X~O limit, h Np~Ph~HP, which means nonphysi-
cal eigenvalues of h» are not affected by the presence of
physical states. But the eigenvectors contain physical
components, since in general Q[1/(E —A.S)]"h» ~E )
&0. In the large A, limit, the nonphysical energy for
A,S+h+H is found by solving Eq. (30) with the result

EN p -A,(S )(f)+e, (31)

where e is the eigenvalue of h~H within a restricted non-
physical irreducible representation space [f]. Hence we
have shown that even in the h&H case it is possible to re-
move all nonphysical eigenvalues of h» without affect-
ing the physical eigenvalues and corresponding eigenvec-
tors, simply by adding XS to h&H.

We have carried out a systematic analysis of algebraic
properties of the ideal boson space which leads naturally
to introduction of the operator S. Although Janssen
et al. introduced S, they did not exploit it systematically
except for briefly stating that S can be used to minimize
the nonphysical component in the energy eigenstates.
Equations (16) and (20) display the operator S in two al-
ternative forms. The former emphasized the physical
point of view that S is a Majorana-like operator, and the
latter reminds us of its algebraic origin —it is a Casimir
operator of G2. Then we show that, for any number-
conserving Hamiltonian, S can be used to identify and re-
move all the nonphysical (spurious) states without affect-
ing the physical eigenvalues and eigenvectors. Geyer
et al. also discussed a method of identifying physical and
spurious eigenstates by exploiting the invariance of the
physical space under every physical boson operator.
However, their method is not practical, in general, since
unambiguous determinations require calculating matrix
elements for many different physical boson operators be-
tween all eigenstates of a given physical boson Hamiltoni-
an. However, with our S operator method, one simply
calculates the expectation of S for each eigenstate. Then
the physical states are characterized by zero expectation
value and all the nonphysical states have positive expecta-
tion values. Moreover, one need not even be concerned
about the problem of identifying spurious states. By in-
troducing the operator S into the boson Hamiltonian, one
can simply remove all spurious states from the low lying
energy eigenstates.

~'"=P~+BP

~

E) [Eo)
(29)
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