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Three-body potentials originating from cluster distortion
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The distortion of composite particles (clusters) during their mutual interaction leads to effective
three-body forces. In a nonrelativistic theory, they originate from two sources. One is the coupling
potential which couples a channel to a distortion channel. The second one is the energy denomina-
tor (propagator) which arises whenever a distortion channel is formally eliminated and represented
by an elimination potential. In the present paper this second source is studied. A three-cluster sys-
tem with only one distortion state in a two-cluster subsystem is considered. Two possibilities of de-

fining a three-body potential from the three-cluster elimination potential are tested, namely (i) ex-
traction of a two-body potential with "frozen" energy dependence and (ii) off-shell transformation
and subsequent extraction of a two-body potential. The mathematical formalism is illustrated by a
numerical example. In a simplified model of the triton, two 5 particles and a nucleon form the dis-
tortion channel. It is seen that the interaction of the third nucleon with the two 6 particles has a re-
markable influence on the effective three-body potential. Considering the fact that excited nucleons
like 5 particles tend to interact more strongly with nucleons than nucleons interact among them-
selves, we find the overbinding problem of the triton becoming more serious. From the present mi-

croscopic study it also becomes clear that an N-body Schrodinger equation with purely phenomeno-
logical energy-dependent two-body potentials is in general undefined because of insufficient infor-
mation.

I. INTRODUCTION

Origina11y, the Schrodinger equation was written for
pointlike particles which interact by classical potentials.
In nuclear physics, however, it is used for nucleons, which
are extended objects with internal structure. The price to
be paid for this extension is effective interaction potentials
of great complexity and ambiguity. One has to accept
nonlocal potentials, energy-dependent potentials, and mul-
tibody potentials. Also one has to accept the fact that the
potentials are not unique but can be transformed from one
form to another without changing the observables. What
is clearly needed in this jungle of potentials is a systematic
study of the effective interaction of composite particles.

In nonrelativistic theory the transition from particle
quantum dynamics to composite particle quantum
dynamics is furnished by the resonating group method
with full antisymmetrization' and orthogonalization of
channel spaces. Nonlocality of the potentials and multi-
body potentials arise by the Pauli principle, by short-range
correlations of the particles, and by the formal elimination
of channels. Some of these features have been studied in
earlier papers. In this paper we want to study an ef-
fective three-body potential which arises by the elimina-
tion of a cluster-distortion channel.

The elimination of distortion channels makes the effec-
tive interaction of clusters energy dependent. It modifies
the two-cluster interaction by additional two-body poten-
tial terms which depend on the two-cluster relative
motion energy. In a three-cluster system, it modifies the
three-cluster interaction by additional potential terms
which depend on the three-cluster energy. Energy-

dependent two-body potentials are also used in
phenomenological potential models. In such models,
however, it remains unclear how to define the two-body
energy variable in the potentials when the system consists
of more than two bodies. A prescription given and ap-
plied in several papers ' is in contradiction with the mi-
croscopic motivation of energy-dependent phenomenologi-
cal potentials. The investigation of the present paper will
give us more insight into this problem.

We will study a simple case. Two clusters get distorted
by mutual interaction and enter into a distortion channel.
A third cluster interacts with the first two clusters
without participating in any distortion. We will see that
even in this simple case we get a three-cluster elimination
potential which differs from the two-cluster elimination
potential by being a complicated three-body operator.
Two ways of subtracting two-body potential components
from this three-body operator wi11 be studied. In both
cases a three-body potential will remain. A numerical ex-
ample will exhibit some special effects related to the pres-
ence of b particles in the triton.

The present paper is not meant to substitute for any of
the valuable investigations on three-nucleon forces arising
from meson exchange diagrams. ' It should rather fur-
nish some additional aspects coming from the theory of
coupled-channel equations and make contact with the par-
ticular coupled-channel approach to three-nucleon forces
of Ref. 16.

In Sec. II the three-body elimination potential arising
by a two-cluster distortion is derived and two possibilities
of interpreting it as an energy-independent two-body po-
tential plus a three-body potential are formulated. In Sec.
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III a simple numerical example is given and extensions of
the model are discussed. Results are summarized in Sec.
IV.

II. THEORY

We consider the simplest case of a three-cluster system
in which cluster distortion plays a role: Clusters I and 2
can make a transition into a distorted configuration, while
cluster 3 remains inert, i.e., it does not get distorted itself
and it does not distort other clusters. The motion of clus-
ters 1 and 2 is described by a coupled-channel equation,

h 1 1 h12

hzi

The first channel is an open channel, with a channel
Hamiltonian h», a relative motion energy e, and a rela-
tive motion state

I
Xi). The second channel is a closed

distortion channe1. In this channel, the two clusters are
no longer in their ground states but in some excited ("dis-
torted") state. In principle, there is a Hilbert space of
such distortion states. But, in order to exhibit the sys-
tematics, we restrict this Hilbert space to only one ele-
ment, called

I f ). In this case,
I
Xz) is not a state at all,

but only an amplitude which tells us how much the com-
pound configuration

I f ) is excited during the scattering
process. The channel Hamiltonian h22 is just a number,
namely the excitation energy ei of the compound state

I
f), relative to the threshold of the first channel. The

channel coupling Hamiltonians h&z and hq~ couple the
state

I
Xi & « the amplitude

I
Xz&.

Formal elimination of the second equation in Eq. (1)
leads to

1
h»

I
Xi&+h 12 h 211+1) e

I
Xl&

e —h~2

We change the notation slightly and write for Eq. (2)

(r+U)
I
X, )+

I
X, ) =e IX, )I

A, )i~ (A,
I

e —eI

(2)

(3)

Again, we can formally eliminate the second equation and
write

H»
I
Xi &+H12(E H22) H211Xi &=E

I
Xi &

A closer inspection of the elimination potential
Hiz(E —Hzz) 'Hzi and its decomPosition into two- and
three-body force components will be the main interest of
the present paper.

in order to show that h» consists of a kinetic energy
operator t and a potential U, while h&z and h2& are just
normalized form factors

I
A, ) times coupling constants a..

The elimination potential appearing in the second term of
Eqs. (2) and (3) is a rank-one separable potential with an
energy-dependent strength parameter a. /(e —e&).

For the three-cluster system we use capital letters. The
coupled-channel equation for the motion of clusters 1, 2,
and 3 reads

H» Hiz
I
Xi )

I
Xi )

(4)

with single-particle kinetic energies T;, pair potentials VJ-,
and total center-of-mass energy T, ; no three-body po-
tentials are assumed to be present at the microscopic level.
For the microscopic wave function of the (1,2) cluster sys-
tem we make the ansatz

10& =
I ki &142) I

Xi &+ If &
I
+2) (7)

where 1/1), I pz) are the ground states of the two clus-
ters,

I
X, ) is the (1,2) relative motion state,

I f ) is a com-
pound state of all constituents of clusters 1 and 2, and

I
Xz) is the excitation amplitude of

I f ). We take for the
compound state

I f ) a product of two excited cluster
states 1/1), I pz) and a square integrable relative motion
state

I
X ),

lf & =14'i&14'2& lx& (8)

or a superposition of such products. Because

(0, I y, ) =(4,
I y, ) =o, (9)

the two terms on the right-hand side of Eq. (7) are orthog-
onal.

The microscopic state of the (1,2,3) cluster system is

I

q'& =
I di & 102) 143) I

Xi &+ I f & 143) I
Xz)

where
I p3) is the ground state of the third cluster,

I Xi )
is a (1,2,3) relative motion state (depending on two Jacobi
vector variables), and

I Xz) is the state of motion of the
center of mass of the third cluster relative to the center of
mass of the compound system described by

I f ) .
The two-cluster coupled-channel equation (1) is ob-

tained from

Equations (1) and (4) are, in principle, derived by the
resonating group method with orthogonalization of chan-
nel spaces, where we start from a microscopic wave func-
tion, include a distortion channel, and rigorously observe
the Pauli principle. The operators (h;&) and (HJ ) become
energy independent. The left-hand side of Eq. (5) defines
an effective potential acting in the three-cluster system.
When the similar effective potentials of the two-cluster
subsystems are subtracted out, the remaining parts are
three-body potentials. They arise from two origins: the
Pauli principle and the elimination of the distortion chan-
nel. The operator H» contains a three-body potential,
caused by the Pauli principle, which has been investigated
in a previous paper. The Pauli principle introduces
three-body components also in the coupling potentials
H&2, H2~. We disregard these three-body interactions in
the present paper. We want to study instead the three-
body potential which arises from the denominator appear-
ing in the second term of (5), because this three-body po-
tential is a typical feature of cluster distortion. Disregard-
ing the three-body potential of H» and the three-body
components of H &2 and H2& is equivalent to neglecting
antisymmetrization between constituent particles of dif-
ferent clusters and to using the coupled reaction channels
equation, ' instead of the resonating group equation.

The microscopic Hamiltonian of the two-cluster sys-
tem, and similarly of the three-cluster system, is

H=gT+ g V,, T, —
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&Ail &dzIH If&= I~&~ (12)

with the normalization condition (A.
~

k) = 1; the quantity
(P, ~

((t2
~

H
~ f ) is not a number but a state, since

~ f )
depends on all microscopic variables (except total center
of mass), while (P&

~
(Pz

~

depends only on cluster-
internal variables.

The ground state energies of the two clusters are sub-
tracted from e, and from (f

~

H
~ f ) to give e and ef,

respectively. The energy ef is the excitation energy of the
compound state

~ f ), relative to the two-cluster threshold.
The ansatz (10) determines the embedding of the (1,2)-

cluster system into the (1,2,3)-cluster system. We get for
the Hamiltonian of the first channel

H l l
——T„+Tg + u l2+ U23+ U3l (13)

The potentials vl2, v23, v3l are double folding potentials of
the respective two-cluster subsystems. The indices r and
R refer to the (1,2) and (12,3) Jacobi variables. The opera-
tors T„and U&2 differ from t and u of Eq. (3) only by unit
operators with respect to the motion of cluster 3.

In the derivation of the channel-coupling Hamiltonian
H~z, several terms vanish because of Eqs. (8) and (9), and
one gets

H)p ——
~

A, )xlg . (14)

The channel-coupling Hamiltonian has no three-body
component because cluster 3 cannot excite both clusters 1

and 2 together. The situation is different when the distor-
tion channel has only one excited cluster. But, as has been
said before, we want to study the simplest case. For the
Hamiltonian of the second channel we get

H22 ——Tz+uf+ef . (15}

The (local) potential Uf is the double folding potential cal-
culated with the (1,2) compound state

~ f ) and with the
ground state

~ P3 ) of the third cluster. As before, ef is
the excitation energy of

~ f ) relative to the (1,2) thresh-
old.

We can now rewrite Eq. (5) and get

+ +8 +U 12+U23+U31+ vel; }
~
&i & =E

~
&& &

K
V,(; ——

~

A, ) (E —Tq —vf ) —ef
(16b)

The elimination potential V,l; is the quantity we want to
study. It is essentially the same potential as the two-
cluster elimination potential

(5$
~

(H —e, )
~ g) =0,

together with Eqs. (6) and (7). The variation symbol
means that the internal motion states

~ P~) and
~
P2), as

well as the compound state
~
f), are kept fixed, while

~
X~) and

~
X2) are freely varied; e, is the total energy.

Similarly we get the three-cluster coupled-channel equa-
tion (4) from the microscopic Hamiltonian of the three-
cluster system and the ansatz (10}.

One can now see that the potential u appearing in Eq.
(3) is just a (local) double folding potential. The form fac-
tor

~

A, ) and the coupling strength ~ are given by

v„,= fA, ) (A.
i

.
e —ef

(17)

The crux is that v, l; depends on e, which is the kinetic en-

ergy of the asymptotic two-cluster relative motion. This
quantity e is not readily available in the three-cluster sys-
tem. What is available in the three-cluster system is the
three-cluster relative motion energy E. There is an energy
shift operator ( Tz + Uf ), such that ( E —Tz —Uf ) corre-
sponds to e, as indicated by the parentheses in the denom-
inator of Eq. (16b). The energy shift operator is a nonlo-
cal operator (because it appears in the denominator) in the
second Jacobi variable of the three-cluster system. In the
discussion of the three-nucleon force in Ref. 16, it is split
into three parts, i.e., (i) an energy-independent two-body
potential obtained by "freezing" the energy dependence of
the two-body elimination potential, (ii) an effective two-
nucleon dispersive effect, and (iii) a three-nucleon force
proper. We prefer to call (ii) as well as (iii) a three-
nucleon potential.

At this point we should stop, for a moment, and think
about the general meaning of energy-dependent two-body
potentials. In Eqs. (16a) and (16b) we have a three-body
equation with an energy-dependent "two-body" potential.
The equation is well defined because we know the micro-
scopic origin of the energy dependence. The origin is the
compound state

~ f ), and the knowledge of
~
f ) allows us

to calculate uf, which is part of the energy shift operator.
When two-body energy-dependent potentials are given
without any microscopic basis, the energy shift operator is
not known, and a rnultibody Schrodinger equation cannot
be written because of insufficient information. Inside the
interaction volume kinetic and potential energies tend to
be large and of opposite sign. For this reason one should
not omit vf while keeping Tz. In this sense the prescrip-
tion which has been adopted and used in Refs. 7—14 is
unphysical. We shall also see in our numerical example
that uf is important.

Let us proceed by evaluating expression (16b). We are
not interested in a situation where clusters 1 and 2 interact
while cluster 3 is at asymptotic distances. Therefore we
can use a truncated Hilbert space description for the spec-
tator motion, in the elimination potential V,l;. We diago-
nalize the energy shift operator Tz +uf in a finite Hilbert
space to get the (approximate) eigenstate representation

n

T~+Uf = g ~
u, )E, (u,

~

.
i=1

(18)

The elimination potential (16b) then becomes a rank-n se-
parable potential,

n 2

V„;= y /

k)
/
u; ) (u;

/

(A.
/

i=1 E E; —ef— (19)

with a discrete set of values E; for the energy shift; in
each term of the sum, ( E E; ) represents —the energy e of
the (1,2) subsystem.

Even though V,l; is a three-body potential in principle,
its influence on the observables of the three-cluster system
should not be called a three-body force effect. There are
various possibilities to reduce the effect of a three-body
potential. One can extract two-body potentials from it, or



802 S. NAKAICHI-MAEDA AND E. W. SCHMID 35

K
v, (; ———

l
A, )

e~ —eo
(20)

We insert (20) into (16a). The first term on the right-hand
side of (20), together with v~z, will then be an energy-
independent Hermitian (12)-subsystem potential. We
want this potential to be in agreement with effective range
parameters of the subsystem. For this reason we choose
eo =0. Equation (16a) then contains three energy-
independent Hermitian subsystem interactions and the
three-body potential V& '. The latter potential contains all
the unpleasant features, like energy dependence, nonlocali-
ty, and infinite range. The choice of eo determines how
much is subtracted out of V,&; and put into the energy-
independent Hermitian two-body potential of the (12) sub-
system. Once (16a) has been solved, for a certain energy
and a certain boundary condition, one can in principle
readjust eo such that the influence of V&

' vanishes. But
then one would have a different energy-independent Her-
mitian (12)-subsystem potential for each case under con-
sideration, and this subsystem potential would not even
reproduce the low energy data of the isolated subsystem.
Therefore we stick to the choice co =0.

From (20), together with (19) and eo ——0 and with
I

carry out off-shell transformations, or do both things. In
the following we will take a closer look at two of such
possibilities.

Firstly, the most natural thing is to extract from the
three-body elimination potential V,~; the subsystem elim-
ination potential v, ~; with energy dependence "frozen" at
some fixed value eo..

g l u; ) ( u;
l

as an approximate unit operator, we get

Vg" ——g lA) lu;) + (u,
f
(klE E;——eg

(3)
Vg k) u;)

E.
+ t ~ ~

X(u;
f

(A,
f

. (22)

When the two-cluster distortion state has a fairly high en-

ergy e~ while the three-cluster system is in a bound state
or a low-energy scattering state, then the first power in
(E E; ) do—minates and the sign of the three-body poten-
tial depends on E;. This then means that the interaction
v~ of the third cluster with the two clusters in the distort-
ed configuration

l f ) determines whether the three-body
potential V& is repulsive or attractive.

Secondly, for a further reduction of our three-body
force we will try to get rid of the linear term in Eq. (22); a
prescription was given earlier. It is well known' that a
potential which depends linearly on energy can be made
energy independent by transforming the dynamical equa-
tion. In Eqs. (3) and (16) we reintroduce for brevity the
notations h&& and H&& and expand the elimination poten-
tials into a Taylor series,

(21)

We take a Taylor series expansion of the first term in the
square brackets. The zero-order term cancels and we are
left with

K e e
h)) —

l
X) 1+

ey ey ey
(k

l

—e lX, ) =0, (23)

E —E.'+ E.
(u;

f
(A,

f

E. fXg)=0. — (24)

The first powers of e and E have the operators (29)

and

n=l+ fA, ), (A,
f

ey

~=1+2 l~) lu &

ey

(25)

(26)

with

c =1—e~(e~+v )

The transformation leads from Eqs. (23) and (24) to

(30)

(31)

as factors. With these operators we perform the off-shell
transformations

(h()+v, );
—e)

f
X)) =0 (32)

lX, &=n'" lX, &, (27)
and

(28)

An equation for
l
X ~ ) is obtained from Eq. (23) by insert-

ing n ' n' in front of lX~) and by multiplying the
equation with n ' from the left. Similarly, one gets an

equation for fX& ) from Eq. (24). The operators n
and N ' are

(m„+ V„,—E) lX, & =0,
with new potentials

v, );
———h„

l
A, )c(A,

l

—
l

A, )c(A.
l
h„

+
f

A, )c'(A,
f
h, ) f

A, )(k
f

—
f

A, )d(A,
f

+O(e'),

(33)

(34)
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V,~;
—— H—

~ ~ g I
A. ) I u; )c & u;

I
& A,

I

—g I
A, )

I
u;)c&u;

I
&A. IH„

+ y I

A. )
I
u; )c & u;

I
& A,

I
H $ $ I

A. )
I uf )c & uj I & &

I

E;—g IA, ) lu, )d 1 — '
&u;

I
&kl

ef

such an important role in the three-body force. Now, the
off-shell transformation (27) and (28) restores off-shell un-
itarity in the first channel, in the neighborhood of the en-

ergy around which the Taylor expansion has been made.
Restoring off-shell unitarity reduces the three-body force
provided that it does not make a big difference whether
cluster 3 interacts with clusters 1,2 in a distorted or undis-
torted state. The numerical example of the next section
will illustrate this situation.

+ QO((E E;) —), (35)
III. NUMERICAL EXAMPLE AND DISCUSSION

where

d =e~~ (e~+~ ) (36)

Similar to what has been done in (20), we now extract
from V,&; the two-body potential u, &; with its energy
dependence "frozen" at e =0,

V,~;
——u, &;(e =0)+ Vtt (37)

which now defines the three-body potential V&&'. In the
evaluation of V'tt' we use Eq. (18) to go back from the
spectral representation to the operator and we replace

g I
u;)&u;

I
by the unit operator lz (which is omitted

whenever its presence is trivial). A short calculation then
leads to

Vtt" = —
I
~)c&~

I (U23+U31 vf)

(U23+U31 Vf)
I
~&c&

+ 11&c & i
I (uz3+ U3i —vy) I

~ &c & k

+ g O((E —E;)') . (38)

The energy-dependent part of this three-body potential is
a power series in (E E;) starting —with second order.
The energy-independent part depends on the difference
between the two potentials describing the interaction of
cluster 3 with undistorted clusters 1,2 and the potential
describing the interaction of cluster 3 with clusters 1,2 in
the distortion state

I f ). The energy-independent part of
the dominant matrix element &A.

I

Vn'
I

A, ) vanishes when
( v/3 +U3~ ) folded with

I

A. ) is equal to uy, i.e., when the
condition

~ l(U23+U31)
I
~& —uf =0 (39)

holds.
A physical explanation of this feature was given ear-

lier. An energy-dependent potential is not off-shell uni-
tary: A wave packet coming in from infinity will change
its norm in the interaction region. In the case of our elim-
ination potentials the reason is clear. Transition to the
second channel is responsible for the loss of probability in
the first channel. And the physical meaning of the three-
body force, which appears when the second channel is for-
mally eliminated, is also clear. The three-body force has
to compensate for that part of the interaction which has
disappeared because the system has disappeared into
another channel. This is why the interaction vf plays

As an example we choose a simple model of the triton,
with nucleons considered to be composite particles. It
should be clearly stated at the beginning that our model is
not a realistic model of the triton. It is chosen to exhibit
only one special feature which, however, may help to
understand the real triton. This special feature is the
binding effect of a three-body force arising from the sim-
plest possible two-nucleon distortion channel.

The nucleons 1,2,3 of the triton play the role of clusters
1,2,3 in the mathematical treatment of Sec. II. By their
mutual interaction nucleon 1 and nucleon 2 can go over
into a square integrable state formed by two 6 particles.
Nucleon 3 is considered to be inert, i.e., it cannot get ex-
cited into a b state. Also, by its interaction with nucleons
1 and 2, it cannot excite the hh state of the (1,2) system.
In defining the interaction potentials we introduce
phenomenological parameters. The local potential v&2 has
the shape of the 'So Reid soft core potential. Its strength
is adjusted such that

I

K
T, +u„—

I
A) &A

I
IX) =0

ef
(40)

yields the correct triplet scattering length. Here, ef is the
excitation energy of the hA state. We will use ef —600
MeV. The form factor

I
k) is chosen to be a normalized

Gaussian in r space,

A, (r)-exp[ —3r l(4r~)] . (41)

For its root mean square range r~, the values 0.6, 0.9, and
1.2 fm will be used. The coupling parameter K is then
determined by the probability P&& for the presence of the
hA state in the deuteron. The latter has been discussed,
for instance, by Haapakoski and Saarela. ' We will con-
sider several values of Pz& in the range between 0% and
2%. The potentials v23 and v3& are chosen to be Gaussian
potentials

uz3(r) =U3~(r) = —Vo exp( ar )—(42)

with a=0.46 fm . The potential depth Vo ——49. 1 MeV
is fitted to yield the correct triton binding energy when
v&2 with K=O yields the correct deuteron binding energy.
In order to define u~, we fold ( v23+U3~ ) with A(r, 2) and,
put a factor in front,

uf Q & ~
I
{v23+U31)

I
~ (43)

Setting a =1 means that condition (39) holds true. For
a =0 we have no interaction between nucleon 3 and the
distorted nucleons 1 and 2.
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X&(r,R) =w(r&z)u (rz3)u (r3)), (44)

and
~

Xz ) becomes the function Xz(R ). In the first itera-
tion step, w(r&z) and Xz(R) are simultaneously calculated
by solving a Euler-Lagrange integrodifferential equation,
while a zero-order approximation for the function u is
kept fixed. In the second iteration step, u and X2 are cal-
culated while w is kept fixed, and so on. With a reason-
ably well chosen zero-order approximation for u, rapid
convergence of the iteration has been observed. In order
to get E, r, a single-channel three-body equation with po-
tentials U~2, U23, U3& together with the first potential on the
right-hand side of Eq. (20) has to be solved. In this case,
we employed the Ritz variational principle. A test func-
tion of the form of Eq. (44) has been used and small varia-
tions of w and u, in the vicinity of the (renormalized) con-
verged solution of the first variational calculation, have
been performed. As expected from arguments holding for
perturbation theory, the variation did not improve the
minimum in a noticeable way.

The energy E, » was obtained by the method used for
E, r. In this third case, the potentials acting in the three-
body system are v~z, vz3, v», and v, &; (e =0). The latter
potential is strong enough to have an influence on the
wave function. We found the Ritz minimum with a func-
tion which is very close to a function given by Eq. (44),
with the old u but with m being transformed according to
Eq. (27), as expected by theory. This result for the varia-
tionally obtained wave function tells us that the variation
principle is even catching terms of higher order perturba-
tion theory. For this reason we are trusting our result for
the energy.

The influence of the three-body potentials Vr
' and Vrr

'

on the binding energy of the triton is given by the energy
differences

~Er =Et —Et, r

~Err =Et —Et, rr ~

(4Sa)

(45b)

Figure 1 shows AEr and AE» as functions of Pqq, with
r~ ——0.6 fm and a =1. For values of P~~ below 1%, AEr
is small and AE» is negligibly small.

The calculations have been repeated with r~ ——0.9 fm
and r~ ——1.2 fm, because this phenomenological parame-
ter to some degree reflects the mechanism by which a NN
state is excited into a b, b, state (gluon exchange or meson

What we want to calculate is the effect of the three-
body potentials VI ' and VI&', given by Eqs. (22) and (38),
on the binding energy of our model triton, for various
values of the phenomenological input parameters P&~ and
r~. Variational calculations are performed for the triton
binding energy ( —E, ) with all potentials included, for the
triton binding energy ( —E, q) with VI

' switched off, and
for the triton binding energy ( —E, tt) with VI~' switched
off. In calculating E, we applied a variational principle
to the coupled-channel equation (4) directl~. In this way,
the evaluation of the series expansion of Vr

' and Vrr
' can

be avoided.
As variational principle we used the Euler-Lagrange

method with iteration. The state
~

X& ) is approximated
by a wave function of the form

—0.05

-0.15-

—0.20
MeV

0.5 1.0 1.5%

FICs. 1. Contributions AE, & and AE, » of the three-body po-
tentials V&" and V&&' to the triton energy E„as a function of
the Ah probability Pzz in the deuteron. The parameters ef and
r~ are fixed at 600 MeV and 0.6 fm, respectively. In evaluating
AE, ~r, assumption (39) has been used.

exchange). No drastic change of the results has been
found. With P~~ ——0. 5%%uo and a =1, AEr becomes a little
smaller by going over from r~ ——0.6 fm to r~ ——1.2 fm,
while AE» remains negligible.

One gets the impression that the off-shell transforma-
tions (27) and (28), which restore off-shell unitarity in the
vicinity of zero subsystem energy, reduce the three-body
force to a negligible amount. This, however, is only true
for a = I, i.e., when condition (39) is fulfilled. When Eq.
(39) is not fulfilled because the Nb, interaction differs
from the NN interaction, we get a quite different result.
For P&& ——0.5% and r~ ——0.6 fm, Fig. 2 shows AEr and
AE«as functions of a. For a weak NA interaction, EErr
becomes even larger than bEr and reaches a value of 0.23
MeV at zero NA interaction. Conceptually, AEr at a =0
corresponds to the dispersive effect (per nucleon pair) cal-
culated in Ref. 16 where this effect was calculated with
respect to the NN-NA transition by assuming no interac-
tion between the 6 particle and the spectator nucleon.

In discussing the present result, and especially in draw-
ing conclusions on the realistic triton, one has to be care-
ful. We know that excited nucleons, like 6 particles, tend
to interact more strongly than nucleons. Looking at cou-
pling constants, we would expect the Nh interaction to be
stronger than the NN interaction by a factor of 4. But
the NA interaction has a partial wave dependence which
is different from the partial wave dependence of the NN
interaction. Our model is too simple to include this
feature. We can only say that the Nh interaction tends to
be stronger than the NN interaction and that, for this



35 THREE-BODY POTENTIALS ORIGINATING FROM CLUSTER. . . 805

forces originating from two-pion exchange. Our present
study is thus increasing the problem of overbinding of the
triton.

2

MeV

FIG. 2. Contributions bE, I and hE, && of the three-body po-
tentials V&

' and V&&' to the triton energy E„as a function of
the parameter a of Eq. (43). The parameters eI, rq, and P~q
are fixed at 600 MeV, 0.6 fm, and 0.5%, respectively.

reason, we should consider in Fig. 2 a values which are
greater than one. Also, there are three nucleon pairs, not
only one, which contribute to the effect. In this way, we
may conclude that there is a non-negligible increase of the
triton binding energy.

It is not the intention of the present paper to study the
realistic triton and to give a quantitative estimation of this
increase. The intention of this paper is to study a three-
body potential arising from the elimination of a distortion
channel. At first glance, one would not expect a three-
body potential at all in the present case. We have seen
that there is one arising from the energy denominator of
the two-cluster elimination potential, and we have seen
that it is not negligible.

The present investigation can be extended by including
additional distortion channels, with different cluster exci-
tations and with interchanged labels of clusters. The
theory would become more complicated and one would
see that also the channel coupling Hamiltonians can give
rise to three-body forces. In the simple case considered in
this paper, the presence of the third cluster is only felt in
the energy denominator of the elimination potential, i.e.,
in the propagator, and not in the channel coupling Hamil-
tonians which determine the coupling form factors and
coupling strengths. But elimination potentials will always
have energy denominators and it is worthwhile to study,
in isolation, their effect on three-body forces.

The increase of the triton binding energy, which we get
from our qualitative study of effects arising from the en-
ergy denominator of the delta-delta elimination potential,
should be added to the increase obtained by Friar et al. ,

'

or by Sasakawa et al. , from the inclusion of three-body

IV. SUMMARY

In a nonrelativistic theory of composite particles, effec-
tive three-body forces arise from three different sources:
(i) from the indistinguishability of the constituent parti-
cles, (ii) from short-ranged particle correlations, and (iii)
from the elimination of cluster-distortion channels. The
elimination of distortion channels, again, produces effec-
tive three-body forces by two different mechanisms: (a)
the channel coupling potentials, and (b) the energy denom-
inators of the elimination potentials. The last mechanism
has been studied in the present paper.

The simplest case of a three-cluster coupled-channels
equation has been analyzed. Two of the three clusters can
make a transition to a square integrable distortion state
while the third cluster interacts with the first two clusters
without being involved in the distortion. The effective
three-body potential arises from the fact that the two-
cluster elimination potential depends on the two-cluster
subsystem energy which, in the full system, is a three-
body operator. This three-body operator depends on the
interaction of the third cluster with the two distorted clus-
ters. It is seen that a multibody Schrodinger equation
with energy-dependent phenomenological two-body in-
teraction is undefined because of incomplete information.
What are missing are the energy shift operators which
lead from the energy of the full system to the subsystem
energies. When all interactions are derived from a micro-
scopic basis, the energy shift operators are, of course, de-
fined.

The mathematical formalism has been illustrated by a
numerical example. A simple model of the triton has
been chosen to exhibit some special features which may be
relevant also in the real triton. Two 6 particles and a nu-
cleon are considered to form a distortion state of the
three-nucleon system. From an estimation of the
nucleon-delta interaction strength given by Huber et al.
we conclude that there will be an increase of the triton
binding energy. This emphasizes the overbinding problem
of the triton which has been encountered in recent calcula-
tions ' with three-body potentials arising from two-pion
exchange.

From the present investigation one can see again that
effective two- and three-body potentials should be derived
from the same microscopic basis because, to some extent,
they are traded against each other by off-shell transforma-
tion of the dynamical equation.

We thank Professor P. Sauer and Dr. Ch. Hajduk for
valuable discussions.
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