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Solvable model for one-dimensional nuclear matter:
Simultaneous eigenstates of spin, isospin, and energy
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The eigenvalue problem is solved exactly for a one-dimensional system composed of many protons
and neutrons interacting via delta-function potentials which conserve the total spin and isospin of
protons and neutrons. It is shown that simultaneous eigenstates of spin, isospin, and energy, and en-

ergy eigenvalues are determined by the solutions of some transcendental coupled equations for given
quantum numbers.
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We consider a one-dimensional model described by the
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where p,*(q) and n*, (q) [p,*(q) and n,*(q)] denote the
creation operators of an up (down) spin proton and neu-
tron of mass m with momentum q =(2trA'/L) && integer (L
is the length of our system), respectively. The interaction
Hamiltonian with a coupling constant g conserves the to-
tal spin and isospin of the system defined by

We must therefore look for the simultaneous eigenstate of
spin, isospin, and energy.

On the basis of the simultaneous eigenstate' of spin and
energy in the one-dimensional system of many fermions
interacting via delta-function potentials, we assume the
following form for the eigenstate of the present X-body
system:
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where S=Sz ——X/2 —M means that the eigenvalues of
the square of spin and its z component are
(N/2 M—)(N/2 M—+1) and N/2 —M, respectively, and
the corresponding meanings in isospin are indicated by
T=Tz N/2——E.—N momenta Iq. j are introduced asJ Squantum numbers. Similarly, M momenta [A, j and K
momenta IA,, j are introduced as quantum numbers con-
cerning spin and isospin. Greek letters p and v indicate
the permutations p=(„' „', ' „) and v=(„' „'' ' „).
The functions f (j,a) and f (j,a) are defined by
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—cot(Lkj, /2A') (1 &(i &b &K), (9b)

then we can prove that
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The integers I I j and I m, j denote the positions of
creation operators concerning down spin and down iso-
spin particles. We define the down isospin particle as a
neutron. Then the operator 0 "((pj j; I1 j; Im, j ) is com-
posed of (N —K) protons and K neutrons, where M parti-
cles among them have down spin; for example,

0'(p„. . . ,p4,.1,3;2,3) =p*, (p, )n', (p2)n', (p, )p*„(p~) .

The N momenta Ipj j are connected with pj, p~ „and qJ
as

M K

p, =q, + g p,',.+ g p,',. (1&j&».

in the same way as in the case of the proof' of the spin
eigenstate in the one-dimensional many-fermion system.
By successive operations of W and u on the vector
(4), we can make the eigenstate vectors corresponding to
the (2S+1) eigenvalues of Wz and the (2T+1) ones of
Mz. We can rewrite the eigenstate (4) expressed in terms
of the configurations of down spin and down isospin par-
ticles by the one expressed in terms of the configurations
of up spin and down isospin ones, down spin and up iso-
spin ones, and up spin and up isospin ones by working the
conditions (Sa),(8b) and (9a),(9b).
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where the energy eigenvalue E is given by
N
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Operation of 2m (Ho E) on the eige—nvector (4) yields a
factor g.. ,(pj —k( ) in it. Fixing the permutations (L(

and v, we can decompose the factor as
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by making use of (8a) and (8b) and the restrictions through Kronecker's deltas. Contributions from the second and
fourth terms vanish because of the conditions (9a) and (9b). The contributions from the first and third terms are classi-
fied into vectors of six types. The typical examples are
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where the symbol [ ] represents the remaining factors,
except the operator 0*([pj j; [li j; [m, j ) for fixed integers
[li j, [m, j, and J. We turn our attention to the vector

I
E). Let us denote 1 and m, by I and J, which are

subjected to m~ ~ &I &m~ and lp & &J &lp. Extracting
the factor f (J,p )f (I,v, ) from [ ], we multiply it by
two factors in curly brackets. Then the content
of the curly brackets changes to [(pi „—ki „)
—(pJ „kJ„) ' j—. The sum of the first term over pz
can be taken to become ( L/2A)cot—(Lkz /2iri) due to
such changes of summation variable as p)s„~u —pz

pJ „~u —U+pr, and pJ ~u —pr . In the case ofS S T T T T

the second term, achievement of the sum over pJ @ yields
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have set I =mb and J =I&. The two factors in the curly
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by applying the same arguments as for the vector
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E).

In order to combine this result for
I

E') and the one for
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E) mentioned above, we make two changes as follows.
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where

S Tpr=qi+ g pri „+g pi », +v
A.+a c+g

and

PJ 'lJ+ QPJ,pi+ gpJ, » +& +&S S T

A&a c&g

and all factors not necessary for our discussion are con-
tained in the symbol [ . . ]'.

Among the vectors produced by the operation of
2mH;«on the state vector (4), there are two vectors,
denoted

~
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In (17b), m,'=m, (1 &c &b —1, a +1 &c &K),
m,'=m, i (b+1&c &a), mb I,——and li, =li (1&A, &M).
For the vector

~

E;'„,), let us first change the permutation
p as pi~pi (I & A. &a —1, P+I &A, &M), pi~pi+i
(a &A. &P—1), and p~~p, . Next, we make such dis-
placements as pl& ~pl& +r and pJ& ~pJ& —r. Then,S S S S

we can take the sum g, (pi& +r —kiz )
' to yield

( —L/2 iir)c ot( Lkl& /2'). After this, we can utilize the
same transformation as in the case of the first term in the
curly brackets of (14e). Then we can take the sum over
pi, and we have the factorT
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on the right-hand side of (17a). Similarly treating the rhs
of (17b), we get

( L /2A') co—t(LkJ „ /2iri)cot(LkJ /2iri) .

By making use of the same transformation of the variable
v as in the combination of

~

E) and
~

E'), the above two
results for

~
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where the symbol I
. .

I indicates the symbol [ . . ]', the
summation symbol, and the Kronecker deltas in (16).
Noting that two terms in the square brackets of (18) can
be changed to

[cot(Lki, /2A) cot(LkJ „ /2—A')]

X [cot(LkI /2') —cot(Lkz /2A') ]

due to the conditions (10a) and (10b), and then to

[cot(LkI „ /2R) cot(LkJ „ /2i—ii)](kz ki)/(mg/2iri—),

we can see that the right hand sides of both (16) and (18)
cancel each other.

The same arguments can be applied to the vectors of
the other types, and then we have the same conclusion ob-
tained above. In this way Eq. (11) for the state vector (4)
has proved to be valid under the conditions (9a),(9b) and
(10a),(10b).

Let us summarize our results obtained in our previous
discussions for the present system. The state vector of the
assumed form (4) with the assumptions (8a) and (8b) be-
comes the eigenstate vector of spin and isospin when the
conditions (9a) and (9b) hold. It also becomes the energy
eigenstate when the conditions (10a) and (10b) are fulfilled

and

A = kz /(mg /2A') —cot(Lkz /2iii)

A, = —kj/(mg/2A') —cot(LkJ. , /2A') .

Then, the conditions and (9b) become
cot(L co~ &/2A) = ( A~ Ali) /2 and — cot(L co, /2'')
=(A, —Ab)/2. From these definitions, (7) and (8a),(8b),
we can obtain coupled equations for k~, A~, and As. Fur-
ther analysis for these coupled equations is under con-
sideration. Details will be published elsewhere.

The author would like to express his sincere thanks to
Dr. S. Sasaki and Dr. Y. Fujita for their encouragement
and interest in this work.

besides (9a) and (9b). Then it proves to be the simultane-
ous eigenstate of spin, isospin, and energy under the con-
ditions (9a),(9b) and (10a),(10b). By successive operation
of M and M on the eigenvector (4), we can obtain the
simultaneous eigenstate vector of given eigenvalues Sz
( —S & Sz & S) and Tz ( —T & Tz & T) in the same way3
as in the one-dimensional many-fermion system.

The conditions (10a) and (10b) mean that we can intro-
duce M auxiliary quantities A and K auxiliary quantities
A, defined by
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