L_2 - L_3 Coster-Kronig transition probability for Z = 54

P. B. Semmes,* R. A. Braga, J. C. Griffin, and R. W. Fink School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332 (Received 10 October 1986)

The total Coster-Kronig transition probability f_{23} for the L_2 - L_3 atomic transition was measured utilizing resolved *L*-K x-ray coincidence techniques for Z = 54 with radioactive sources of 9.69 day ¹³¹Cs. The value of f_{23} is 0.148±0.029.

Significant improvements in the experimental techniques for investigating x-ray emission from single Lvacancy atomic states permit closer testing of the theoretical models employed to calculate L-shell yields. While Krause¹ has published a semiempirical fit based on the available body of experimental values of L-shell yields and level widths, a set of theoretical L-shell yields, based on *ab initio* relativistic calculations are available in the range $18 \le Z \le 100$ from the work of Chen, Crasemann, and Mark.²

Accurate experimental values of L-subshell yields also are important in many practical applications, ranging from elemental analysis by x-ray emission techniques to basic studies of nuclear and atomic processes leading to emission of x rays and Auger electrons, such as electron capture, internal conversion, and ionization cross section measurements.

The present work extends the measurement of the total L_2 - L_3 Coster-Kronig transition probability f_{23} , the probability for shifting a vacancy in the L_2 to the L_3 subshell, to Z = 54.

The basic physical relationships among the L subshells involved in the determination of f_{23} have been published previously,³ but are repeated here for clarity. Measurement of f_{23} proceeds from the relationship

$$f_{23} = \frac{C_{L_3X(K\alpha_2)}I_{K\alpha_1}}{C_{L_3X(K\alpha_1)(\theta)}I_{K\alpha_2}},$$
 (1)

where $C_{L_3X(K\alpha_2)}$ and $C_{L_3X(K\alpha_1)}$ are the total numbers of Lx-ray counts gated by $K\alpha_2$ and $K\alpha_1$ x rays, respectively, arising from L_3 -X shell transitions, where X represents the M, N, \ldots higher shells, which give rise to the $L_l + L\alpha_{1,2} + L\beta_{2,15}$ components of the L x-ray series. These quantities are corrected for background, nuclear cascading, if present, and chance coincidences, as well as directional correlations in the case of $C_{L_3X(K\alpha_1)}$ and L xray coincidences arising from $K\alpha_1$ tail events falling within the $K\alpha_2$ gate in the case of $C_{L_3X(K\alpha_2)}$. The quantities $I_{K\alpha_1}$ and $I_{K\alpha_2}$ are the intensities (counts) of $K\alpha_1$ and and $K\alpha_2$ singles events falling within the energy region defined by the $K\alpha_1$ and $K\alpha_2$ coincidence gates, respectively. (Note that $I_{K\alpha_1}$ and $I_{K\alpha_2}$ arise from events falling within the energy region of the singles spectrum defined by the $K\alpha_1$ and $K\alpha_2$ gates and are *not* coincidence intensities.)

The radioactive sources used were 9.69 day 131 Cs prepared by irradiating 2 g of nat Ba(NO₃)₂ for 20 h at 10¹³ n/cm² sec in the thermal neutron flux of the Georgia Tech Research Reactor. The irradiated sample was retained for 7–10 days to allow the 139 Ba activity to die out at which time a radiochemical separation of 131 Cs following the decay of 11.5 day 131 Ba was carried out. This separation consisted of a series of BaCl₂·H₂O precipitations⁴ to give a carrier-free, solids-free source, which was drop evaporated onto a Mylar backing.

The experimental apparatus to acquire three parameter XXt coincidence spectra and K x-ray singles spectra has been described in detail elsewhere.³ The K x-ray detector is a ruggedized ion-implanted planar Ge (HP) with resolution of 230 eV full width at half maximum (FWHM) at 14.4 keV, and the L x-ray detector is a planar Si (Li) with resolution of 240 eV FWHM at 5.9 keV. Both detectors are fitted with 0.125 mm Be windows and were used in 180° coincidence geometry. An example of the K x-ray spectrum is shown in Fig. 1 and the L spectra in Fig. 2.

FIG. 1. K x rays from 9.69 day 131 Cs decay in coincidence with L x rays. The coincidence gates indicated by the shaded areas are set in the process of data analysis.

<u>35</u> 749

FIG. 2. L x-ray spectra gated by $K\alpha_1$ x rays (a) and by $K\alpha_2$ x rays (b) at Z = 54 from the decay of 9.69 day ¹³¹Cs. The $K\alpha_2$ -gated spectrum is corrected for the presence of $K\alpha_1$ tail events (see text).

TABLE I. Quantities used to evaluate f_{23} .

	· · · ·	
Quantity	Value	% error
$\overline{C_{L_3X(Ka_2)}}$	5.12×10 ³	9.6
$C_{L_{3}X(K\alpha_{1})}(\theta)$	4.98×10^{4}	2.4
$I_{K\alpha_1}$	3.20×10^{8}	0.2
$I_{K\alpha_2}$	1.88×10^{8}	0.2

A TAC window of ~ 70 nsec FWHM was used, in order to achieve a significant reduction in tailing in the K and L x-ray spectra. This narrow time resolution results in a coincidence efficiency of $\sim 70\%$, assuming the coincidence efficiency to be 100% for a 200 nsec wide TAC window.

The data were evaluated according to the procedure given in Sec. II of Ref. 3 and the quantities needed for determining f_{23} from Eq. (1) are listed in Table I with numerical results and percent errors. The method used to determine the contribution of the $K\alpha_1$ tail to the $K\alpha_2$ intensity is that of Gnade *et al.*⁵ The placement of the gates is indicated by the shaded areas in Fig. 1. The comparison of the composition of the $K\alpha_2$ gate obtained by this method and by a singles line shape fit are summarized in Table II. The contribution of the $K\alpha_1$ tail events determined by the gating method amounts to 18.2% of the $K\alpha_2$ gate events, whereas by fitting a singles line shape, the contribution would be 20.0%. These percentages are consistent with previous observations.^{5,6}

The percent errors listed in Table I are essentially statistical, except for $C_{L_3X(K\alpha_2)}$ which is dominated by the presence of systematic uncertainty which arises from the correction for $K\alpha_1$ tail events in the $K\alpha_2$ coincidence gate. The only other correction arises from the unresolved L_{η} x rays which fall in the $L\alpha$ x-ray peak, for which the method of McGeorge *et al.*⁷ is applied using the theoretical values of Scofield⁸ for the ratios L_{η}/L_2 and L_{α}/L_3 . No correction for nuclear cascading is required, since the EC decay of ¹³¹Cs proceeds only to the ground state of ¹³¹Xe.

A value for the Coster-Kronig transition probability $f_{23}=0.148\pm0.029$ is obtained for Z=54. This value is consistent, within the quoted uncertainty, with the value of 0.174 from the relativistic calculations of Chen,

TABLE II. Comparison of the composition of the $K\alpha_2$ gate obtained by the gating method and by a singles line shape fit.

$I_{K\alpha_2}$ gate	Gating method (counts)	Singles line shape fit (counts)
$K\alpha_2$ events	54 521	53 274
$K\alpha_1$ events	12 1 1 3	13 360

Crasemann, and Mark.²

No attempt was made to obtain the *L*-subshell fluorescence yields, ω_2 and ω_3 , since the systematic error arising in the *L* x-ray detection efficiency in conjunction with the systematic error arising from the tailing correction results in an overall uncertainty too large to permit a meaningful comparison of these subshell fluorescence yields with theory.

- *Present address: Department of Physics, Tennessee Technological University, Cookeville, TN 38505.
- ¹M. O. Krause, J. Phys. Chem. Ref. Data 8, 307 (1979).
- ²M. H. Chen, B. Crasemann, and H. Mark, Phys. Rev. A 24, 177 (1981).
- ³B. E. Gnade, R. A. Braga, and R. W. Fink, Phys. Rev. C 21, 2025 (1980); 23, 580(E) (1981).
- ⁴R. W. Fink and B. L. Robinson, Phys. Rev. 98, 1293 (1955).
- ⁵B. E. Gnade, R. A. Braga, W. R. Western, J. L. Wood, and R. W. Fink, Nucl. Instrum. Methods 164, 163 (1979).
- ⁶M. Tan, R. A. Braga, R. W. Fink, and P. V. Rao (unpublished).
- ⁷J. C. McGeorge, S. Mohan, and R. W. Fink, Phys. Rev. A 4, 1317 (1971).
- ⁸J. H. Scofield, Phys. Rev. 179, 9 (1969).