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Role of three-body unitarity in m.-N scattering
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We consider the amplitude for m-N scattering within the framework of a Lagrangian of the form
suggested by the cloudy bag model with volume coupling. By first exposing two-body, and then
three-body unitarity, we derive a set of integral equations that couple the ~N to the m.mN channel.
These equations satisfy two- and three-body unitarity, and can be used to describe m-N scattering
both below and above the threshold for pion production. Below this threshold, the equations have
the form of the Lippmann-Schwinger equation with the new feature that in the potential, the ver-

tices in the pole diagram are undressed, while those in the crossed diagram are dressed. This feature
allows for the proper description of the P~~ amplitude.

I. INTRODUCTION

The recent interest in the m-N system has been motivat-
ed by several outstanding problems. (i) The need for tr-N
amplitudes as input to pion-nucleus calculation. Here
most of the work is based on parametrization of the data
in a form that is convenient for use in other calculations.
These parametrizations are often in terms of separable
amplitudes' which fit the data very well but are not
unique in terms of their off-shell behavior. For example,
in the P» channel, the division of the amplitude into a
pole and nonpole has been a great source of uncertainty in
pion-deuteron calculations. (ii) The m.-N system, as the
simplest nuclear system, has become the testing ground
for our ideas of the underlying quark structure of hadrons
and mesons. In particular, the cloudy bag model has
been extensively used for P-wave, and more recently, for
S-wave scattering. These models, which treat the nu-
cleon, delta, and other isobars on equal footing, have the
advantage of consistency with QCD, the presently accept-
ed theory of strong interactions. In this respect they may
be considered more fundamental, and could be used to re-
move some of the uncertainties in the phenomenological
models mentioned above. (iii) There have been some re-
cent questions regarding the nature of some m-N reso-
nances above the threshold for pion production. In par-
ticular, there are several models for the Roper or
N*(1440) resonance, as a three-quark state, or the result
of the ~-6 threshold. To examine these resonances we
need to invoke three-body unitarity, as they are highly in-
elastic. '

In an attempt to examine some of the above questions,
we will present the framework of a theory that starts with
the Lagrangian in terms of quark degrees of freedom and
ends with a set of equations for m.-N scattering that satisfy
two- and three-body unitarity. Although our final results
are similar to those obtained by Fuda using projection
operators, our analysis is simpler, covariant, and can be
extended to include Lagrangians that are nonlinear in the
pion field. ' The method used in deriving the equations
for m.-N scattering are identical to those used for the

NN-mNN equations, ' ' and is based on the classifica-
tion of the diagrams (that contribute to a given process)
according to their irreducibility. '

In Sec. II we commence with the Lagrangian for the
cloudy bag model and show how we project onto a basis
of asymptotic states involving three quark configurations
(the baryon B=N, b, , N*, . . .). In this new basis we can
write a many body Hamiltonian involving hadrons and
mesons, where the interaction is the basic EBB vertex, and
includes a n-B interaction derived from the contact term
in the original Lagrangian. For the present derivation we
neglect terms in the Lagrangian that can change the num-
ber of pions by two. However, we will show where these
terms would arise in our derivation, and how they will ef-
fect our final results. Although the derivation does not
explicitly depend on the form of the Lagrangian, we will
use the cloudy bag Lagrangian as a guide in our classifi-
cation of diagrams.

After stating briefly the basic lemma used in our classi-
fication scheme, we proceed in Sec. III to a derivation of
the two-body equation by exposing the corresponding uni-
tarity cut. We find that the amplitude is divided in a
natural way, into a term that has the dressed baryon pole
and a background term. The pole term has a dressed
B~mB' form factor, and the residue of this amplitude at
the baryon pole gives the dressed coupling constant. At
this stage the background amplitude results from an in-
teraction that is the sum of all diagrams that are two-
particle irreducible. To examine the structure of this
two-particle irreducible amplitude, we proceed in Sec. IV
to expose the three-particle unitarity cut. Here we find
that the effective ~-B interaction, which gives the back-
ground term, includes the crossed ~-N diagram, but with
the n.B~B vertex dressed. This last observation is cru-
cial' for a proper description of the ~-N phase shifts in
the PI~ channel and the ~NN coupling constant. Also in-
cluded in this interaction are the vr-B scattering through
the contact term, and all multiple scattering in the mwB
Hilbert space. This latter contribution is included
through the three-body mmB amplitude. To include the
contribution from three-body unitarity and avoid multidi-
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mensional integration, we show in Sec. V that the back-
ground amplitude, and the full ~-B amplitude, satisfy a
set of Faddeev-like equations that couple the ~B to the
n.m.B Hilbert space. Finally, in Sec. VI we present our
concluding remarks, and comment on the terms in the La-
grangian that change the pion number by two.

II. THE LACxRANCJIAN

Although our final equations are independent of the de-
tail form of the Hamiltonian, in actual calculations one

needs to specify the exact form of the Hamiltonian being
used. Furthermore, to make the classification scheme
conceptually simpler, the reader should have an explicit
Hamiltonian in mind. For this reason we will consider
the cloudy bag model Lagrangian as our starting point.
In particular, we take the case of volume coupling, ' as
that includes a contact term which allows for S-wave
scattering, and plays an important role in the P&~ chan-
nel. ' This Lagrangian is given, after expansion to second
order in f, by

—q(x)Qq (x) B8———,
'
q(x)q (x)A + —,

'
(B„P) ——,

' m
2

+ q(x)y'"y r (8 P)q. (x)8 — q(x)y"v" (PXB P)q(x)8q — [(8 P) P —(P.B P) ]
1 1

P 4J02 P 6f2 P (2.1)

—=~0+~ sr q q +~n n q q +~mmmm~'' (2.2)

where q(x) is the quark field, f is the pion decay con-
stant, and 8 is the bag energy density. Here, Az is a sur-
face delta function, and 6~ is one, inside, and zero, out-
side, the bag. In the above, Wo is the Lagrangian for the
MIT bag and the free Lagrangian for the pions. The in-
teraction Lagrangian is the sum of a term that couples the
pion to the quark (W qq), the contact term which gives
the interaction of the pion with the quark (W qq), and
the Lagrangian for ~-w interaction (W„). We expect
at this stage the expansion in f„ to be convergent, and
the neglected terms to a small contribution. However, it
is possible that in some reactions [e.g. , (vr, 2vr) (Ref. 9)] we
may need to include higher order terms. With the excep-
tion of the last term (W„), this Lagrangian is identical
to that derived from the nonlinear o. model.

Having truncated our Lagrangian, we can quantize it
by replacing the quark and pion fields by the correspond-
ing field operators with the appropriate commutation re-
lation. These field operators can be written in terms of
creation and annihilation operators as

d k
P(x) = f (e '" "ak+e'" "ak ),

(2~) 2cok

q(x) =g t(„P„,,

(2.3)

(2.4)

where b„and b„are the creation and annihilation opera-
tors for quarks, while ak and ak are the corresponding
operators for pions. In the above, g„ is the wave func-
tion of the quark in the MIT bag. We note at this stage
that in quantizing the quark field we have excluded anti-
quarks. This is a simplification that could be avoided.

To project onto the baryon spectrum we need to define
our asymptotic baryon states in terms of their quark
structure. For the present investigation we assume all
baryons are three-quark configurations, i.e., our unper-
turbed bases are

~

B ~ =
I
(qqq)B

I

~ &=
I
~ (qqq)B~

~

vrmB) =
~

m., rr, (qqq)B),

(2.5)

where B=N, 6, N, . . . . In defining the above space we
have not included states with quark-antiquark (qq) con-
figurations. This can, in principle, be included, but for
the present we will neglect them to maintain consistency
with our quantization of the quark fields. By projecting
the cloudy bag Lagrangian onto the above basis, we derive
the Hamiltonian in the space of baryons and mesons to be

H =pe B B + f dkco(k)ak ak+HI, (2.6)

FICJ. 1. A diagram that contributes to final state propagator
dressing.

where e is the energy of the baryon, while
co(k)=(k +m„)'~ is the energy of the pion. At this
stage the baryon is static. This is the result of the fact
that we have used the bag model for our starting Lagran-
gian. In the advent of a more realistic model, such as a
chiral soliton model, we hope to be able to correct for the
center of mass and get a kinetic energy term for the
baryon. For the present we assume this has been achieved
and we take e to include the kinetic energy of the baryon.
The interaction Hamiltonian (HI) resulting from the La-
grangian in Eq. (1.1) is
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HI=+ f d k((a ~H ~P,pk)B+~a„k+(a,pk ~H ~13)B Bpazk)
aPp

+g f d k d k'(a, pk
~

H qq ~
P,vk')B~Bpa&ka~k

aP
PV

+g f d kd k'd k"d k"'(pk, vk' ~H ~„~ ok",Ak'")a„ka kaqk ~ a~k- .
PV
aA,

(2.7)

Here the matrix elements of the different terms in the in-
teraction Hamiltonian are given in Ref. 15, for the case of
the cloudy bag model. We note that in writing the contri-
bution of the contact term to Eq. (1.5) we have only in-
cluded terms which do not change the number of pions.
In this way we avoid the coupling of states that differ by
two pions. This constraint will render integral equations
for ~-N scattering that are practical from a computational
point of view. We will see that the neglected terms could
be included in perturbation theory. The above Hamiltoni-
an will be used in the following sections to help in the
classification of the diagrams.

III. TWO-BODY UNITARITY

Having established the form of the Hamiltonian we will
be considering, we turn to the derivation of our equations.
The method used in the present analysis is an extension of
the method used recently' to derive the NN-~NN equa-
tions within the framework of a chiral bag model. This
involves considering the Green's function, in momentum
space, for the process with n initial momenta p&, . . . ,p„,
and I final momenta q&, . . . , qI. For the case of scalar
particles, this is given by'

G""'(q~, . . . , q~,p &, . . . ,p„)(2~)'5"(p i + +p~ —q i
—' ' '

qr )—
1 n

= f d'x, . . . d x„d y&
. . d yIexp i g qkyk i g—pkxk (0~ T[0(yi) ' '4(yt)4(xi)'' P(x )] l0)

k=1 k=1
(3.1)

where P(x) is the field at the space-time point x, and T stands for time ordered products. This Green s function, in per-
turbation theory, can be taken as the sum of all topologically distinct diagrams that contribute to this process. The cor-
responding amplitudes are obtained by employing Lehmann-Symanzik-Zimmermann (LSZ) reduction (see Ref. 17), i.e.,

taking the amplitude (a
~

T
~

b ) as the residue of the corresponding Green s function at the physical masses of all the in-
itial and final particles, i.e.,

I n

e I
T lp» p. ) =( —i& '")'+" g(qk m')G""(qi — e pi p. ) g(pk

k=1 k=1
(3.2)

Here, Z is the wave function renormalization, and results
from the fact that that P(x) is the interacting field.

To classify the diagrams that contribute in perturbation
theory to a given amplitude, we need to introduce some
basic definitions. ' ""

(i) A k cut is an arc that separates initial from final
states in a given diagram, and cuts k particle lines with at
least one internal line. An internal k cut is one that cuts
internal lines only.

(ii) An amplitude is said to be r-particle irreducible if
all diagrams that contribute to the amplitude do not ad-
mit any k cuts with k & r.

(iii) The last cut lemma' states that for a given ampli-
tude that is (r —1)-particle irreducible there is a unique
way of getting an internal r cut closest to either the initial
or final states for all diagrams that contribute to the am-
plitude.

These definitions were first used by Taylor for the three-
body problem, ' and more recently to derive the NN-~NN
equations. ' "

To illustrate the use of the above definitions and at the
same time examine the basic structure of the ~-N ampli-
tude, we consider the problem of renormalization of the
baryon propagators. The amplitude for ~-B
(B=N, 6, N*, . . . ) scattering (f(nB)

~

T
~

i (rrB') ), and
the connected diagrams that contribute to this amplitude,
can be divided into two classes.

(i) Those for which we have a self-energy contribution
on an external baryon leg (see Fig. 1). These diagrams are
of the general form

(f(mB)
~

T
~

i(vrB')) =Kg' d'8'(f(vrB)
~

T
~

i(nB')), (3.3)

where do8 and XH are the undressed baryon propagator(i)

[e.g. , do8 ——(p —mpH ) for baryons with bare mass mpH]
and the self-energy of baryon B, which is one-particle ir-
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reducible as indicated by the superscript (1). Here, mpa is
the mass of the baryon as determined by the MIT bag
with possible gluon corrections.

(ii) The rest of the diagrams not belonging to (i). These
we denote by (f(mB)

I

T
I

i (vrB') ). The caret on the B in-

dicates that the diagrams that contribute to this amplitude
exclude those that have a bubble on the final baryon line.

We now can write the ~-B amplitude as

&f(~B)
I

Ii(rrB')) =Xa doa(f(rrB)
I

T Ii(rrB'))

+(f(m.B)
I
T

I
i(m.B')) . (3.4)

da ——(dpa —Xa ) =Zada (3.6)

with Za the wave function renormalization constant and
d B the corresponding renormalized propagator. This
propagator has a pole at the physical baryon mass with
unit residue. In a similar manner we can dress the initial
baryon B' to get

Za da(f(mB)
I

T
I
t(rrB'))dBZB

=doa(f(rrB)
I
T I i(rrB'))dpa . (3.7)

The n.-B amplitude (f(~B)
I

T
I
i (nB') ) as defined above

includes a factor of Z' for each external baryon line.
This is consistent with our definition of the amplitude in
terms of the Crreen's function in Eq. (3.2). The above pro-

This result can be rewritten as

doa(f(mB)
I
T

I
i(rrB')) =da(f(mB)

I

T
I
i(rrB')), (3.5)

where dB is the dressed baryon propagator, and is given
by

cedure will give us the ~-B amplitude for physical
baryons. One could carry the same procedure for the ini-
tial and final pion; however, the Hamiltonian we are con-
sidering gives no dressing to the pion. This is due to the
fact that we have neglected the antiquark contribution in
our quantization of the cloudy bag Lagrangian.

Before we can proceed to examine two-body unitarity,
we need to expose the one-body intermediate states, which
are possible for this system. The connected diagrams that
contribute to the m.-B amplitude (f(~B)

I

T
I
i (m.B') ) can

be divided into two classes.
(i) Those with intermediate states of at least two parti-

cles (e.g. , rrB or rrmBsta. tes). These diagrams are by defi-
nition one particle irreducible. We denote this class of dia-
grams, whose sum is the one particle irreducible ampli-

tude, by (f(rrB)
I

T'"
I
i (vrB') ).

(ii) The diagrams not belonging to (i). These are one
particle reducible and can be written in terms of the
mB~B' amplitude (B'

I f I

i (m.B)) using the last-cut lem-
ma as

g(f(~B)
I

f"'t
I
B")dpa-(B"

I
f' ' Ii (mB')) . (3.8)

B"

In writing Eq. (3.8) we have used the last cut lemma to ex-
pose the final one particle intermediate state. Alternative-
ly, we could expose the first one particle intermediate
state and write the diagrams that belong to (ii) as

g(f(~B) I
f' '

I
B")dpa (B"

I

f"'Ii(mB')) . (3.9)
Bll

We now can write the m.-B amplitude as the sum of non-
pole (one-particle irreducible) and pole (one-particle redu-
cible) amplitudes as

&f(~B)
I
T

I
~(~B') &

= &f(~B)
I

T'"
I

~(~B') &+g&f(~B) If""
I

B"&doa &B"If"'I ~(~B') &

Bl I

=(f(mB)
I

T~"
I
i(rrB'))+g(f(~B)

I

f' ~t
I
B")dpa ~ (B"

I

f"'
I i (mB')) .

Bl l

(3.10)

(3.1 1)

~B' doB'(B If I
& (rrB) )

We now can write the amplitude for m.B~B' as

(B'
I

f' ' Ii (nB)) =(B'
I

f'"
I

i (nB))

+~B' doB &
B'

I

f"'
I
i (rr» &

(3.12)

(3.13)

To rewrite these equations in terms of physical (i.e.,
dressed) baryons we need to examine the ~B~B' ampli-

tude (B'
I
f' '

I
i(rrB)). The diagrams that contribute to

this amplitude can be divided into two classes: (i) those
that are one particle irreducible, which we denote by

( B '
I f ' "

I
i (m.B)), and (ii) the diagrams that are one par-

ticle reducible. These can all be written, using the last-cut
lemma, in the form

or

doa'(B' If' '
I
i(rrB)) =da (B'

I

"'
I

i (rrB) )

(3.14)

This result allows us to rewrite Eq. (3.10) in terms of the
dressed baryon propagators only as

(f(~B)
I

T
I

i (n.B') ) = (f(m B)
I

T' "
I
i (rrB ') )

+g(f(~B) If"~'I B")

Xda (B"
I

f"'
I
i (mB') ) .

(3.15)

In this way we have written the ~-N amplitude in terms
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then Eq. (3.15) can be written in operator form as

T'88 = T'as+ f"' df"',

(3.16)

(3.17)

where the superscript (0) denotes the fact that the total
m.-B amplitude T88 is one-particle reducible. The intro-
duction of subscripts for the amplitudes is superficial at
this stage, but will become necessary when we introduce
three-body unitarity.

The contribution of two-body unitarity to the ~-N am-
plitude comes from three sources, TH'8, f'", and X'", and
we need to examine each separately, by employing the
last-cut lemma. For the self-energy we are basically con-
sidering the one-particle irreducible amplitude for 8—&8
off shell. The diagrams that contribute to this amplitude
can be divided into two classes: (i) Those that are two-
particle irreducible, which we denote by X( ', and (ii) the
two-particle reducible diagrams. These can be written
with the help of the last-cut lemma as

f(2)gg f(1)t

This allows us to write the self-energy term as

of a pole part and a nonpole part by exposing the one par-
ticle intermediate states using the last-cut lemma. Here
we observe that the pole part has contribution from all
baryons that have a bare three-quark structure. Further-
more, all pionic corrections to these baryons are included.
Thus if the final baryon has a mass greater than the n. N-
threshold, that baryon is given as a resonance and its
width for decay by pion emission can be calculated given
+(1)

To expose the two-particle unitarity structure of the
equations, we need to classify the diagrams that contri-
bute to the amplitudes for nB'~n. 8, m.B'~B, and
the self-energy term [i.e., (f(mB)

~

T"'
~

i(mB')),
(B

~ f'"
~

i (n.B ) ), and XH"] according to their irreducibil-
ity using the last-cut lemma. However, before we proceed
with this task, we need to simplify our notation in two
ways. (i) We have shown above how we can always re-
place the bare baryon propagator d08 by the correspond-
ing dressed one d8, and in the process we replaced B by
B. This procedure is identical to the removal of all explic-
it bubbles in baryon lines, and at the same time considers
all baryon propagators dressed. From this point on we
will assume that all baryon propagators have been dressed,
and at the same time suppress the caret on the baryon la-
bel. (ii) If we include in our space n distinct baryons (e.g.,
n =2 if 8=N, b), then our amplitude for a given process
is an n X n matrix in this space. On the other hand, if the
truncation in the number of distinct baryons is different
in the 8 and m.B Hilbert space, then our amplitude for
mB —+8 will be m Xn, where m and n are the number of
distinct baryons in the 8 and mB spaces, respectively. If
we further assume that the propagators for the different
baryons form a diagonal matrix of the form

where 1 is the pion propagator given in moinentum
space as d =(p rn—) '. In Eq. (3.18) the self-energy is
written in terms of the one- and two-particle irreducible
amplitudes for 8~mB (see Fig. 2). We note here that the
m-B intermediate states have physical baryons. Also, the
matrix X is not necessarily diagonal. Thus if we have two
or more baryons that have the same quantum numbers,
then X will have elements that connect those baryons. An
example at hand is that of the nucleon and Roper, if both
are taken as three-quark configurations. In this case, X is
a 2X2 matrix and the dressed baryon propagator [given
in Eq. (3.16)] is no longer diagonal (see Ref. 15).

To completely expose the two-body unitarity cut in
X"), we need to turn our attention to f"'. Here again the
amplitude can be divided into (i) a part that is two-
particle irreducible, which we denote by f' ', and (ii) the
rest of the diagrams not belonging to (i). These can be
written, using the last-cut lemma, as

Thus the one-particle irreducible mB~8 amplitude f'"
can be written as

(3.19)

=T88+ T88dd~T88(2) (I) (2) (3.21)

In this way we have completed the exposure of the two-
body unitarity cut, and the solution of Eqs. (3.17) and
(3.19)—(3.21) will guarantee that our final n. Namplitude-

gP %ar
1 + = Q 2 + + lCQ2~ ~~1

With this result, which we present diagrammatically in
Fig. 3, we can rewrite the baryon self-energy as

g(1) y(2) +f(2)yy f(2)'t+f (2)yg 7 ( i )gg f (2)'t (3 20)

In this way we reduced the problem of calculating X")
and f"' to that of determining the one-particle irreducible
n 8~m 8 amplitude TH'8, and the form factor for n.B~B,
f' '. The structure of this form factor is not relevant to
two-body unitarity since it is two-particle irreducible, and
one could take f' ' from the basic Hamiltonian, i.e., f' '

can be written in terms of the quark wave function in the
MIT bag model.

Finally, to get the two-body unitarity structure of TH'8,
we divide the diagrams that contribute to this amplitude
into two classes: (i) those that are two-particle irreducible,
and which we denote by T88, and (ii) the diagrams that
do not contribute to (i), which can be written, using the
last-cut lemma, as

Tssdd~T88 ——T88dd~T88 .(2) (I) (I) (2)

In this way we find that TH'z is a solution of the two-body
equations with T88 as the potential, i.e.,

T88 ——T88+ T88dd~T88(I) (2) (2) (I)

y(i) y(2)+f(2)jj f(()f'

y(2)+f (1)jg f(2)t (3.18)
FIG. 2. Diagrammatic illustration of Eq. (3.18) for the one-

particle irreducible self-energy.
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y(2) y(3)+ I (3)GI (2)f

(4.2)

FKs. 3. Diagrammatic illustration of Eq. (3.19) for the one
particle irreducible m B~Bform factor.

TBB will satisfy two-body unitarity. This result for the
case when B=N was first derived by Mizutani and Kol-
tun' using the projection operator technique. It also can
be shown' ' that the final result for TBB is identical to
the solution of the two-body equation as a two potential
problem, with the potential given by

If we take the constraint imposed on the Hamiltonian,
namely that it not include any terms that couple Hilbert
spaces that differ by two or more pions, then I ' ' is zero,
and so is X' '. Under this condition the self-energy term
X' ' is zero. However, in expanding the Lagrangian, to
second order in f ', we include the contact terms, which
gives coupling between the B and the ~mB Hilbert spaces.
If we decide to include this coupling in lowest order, its
contribution to the self-energy is given by

V=TI)B+f' ' dpf' ', (3.22)
y(2) I (3)GI (3)T (4.3)

where do is the bare baryon propagator, and TBB is any
potential.

The main motivation for the present detailed analysis
of the two-body unitarity sector was to illustrate the ap-
plication of this approach to the simple problem of two
body scattering below the threshold for pion production,
and at the same time generalize the result to include any
number of baryons as three-quark states. At this stage we
have not analyzed the structure of TBB, and can only state(2)

that, in lowest order, it will include the contact term in
the Hamiltonian as well as the crossed diagram. By ex-
amining the three-body unitarity structure of this ampli-
tude we will be able to state more precisely the structure
of Tqz. This has been shown to be essential for the
description of pion-nucleon scattering in the P» chan-
nel. "

IV. THREE-BODY UNITARITY

The motivation for exploring the three-particle sector
of the rr Nampl-itude is twofold: Firstly, we need to get
the exact form for TBB and, in particular, the strength of
the coupling in the crossed diagram and the contact term.
Secondly, several vr-N resonances, most notably the Rop-
er, occur above the threshold for pion production and are
highly inelastic. In order to make accurate deductions
concerning the quark content of such resonances, it is
essential to use a theory that includes three-body unitarity.

To expose the three-particle unitarity cut, it is clear
from Eqs. (3.18), (3.19), and (3.21) that we need to exam-
ine all amplitudes that are two-particle irreducible (i.e.,
X( ', f' ', and TBB). For the self-energy term X( ' we can
divide the diagrams that contribute to this amplitude into
two classes: (i) those that are three-particle irreducible,
which we denote by X' ', and (ii) the rest of the diagrams
not included in (i). These are three-particle reducible and
can be written, with the help of the last-cut lemma, as

The contribution from X' ' is zero unless we include the
coupling between the B and mmmB Hilbert spaces, and
that requires retaining terms of a higher order than f in
the Lagrangian.

In a similar manner we can write the two particle ir-
reducible m 8~B amplitude as

f(2) f (3)+( —I ()le'( )t)

f(3)+(I (2)GF(3)t) (4.4)

where F" is the amplitude for mB —+m~B that is i-particle
irreducible. The subscript c indicates that we should in-
clude only connected diagrams. Here again, if we con-
strain our Hamiltonian to have no coupling between the B
and ~mB spaces, then I "=0 for i )2 and

f ' '= f ' '=f ' '=. . . In this case f' ' can only include
diagrams with no intermediate states. In other words, f' '

is the basic interaction that couples the B to the mB Hil-
bert space as included in the Hamiltonian, and it is given
in terms of the quark wave function. In the event that we
need to include that contribution from the contact term
that couples the B to the rrrrB space, then Eq. (4.4) can be
used as the basis for a perturbation expansion. We will
present later an expression for F' ' which will be the
basis of a multiple scattering expansion for f' ) that in-
cludes the coupling of the B to the n~B channels. From
the above analysis we see that, for the Hamiltonian in Eq.
(2.7), both 2( ' and f ' ' have no contribution to three-body
unitarity.

With the main contribution to three-body unitarity
coming from TBB, we consider the diagrams that contri-
bute to this amplitude. These can be divided into those
that are three-particle irreducible, which we denote by
TBB. These include, among other diagrams, the contribu-
tion from the contact term (see Fig. 4). The rest of the di-
agrams that are three-particle reducible can be written as

I ' )GI "'~=r( 'GI' '~ (4.1)

where I' ' is the amplitude for +~BLAB that is i-particle
irreducible, and G is the three-body free propagator
d d~d. This allows us to write the self-energy term X( '

as FICr. 4. Some of the diagrams that contribute to Tq '.
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(F(3)GF(2)t) (F(2)GF(3)'t) (4.5)

The m m.B~m B amplitude F' ' has a connected and
disconnected part. The disconnected part is given by

Fd"' g——|i;Jd
' (i )f'" "(j),

F„"'=g 5;,d '(1)f"'(j)=Fd"'+(Fd"'GMd"')d
1J

Fd + (Fd Md )d

w~ere

(4.9)

with i,j =1,2 labeling the pions, 5;J =1—5;J, and f' '(j)
as the n-particle irreducible amplitude for mB~8 with
the jth pion being absorbed. On the other hand, the con-
nected part of F' ', because of its three-particle irreduci-
bility, requires the coupling of the mB to the ~m~B Hil-
bert spaces. If we neglect this coupling, as it is not in-
cluded in our Hamiltonian, then the connected part of
F' ' is zero. We now can write the two-particle irreduci-
ble n.-B amplitude as F(3)+F(2)GM(3) (4.11)

M(n) y g d —1( )T(n —1)( )+d —lt(n —1) (4 10)
1J

Here, t'"' is the n-particle irreducible m-m amplitude, and
TI31I(j) is the n-particle irreducible r Bam-plitude with
the jth pion interacting with the baryon. Combining the
results of Eqs. (4.8) and (4.9), we can write,

F(2) F(3)+F(3)GM(2)

TB)I ——TBB+(Fd 'GF' ' ),

=TBB+(F' 'GFd ' ), . (4.7)

Using this result in Eq. (4.7), we get

T' '=T' '+(F' 'GF' ' ), +(F' 'GM' 'GF' ' ), . (4.12)

The second term on the right hand side (rhs) of Eq. (4.7)
includes terms of the form

(F(3)gF(2)t)

which are given diagrammatically in Fig. 5, and have the
form of the crossed diagram with the unsymmetric
feature that one of the vertices is one-particle irreducible
while the other is two-particle irreducible. To resolve this
problem of lack of symmetry in the vertices, we need to
consider the second term, i.e.,

(F(3)gF(2)t)

and, in particular, we need to examine the structure of
F,' ', the amplitude for ~m.B~~B. The diagrams that
contribute to this amplitude can again be divided accord-
ing to their irreducibility, and if we apply the last-cut
lemma to the three-particle reducible class of diagrams,
we get

F"'=F'"~ (F'"GM'"),

This n Npot-ential includes (i) the contact term TBB,
which at this stage has the strength given by the interac-
tion Hamiltonian, (ii) the crossed diagram (F' 'GF' ' )„
which has the bare mB~B vertices, and (iii) the last term
on the rhs, which includes all the multiple scattering in
the ~mB Hilbert space in M' '. In particular, it includes
scattering of the pion off the baryon and the interaction
between the two pions. Both of these effects are impor-
tant for the description of m-N scattering above the pion
production threshold. However, in the P&& channel, the
behavior of the amplitude in the region of the Roper reso-
nance can influence the phase shifts at lower energies. To
understand the role of this last term in more detail, we
need to examine the structure of the m~B~m~B ampli-
tude M' '. This amplitude has contributions from con-
nected diagrams M, and disconnected diagrams Md. Al-
though the disconnected part does not contribute to a
physical amplitude, when included in Eq. (4.12), it can
lead to a connected diagram that gives a physical contri-
bution to the m-B potential. We now can write

=F,' '+(F' 'GM' '), , (4.8) M' '=M' +M' '
d C (4.13)

where M" is the i-particle irreducible amplitude for
~vrB~mnB The second. t.erm on the rhs of Eq. (4.8) will
give us the mechanism for coupling the ~N to the pN
channel. Here, p stands for the ~-~ interaction. Making
use of Eqs. (3.19) and (4.6), we can write the disconnected
m~B~mB amplitude Fd ' as

with Md
' given by Eq. (4.10), i.e.,

(4.14)Md
' ——g 5;Jd„'(i)TB'B(j)+d 't"',

EJ

where t'" is the m-~ amplitude, which we assume to satis-
fy a two-body equation of the form

t(&) t(2)+t(2)g y t(1)
77 (4.15)

FIG. 5. Diagrammatic representation of the connected part
f F(3)GF(2)f

with the potential t' ' given by the last term in the in-
teraction Hamiltonian in Eq. (2.7). We note at this stage
that Md ' includes the m.-B amplitude T~~, which we need
to determine. Thus, it appears that we have a self-
consistency problem. However, we observe that the ener-

gy at which TB'B is required in Eq. (4.14) is at least m
less than the energy in Md ' and TBa in Eq. (4.12). In this
respect the problem of self-consistency is overcome, and
to calculate the m-N amplitude in the Roper region we
need the amplitude below the threshold for pion produc-
tion, which we can parametrize as input to the calcula-
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tion. Making use of Eq. (4.15) and the fact that TB'B sat-
isfies a two-body equation, we can write

3

Mgp = g Md (a) =Md '+ (Md 'GMd ')d . (4.16)

U p =5 pG '+ g 5 yMg '( y )G U~p

=5 pG '+g U~rGMd '(y)5yp.
r

(4.24)

(M' 'GM' ') =(M' 'GM' '), . (4.17)

Combining the results of Eqs. (4.16) and (4.17), we can
write an integral equation for the 3~3 amplitude which
is of the form of the Lippmann-Schwinger equation, i.e.,

M (2) M (3)+M (3)GM (2)

where

=M' '+M' 'GM' ', (4.18)

M =Md +M (4.19)

If at this stage we consider Eq. (4.18) as the three-
particle Lippmann-Schwinger equation with the potential
given by Eq. (4.19), then we can implement Faddeev
methods to write our integral equation for the 3~3 am-
plitude. In particular, if we take the three-body force
M,' ' to be zero, then the amplitude M' ' can be written as

aP

=+[Md '(a)5 p+Md '(a)GU pGMd '(P) j,
aP

(4.20)

where U p are the Alt-Grassberger-Sandhas ' (AGS) am-
plitudes and Md '(a) given is by Eq. (4.14), i.e.,

g5P '(i)T&B(j) for a=j =1,2,
Md (a)= .(&)

d 't"'(3) for a=3 .

(4.21)

(4.22)

a=l

We now turn to the connected, two-particle irreducible
3~3 amplitude for mmB~mvrB, M,' '. The diagrams that
contribute to this amplitude can be divided into two
classes: (i) Those that are three particle irreducible, which
we denote by M,' ' (these diagrams will play the role of a
three-body force in this three-body problem), and (ii) dia-
grams that are not included in (i). These latter diagrams
can be classified using the last-cut lemma and written as

It is clear from Eq. (4.23) that we can combine the second
and third terms on the rhs to replace one of the F' ' by
F' '. In fact, we can use the AGS equations to iterate Eq.
(4.23) and then regroup terms in order to replace all the
bare mB~B vertices f' ' by the corresponding dressed
ones f'" using Eq. (3.19). After some algebra, we get, for
the m-B potential,

TBB——TBB+QFd '(i)G5qFg '
(2)

iJ

+g QFd '(i)G5; Md '(a)GU JGFd (j) . (4.25)
ij a

In this way we have written the ~-B potential in terms of
the dressed n.B~B form factor, which by definition
should give the experimental coupling constants. The
first term on the rhs of Eq. (4.25) is the contact term,
which at this stage still has its strength determined by the
interaction Hamiltonian. The second term has the crossed
diagram, but with the dressed vrB~B form factors. If we
neglect the last term and substitute the rest in Eq. (3.22),
we find that the m-N potential consists of a direct pole
term with bare form factors, a crossed diagram with the
dressed form factor, and a contact term. The two-body
Lippmann-Schwinger equation then dresses the form fac-
tor for the direct pole term, but gives no.further dressing
to the crossed diagram. This result is different from the
standard procedure adopted in the past, where the cou-
pling constant is taken to be the same in the direct pole
term and crossed diagram. We have recently' shown that
the implementation of the above scheme gives very good
results in the Pj& channel.

The last term on the rhs of Eq. (4.25) gives the contri-
bution to the potential from the multiple scattering effect.
In particular, it includes both the contribution due to m.-m.

scattering, and the effect of any m.-B resonances that are
not included in terms of their quark structure. Further-
more, to satisfy three-body unitarity we need to include
this last term.

V. THE mB-nmB EQUATIONS

Here, 1 and 2 are the pions, while 3 is the baryon. From
this point on we use the notation that i,j =1,2, and
TB's(j) is the amplitude for the interaction of the jth pion
with the baryon. On the other hand, a, P, . . . =1,2, 3.
With this result we can write the m.-B potential as

+g[F' 'GM' '(a)5 pGF' ' j,
aP

+g[F' 'GMd '(a)GU pGMd '(p)GF' 'tj, . (4.23)
aP

The AGS (Ref. 21) amplitude U p satisfies the coupled
integral equations,

In the preceding section we wrote the m-B potential
TBB in terms of the dressed mB~B vertex

Fd"(i)=+5,,1 '(j)f"'(i),
J

and the AGS amplitude U &. In this form we can only
get the potential by either solving the AGS equations, and
then performing the multidimensional integral necessary
to calculate the last term on the rhs of Eq. (4.25), or, alter-
natively, we can use the lowest order multiple scattering
expansion for Tq~. Both of these approaches involve
multidimensional integrals, and in the latter case there is
no guarantee that three-body unitarity is satisfied. One
solution to the above problem is to recast the equations
into a set of coupled integral equations that couple the
two-body m.B and three-body m.mB channels.
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To derive such a set of equations we need to examine
the amplitude that connects these channels (i.e.,
~mB~~B, F' '. The diagrams that contribute to this am-
plitude can be divided into two classes: (i) those that are
one-particle irreducible, which we represent by F"', and
(ii) diagrams that do not belong to the first class. The
latter we can write, using the last-cut lemma, as

f(()tdl ()) (5.1}

Since d, the baryon propagator, is dressed, we need to take
both f and I to be one-particle irreducible. We now can
write the connected m.~B~mB amplitude as

F,'"=F'"+f('"dr(" . (5.2)

To proceed further, we need to examine F'" and I'".
The diagrams that contribute to the ~+BLAB amplitudeI'" can be divided into two classes: (i) the diagrams that
are two-particle irreducible I' ', and (ii) the two-particle
reducible diagrams which can be written using the last-cut
lemma as f'"d dF' '. Thus,

+f "d dF (5.3}

In a similar manner we can classify I' ' to get

FIG. 6. Diagrammatic illustration of Eq. (5.7).

given in terms of known amplitudes (i.e., the m.-B ampli-
tude TsB and the mB~B vertex Fd ' d'f——"'). Second,
to close the system of equations that couple the m.B and
~mB space, we need not include this term. Thus we need
only take the residue of

F,' '+ TBBd~dF,' '=(1+T'BBd„d)F,' (5.8)

X 1++GM~ '+g GMd '(a)GU~pGMd '(p)
a aP

To take this residue we need to write F' ' in terms of the
amplitudes for m-B with a spectator pion and ~-n with a
spectator baryon. From Eqs. (4.6), (4.11), and (4.20) we
have

F(2) F(3)(1+GM(2))

I (3)+P(&)G~(3) (5.4) (5.9)

As already stated at the beginning of Sec. IV, I' ' and
I' ' are both zero for the Hamiltonian under considera-
tion. In the event that we need to include terms in our
Hamiltonian that change the number of pions by two,
then I' ' is taken directly from that Hamiltonian, and in
that case I' ' is given by Eq. (5.4), and is related to the
3~3 amplitude M' '. This last fact makes the derivation
of a coupled set of equations for the nB nnB syst. em-.more
complex. This is the result of the direct coupling between
the ~B and ~me.B channels. To avoid this extra complex-
ity at this stage, we will restrict our analysis to the Hamil-
tonian in Eq. (2.7), and take I' '=0. We now can write
the amplitude for ~+Bum.B as

F(0) F(1) f+(1) tfd(l) ddF(2) (5 5)

where we have assumed F,' '=0, which is consistent with
our Hamiltonian. Since the m-B potential given in Eq.
(4.25) is expressed in terms of the dressed m.B~B vertex
Fd '(i), we should also rewrite Eq. (5.9) in terms of Fd '(i ),
in order to establish a set of coupled equations. This is
achieved by employing the ASS equations (4.24) for U ~
to iterate Eq. (5.9) and then regroup terms using Eqs. (4.9)
and (4.24). After some algebra we get

F' '=Fd '+g Fd '(i)GU(pGMd '(p) .
ip

(5.10)

We observe here that the first term on the rhs is discon-
nected, while the second term is connected and can be
used to write Eq. (5.8) as

We turn next to the structure of the one-particle irredu-
cible amplitude for m.mB~n.B, F"'. Here, again, going
through our classification scheme, we get

(1+TBBd~d )F,' '=(1+TBBd~d)

&(g Fd '(i)GU;pGMd '(p) .
ip

(5.11)

and, therefore,

F(0) F(2) + ( T(1) +f(1)tdf (1))d dF(2)

=Fc + T'BBd„dF'

(5.6) We can now take the rhs residue of Eq. (5.11) to get the
amplitude for ~B*~mB and pB~+8, since the ampli-
tude Md '(p) has the B* pole for p=1,2 and the p pole
for p=3. Because the ~ Band ~-m s-ubamplitudes in
Md ' satisfy the two-body equations, we can use Fredholm
theory to write, for p= 1,2,

(5.7)

where we have used Eq. (3.17) in writing the second line
of Eq. (5.7). In Fig. 6 we have a diagrammatic representa-
tion of the last line of Eq. (5.7). To get the amplitude for
~B*~m.B (B' is a ~ Bresonance) or pB~-m.B (p is a n.vr-
resonance), we need to take the right hand residue of Eq.
(5.7) at the B* or p pole. Before we take this residue, we
first observe that the last term on the rhs of Eq. (5.7) is

Md" (i)=g &;,d '(j)TI)')I(i)
J

&;,d„'(j) (5.12)

where A„(i) and P„(,i) are the eigenvalues and eigenvectors
of the kernel of the two-body equations for TI)'B(i). Mak-
ing use of the fact that one of the eigenvalues A.„ is one at
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the pole of the ~-8 subamplitude, we can get the ampli-
tude for wB*~~B by taking the rhs residue of Eq. (5.11)
at the 8' pole to get

while TH'8 satisfies the equation

TB~B~ = TBB(1+d~dTBB ), (5.22)

TBB, =(1+T'BBd d)QFd (i)GU~ (5.14)

where j, in UJ, is the label of the pion interacting first
with the baryon in the ~B* channel and is needed to the
symmetrization of the equations.

This same procedure can be followed to get the
pB~vrB amplitude. In this case Md '(3) is given, using
Fredholm theory for the ~-~ two-body amplitude, by

M '(3) =d 't'"(3) =d ' g . (5.15)
Ih„(3))&h„(3)I

1 —A,„(3)

Here again A, „(3)and h„are the eigenvalues and eigenvec-
tors of the kernel of the two-body m-~ equation. We now
can write the amplitude for pB~vrB, by taking the rhs
residue of Eq. (5.11) at the p pole, as

&WOI T'op(d d
I
~ &) I&B&

with

Tzp ——(1+TBBd~d )Q Fd '(i )GU; 3 .

(5.16)

(5.17)

In Eq. (5.16),
I
XB) and d d

I
h„) are the wave functions

for the 8 and p resonance in the pB channel, respectively.
We can combine the results of Eqs. (5.14) and (5.17) into
one equation of the form

Tgg=(1+TBBd d)QFd (i)GU3, (5.18)

where for X=1,2 we have the ~B*~~B amplitudes,
while ).=3 gives the pB~~B amplitude. The amplitudes
for the reversed reactions are given by

TPB y UAiGFd (i)(1+d dTBB)

=g U3;GFd (i)(1+d„dT'B'B) (5.19)

+g U3; GF' ' (i )d df"' df ' (5.20)

=&qoI T,",'. (d.d
I y„»(IX.», (5.»)

where
I
X ) and d d

I P„) are the wave function of the
pion and the 8* resonance in the ~B* channel, respective-
ly, while go) is the asymptotic wave function for the rrB
channel. In Eq. (5.13), T „ is given by

with TBB given by Eq. (4.25). If we substitute Eq. (4.25)
into Eq. (5.22) and make use of Eq. (5.21), we get

TBB TBB +y Fd (~)~jtGFd (J) ( 1+d7rdTBB )

1J

++Fd '(i)G6;3Md '(X)GT~'B .
lA,

(5.23)

In this way we have an equation for TH'8 in terms of TH'8

and T~'8. To close the integral equations we need to get
an equation for T&8. This we get by employing the AGS
equations (4.24) to iterate Eq. (5.21) once. We then use
Eq. (5.21) to write

Tg'B ——g 6g;Fd
' (i)(1+d dT'BB)

+g5g Md '(a)GT'B . (5.24)

In Eqs. (5.23) and (5.24) we have a set of coupled equa-
tions for the one-particle irreducible amplitude in the
vrB-~~B system. These equations could be solved for
TH'8, given the ~-B and ~-~ subamplitudes, as well as the
~B~B vertex. At this stage it appears that the input to
these equations is exactly what we are striving to deter-
mine. In this sense we have a nonlinear problem which
needs to be solved self-consistently. However, to calculate
TB'B(E) using Eqs. (5.23) and (5.24) at energy F., we will
need the ~-B amplitude TB'B(E —ro) at energy E—co,

where co is the energy of the spectator pion. In this sense
we do not have a self-consistency problem, but an analytic
continuation problem in the energy. A simple way of
resolving this problem is to parametrize, or calculate us-
ing the Hamiltonian in Eq. (2.7), TBB(E—co), by ignoring
the coupling to the ~m.B Hilbert space, and then using
that information in conjunction with Eqs. (5.23) and
(5.24) to extend the calculation to energies above the pion
production threshold. This philosophy has been followed
in the NN-mNN system with reasonable success.

To calculate the full ~-8 amplitude, we need to evaluate
TBB, which can be evaluated using TB'~ and Eqs. (3.17)
and (3.19). However, we now need TB'B off shell to the
extent that the evaluation of f'" using Eq. (3.19) involves
an integral over TB'B as determined by Eqs. (5.23) and
(5.24). To avoid this extra integration we need to write
our coupled equations for THH and T~z. Making use of
the fact that T88 is a solution of the equation' '

At this stage we have a choice of either deriving cou-
pled equations for the one-particle reducible amplitudes
T88 and T~z or for the one-particle irreducible ampli-
tudes TH'8 and T~'H. Each of the above options has its ad-
vantage in that it reveals different aspects of the equa-
tions. We will commence with the latter approach of
working with the one-particle irreducible amplitudes.
These are given by

TgB ——g U)„GFd (i)(1+d~dTBB), (5.21)

TBB (f dof + TBB )( 1+d„dTBB )

with TBB given by Eq. (4.25), we now can write

TBB= VBB(1+d~d T'BB )

+QFd' (i)Go;~Md (~)GU, GFd" j()
ija

X (1+d„dTBB),
where

(5.25)

(5.26)
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VBB f' ' dof' '+TBB

+g Fd '(i)G6,JFd
' (j) .

lJ

(5.27)

contribution to the attraction. On the other hand, if the
multiple scattering is included, the strength of the bare
contact term might have to be a parameter, adjusted to fit
a piece of experimental data.

With the help of Eq. (5.19), Eq. (5.26) can be written as

TBB= VBB( 1 +d~dTBB )

+QFd '(t)G5;gMd '(A)GTgq .
lA,

(5.28)

To get the corresponding equation for T~z, we iterate Eq.
(5.19) with the help of the AGS equations. This gives

TPII ——g 5g;Fd
' (i)(1+d~dTBB)

+g g M(2)( )GT(0) (5.29)

VBB ——VBB+g Fd"(~')Go;&Md" (A, )5q, GFd" (j ),
tj A.

(5.30)

where the second term on the rhs of Eq. (5.30) is illustrat-
ed diagrammatically in Fig. 7. In Fig. 7(a) we have a con-
tribution that corresponds to dressing for the contact
term. The inclusion or otherwise of this correction to the
contact term should determine its strength. Thus if we
chose not to include these corrections, the contact term
will have a strength with f determined from current
algebra to be -93 MeV. This seems to work very well for
the P&& channel, ' where the contact term has a major

/ r

(a) (b)

FICJ. 7. The lowest multiple scattering contribution to the
vr-B interaction.

In Eqs. (5.28) and (5.29) we have a set of coupled equa-
tions for T88 and T~z. The advantage of these equations
over Eqs. (5.23) and (5.24) is that these equations are for
the full m-B amplitude THE, and their solution on shell
does not require the determination of an off-shell ampli-
tude which is then integrated over. More important is the
fact that these equations, and particularly the kernel of
these equations, can be used to investigate m.-n resonances
above the threshold for pion production by examining the
eigenvalues of the kernel. The m-B potential V88 in-
cludes a pole term which involves the bare +BLAB vertex

f ' ', while the crossed term has the corresponding dressed
form factor. Thus in the absence of coupling to the pB
and mB channels [i.e., neglecting the second term on the
rhs of Eq. (5.26)], the ~ Bamplitud-e is a solution of a
two-body equation with the potential having different
strengths for the n.B~B vertex in the pole and crossed di-
agram. This feature of the ~-N interaction has not been
used until recently. '

If we iterate Eqs. (5.28) and (5.29) once, to get the
lowest order multiple scattering contribution to V88, we
get an effective potential of the form

VI. CONCLUSIONS

In the above analysis we have shown that for Lagrang-
ians of the form suggested by the cloudy bag model, we
can derive a set of equations that couple the m.B to the
m~B channel and satisfy two- and three-body unitarity.
The essential ingredients in the analysis are the following.
(i) The validity of expanding the chiral Lagrangian to
second order in the pion field. In this way we can quan-
tize the theory and write the corresponding Hamiltonian
in the space of baryons and mesons. The validity of this
expansion depends on the convergence of the series in the
pion field. For a bag radius R & 0.8 fm we expect this ex-
pansion to be reasonable, while for R &0.8 fm conver-
gence problems could become serious. ' Here we should
remember that a large radius for the bag can lead to the
fact that quarks and gluons inside the bag cannot be treat-
ed perturbatively. In our model the implication of this
is the need to include a larger space of baryon configura-
tions and the diagonalization of the gluonic interaction in

this basis. We hope that for 0.8& R ~1.2 fm the expan-
sion in the pion field is convergent, and the quarks and
gluons inside the bag can be treated perturbatively. We
note that the procedure we have presented means that the
resulting partial summation of diagrams arising from the
Lagrangian includes all terms that contribute to two- and
three-body unitarity. (ii) Although the derivation does not
rely on the detailed form of the underlying Lagrangian,
we assume that perturbation theory is valid to the extent
that we can classify diagrams according to their irreduci-
bility.

The resultant equations which are of the form of Fad-
deev equations can be used to test quark models, such as
the cloudy bag model, within the framework of pion-
nucleon scattering. In fact, below the threshold for pion
production, if we neglect the coupling to the ~vrB channel,
the equations take the form of a two-body equation with
the potential given by Eq. (5.27). This potential consists
of three terms. The first is the pole term in which the
~BB vertex is not dressed, and we have a bare baryon
propagator. The second term is the contact term which
gives S-wave scattering as well as attraction in the P»
channel. Because we are not including the coupling to the
nmB channel (i.e., no dressing of the contact term), the
strength is given in terms of f =93 MeV. Finally, the
last term is the crossed diagram, but now we have to use
dressed form factors for the ~BB vertex. This potential
has been used with great success in the P» channel. '

Above the pion production threshold, the equations
which include three-body unitarity can be used to investi-
gate ~-N resonances which are highly inelastic. In partic-
ular, we can examine the eigenvalues of the kernel of Eqs.
(5.28) and (5.29) in the complex energy plane to deter-
mine if vr-N resonances are genuine poles or the result of
the m-6 threshold. This work is presently in progress.

The study of pion-nucleus scattering has been plagued
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with uncertainty in the off-shell behavior of the ~-N am-
plitude. The most recent example is the role of the P»
interaction in pion-deuteron scattering The above theory
will be able to give us some quantitative constraint on the
off-shell behavior as dictated by quark models of hadrons.
Thus the success of the cloudy bag model for the P»
channel' will give us some constraint as to how this am-
plitude should be divided into a pole and nonpole part.
This in turn will remove some of the uncertainty in the
pion-deuteron problem.

Throughout our derivation we considered but neglected
terms in the Lagrangian that change the number of pions

by two or more. The main reason for not including them
at this stage is to guarantee that the final equations be
practical from a computational point of view. We have
consistently discussed these terms, and indicated how they
could be included perturbatively. The inclusion of such
terms completely will involve the coupling to channels
with more than two pions, i.e., for or more body unitarity.
This will make the final equations much more complex,
which is not warranted at this stage.

The authors would like to thank the Australian
Research Grant Scheme for their financial support.

R. J. McLeod and I. R. Afnan, Phys. Rev. C 32, 222 (1985); 32,
1786(E) (1985)~

2I. R. Afnan and R. J. McLeod, Phys. Rev. C 31, 1821 (1985).
S. Theberge, G. A. Miller, and A. W. Thomas, Phys. Rev. D

22, 2838 (1980); 23, 2106(E) (1981); A. W. Thomas, S. The-
berge, and G. A. Miller, ibid. 24, 216 (1981);A. W. Thomas,
Adv. Nucl. Phys. 13, 1 (1984).

4E. T. Veit, B. K. Jennings, and A. W. Thomas, Phys. Rev. D
33, 1859 (1986).

5A. Mokhtari et al. , Phys. Rev. D 33, 296 (1986).
E. Umland, I. Duck, and W. von Witsch, Phys. Rev. D 27,

2678 (1983).
7B. Blankleider and G. E. Walker, Phys. Lett. 152B, 291 (1985).
8M. G. Fuda, Phys. Rev. C 30, 666 (1984); 31, 1365 (1985); 32,

2024 (1985).
G. Kalbermann and J. M. Eisenberg, Phys. Rev. D 28, 66

(1983);28, 71 (1983);28, 1318 (1983); 29, 517 (1984).
I. R. Afnan and B. Blankleider, Phys. Rev. C 32, 2006 (1985).
'Y. Avishai and T. Mizutani, Phys. Rev. C 27, 312 (1983).
A. W. Thomas and A. S. Rinat, Phys. Rev. C 20, 216 (1979);

A. W. Thomas, Ph. D. thesis, Flinders University of South
Australia, 1973 (unpublished).
I. R. Afnan and B. Blankleider, Phys. Rev. C 22, 1638 (1980).
J. G. Taylor, Nuovo Cimento Suppl. 1, 934 (1963); Phys. Rev.
150, 1321 (1966).

~5B. C. Pearce and I. R. Afnan, Phys. Rev. C 34, 991 (1986).
A. W. Thomas, J. Phys. 7, L283 (1981); A. Szymacha and S.
Tatur, Z. Phys. C 7, 311 (1981).

~7See C. Itzykson and J.-B. Zuber, Quantum Field Theory
(McGraw-Hill, New York, 1980).
T. Mizutani and D. Koltun, Ann. Phys. (N.Y.) 109, 1 (1977).

' I. R. Afnan and A. T. Stelbovics, Phys. Rev. C 23, 1384
(1981).
T. Mizutani, C. Fayard, G. H. Lamot, and S. Nahabetian,
Phys. Rev. C 24, 2633 (1981).

'E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. 82,
167 (1967).

G. E. Brown and M. Rho, State University of New York at
Stony Brook Report No. SPLT/85/193, 1985.
B. C. Pearce and I. R. Afnan, Phys. Rev. C 30, 2022 (1984).


