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We investigate why and under what conditions y scaling occurs in inclusive scattering for large,
but nonasymptotic q. We explore an exactly solvable model with a particle bound to an inert core,
and study for it also the plane wave, Born, West, and eikonal approximations. For all, a function
related to the approximate response manifestly scales in some scaling variable y. We then consider
similar functions for the exact response and study the approach to the scaling limit for q~ ~. De-
finite conclusions are reached as to quality, origin, and preferred scaling variables.

I. INTRODUCTION

Various experiments on inclusive electron scattering
from nuclear targets presently enjoy particular interest.

In one category the energy and momentum transfer co,q
are in excess of several CxeV. In this so-called deep inelas-
tic region the virtual photon probes the parton substruc-
ture of a nucleus. ' There, the extracted structure func-
tions or responses approximately depend on one instead of
two variables co, q. The former is the x scaling variable

loss (Coulomb sum rule). ' These discrepancies have led
to several unconventional ideas, ' but it is not yet clear
that their introduction is unavoidable.

A different aspect of inclusive electron scattering data
has been brought to the fore by West. He considered the
response of virtually any composite system for low co and
large q, where "low" and "large" depend on the size and
spectra of the system. West considered, in particular, the
response R of a nucleus which can be described by non-
relativistic dynamics with local interactions. His result
(to which we shall return later) reads

where Q =q —co and m is the nucleon mass.
Experiments on A(e,e')X have shown that the nuclear

response R in the deep-inelastic region is not identical to
the response of A free nucleons. ' There is at present an
on-going debate on the interpretation of this so-called
EMC effect. Does the effect require QCD for its explana-
tion, or is simple nuclear dynamics sufficient? ' Even if
the latter is the case, deep inelastic scattering proceeds
primarily by partons within nucleons, with only minor ef-
fects of the nuclear medium on these nucleons.

In a second class of inclusive scattering experiments,
the energy imparted to the nucleon is small enough to
disregard pion production. A description of the response
in that case may be possible by means of conventional ha-
dronic degrees of freedom. Indeed, the oldest data could
be described by the response of a Fermi gas of (dressed)
nucleons having no apparent dynamical correlations.

A still limited but growing set of new data comprises
mostly light and medium weight ' nuclei and some of
these data permitted a separation of R in longitudinal
and transverse responses. " ' Their description requires
more ingredients than the content of a Fermi gas. Some
results can be accounted for by standard nuclear dynamics
including exchange current effects, ' but others defy a
sufficiently accurate description. We mention, in particu-
lar, ratios of longitudinal and transverse responses and,
further, the longitudinal response integrated over energy

qR (q, co) = f dk k n (k),
4~2 I vw

(1.2)

where n (k) is the nucleon momentum distribution. qR~
manifestly scales in the variable yu (q, co).

Actually, some form of y scaling escaped notice or em-
phasis decades ago. qR for a Fermi gas when q &2kF
(kF is the Fermi momentum) scales exactly in the variable
yu ——yii (q, co). The same is about true when R is
described in a plane wave impulse approximation (IA).
However, the appropriate scaling variable y&A differs
from y~. ' ' The two models mentioned have in
common a neglect of final state interactions (FSI's) be-
tween the knocked-out proton and the spectator core.

West's paper greatly contributed to a renewed interest
in inclusive scattering. The new and partly high-quality
data were shown to indeed scale approximately in y.
These observations started a vivid discussion as to the
meaning of y scaling and the information one might be
able to extract. "-"

Simultaneously, the same paper also caused confusion.
The claim that R for a system in an interaction and for
a Fermi gas scales in the same variable y~ has all too fre-
quently been taken as an indication that FSI s are negligi-
ble. Yet this cannot be correct, in general, because FSI's
are absent in the IA and, as already mentioned, yii &yiA.

Indeed, West's derivation presented as a general one is,
in fact, only an asymptotic result. ' ' In that case,
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FSI s are indeed negligible and, in parallel, differences be-

tween various scaling variables vanish, e.g.,

Xw —Xr~ ~ O(q )
y~ fixed

q~oo

II. THE NUCLEAR RESPONSE FUNCTION

Consider inclusive scattering of a weakly interacting
scalar probe x from a target composed of A identical nu-
cleons N,

and so do interaction effects.
Of course, this observation does not preclude significant

effects for large but nonasymptotic q. This has actually
been demonstrated for responses of the lightest targets, d
and He. ' ' Without there being an a priori reason or
theoretical clue, the original quest of West remains
unanswered. Does R for an interacting system scale
and, if so, what is the appropriate scaling variable.

The relevance of these questions has recently been put
Hinto focus by the observation that R ', expressed by

means of either y~ or y&&, exhibits scaling of about equal
quality. This observation is in itself problematic. It is
clear that (1.2) cannot hold in two approximations with
different lower integration limits of the same integral.
One might then hope that theory will favor one given can-
didate.

The authors of Ref. 49 therefore calculated F(y) in the
approximation (1.2) for several underlying two-body
forces in He. None reproduced the scaling function in
the approximative form (1.2) beyond ly l

-0.25 GeV.
Actually, this ought not come as a surprise, since Laget's
calculations (Ref. 17) had shown the importance of FSI's,
which are absent in (1.2).

One is presently in a situation where approximate y
scaling is an established empirical fact, while, at least for
He, several options exist. In addition, one ought to en-

visage the possibility that the presence of FSI's will upset
the immediate relation between R and n(k). We also
have to admit that even for a nucleus as simple as He one
can hardly answer crucial questions around y scaling.
Yet, these seem vital for a motivated continuation of
research in this field.

With a clear and limited purpose in mind we formulate
below a model with a single degree of freedom, i.e., a par-
ticle bound to an inert core. ' The model is simple
enough in order to permit an exact evaluation and, conse-
quently, answers all questions, in principle.

In the following we study that model in some detail.
We are aware that some of our observations are known to
some of our colleagues. However, we also ran into mis-
givings and erroneous conclusions, and therefore preferred
a complete exposition over a possible, succinct communi-
cation.

In Sec. III below we define the model, indicate methods
of calculating the exact response, and work out a standard
approximation. We also discuss approximations which
include parts of the FSI and emphasize, in particular, an
eikonal approximation. Section IV contains numerical re-
sults for R. In Sec. V we recall the manifest scaling prop-
erties of approximations for R. We then study functions
P;(y, q) constructed from the exact response for fixed y, q
and investigate the approach to scaling. At least for the
model, we reach definite conclusions and are also capable
to select a preferred y variable, which, as ought to be the
case, contains characteristics of the interaction.

x+A~x'+X . (2.1)

Only the outgoing probe x is detected, and for it one mea-
sures the losses q, co in, respectively, the momentum (k)
and the energy ( E); thus, q =

l

k —k' l, co =E E'. —
The cross section to lowest order in the elementary xN

interaction reads

dE'dA dA
(2.2)

where do.„N/dO is the elementary projectile-nucleon dif-
ferential cross section. Equation (2.2) contains some bind-
ing corrections which remove off-shell effects inherent in
the underlying impulse approximation.

The quantity of major concern is, in this case, the pure-
ly longitudinal response R (q, co) of the target to the weak
scalar probe. The starting point for its construction is the
operator pq representing the Fourier transform of the
single-particle density

iq r.
pq=X e

J
(2.3)

Matrix elements of pq between states P of the nuclear
Hamiltonian H belonging to energies e are the standard
inelastic form factors

Fo (q)=(Polp lP ) . (2.4)

Of many equivalent expressions for R, we cite

R "(q ~)=g
l
Fo (q)

l

'@~+&o—& (2.5)

im(4o
I pqG (~+~o+'9)pq

I ko)

'Im(go
l
pq(a)+eo H+ir)) 'pq

l Po) . —

(2.6)

III. MODELS WITH A SINGLE DEGREE
OF FREEDOM

Consider a nonrelativistic nucleon bound to an inert
core. Without loss of generality, we shall assume the ex-
istence of only one bound state. In that case, Eq. (2.5)
reads (Ez ——p /2m)

We now study the nuclear response R in several models
and approximations.
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(q ~)=f 3 l Fop(q)
l

'5(~+eo —e )
dp

2=f f dr Pp(r)e'~'g' '"(r) 5(co+co e—)
(2m. )

P P

3 3 o p —q Im p G co +so +i g p
'

o p
' —q

dp dp
(2~) (2vr)

(3.1)

= —vr
' drdr' o r e' 'Im r G cu+Eo+i'g r' e (3.2)

A specific interaction V between the nucleon and the core
affects the response through the groundstate Pp and the
scattering states Pz '. The latter are either explicit in
form factors or implicit in the intermediate propagator
G = (cu H—+ig—)

' A.standard expression for G reads
[H =Hp+ V, Gp =—(co Ho+i')—']

G =Go+Go VG =Go+GotGo, (3.3)

where t satisfies the Lippmann-Schwinger equation
t = V+ VGot.

Calculation of the response R, Eq. (3.1), may be made
in several ways. For instance, using a partial wave expan-
sion of R, Eq. (3.1) becomes'

oo 2

R (q, co) =mug(2l+1) f dr r Pp(rj)I(qr)uI(g, r)
I

0

(3.4)

At this point we mention that probability current is not
conserved if part, or all of V is neglected in the FSI (i.e.,
here in Pz '), while no such approximation is made in Pp.
See Refs. 53—55 and references contained therein for nu-
merical consequences of these inconsistencies in the calcu-
lation of Fpz(q).

Having treated the PW approximation, we define R" ',
the final state interaction part with full V, by

R =R +R"" (3.9)

B. Born approximation

If the FSI is weak, it suffices to describe it in Born ap-.
proximation (BA). It has been shown in Ref. 53 [Figs.
3(a) and 3(b)] that the inelastic form factor Fp (q) peaks
for p~ ~q, and that then

Here, uI is the partial wave radial wave function of the
knocked-out particle with momentum

2q

p+q
(3.10)

g= [2m (co+co)]'~ (3.5)
Assuming (3.10) to hold in general, one finds

u((g, r) ~ (3.6)

and which is, as follows, normalized by means of the
phase shift 6I.

e ' sin[fr —1 sr/2+ 5I (g) ]
R (q, co)—

2
2'q Rpw( )

q+0
(3.11)

We now discuss some approximations to Eqs. (3.1) and
(3.2) and follow similar steps as in Ref. 53 for the nucleon
knock-out amplitude.

A. Plane wave approximation

yo, =q+0 yo= —q+0. (3.8)

The plane wave approximation (PW) is obtained when
V~O, i.e., for 6~Go, leading to

R (q, co)= f ~
P(p —q)

~

5(co+co—e )
dp

f ' dkkn(k) . (3.7)
4~2q lyo

In Eq. (3.7), n (k) =
~
Pp(k)

~

is the nucleon momentum
distribution normalized as J [dk/(2') ]n (k) = 1. The ar-

gument in the 5 function in Eq. (3.7) expresses energy
conservation with the difference between excited and
ground state energies being furnished by m. The integra-
tion limits are, respectively, minimal and maximal, possi-
ble values for p, and are

The BA respects the above-mentioned probability current
conservation.

R (q, ~) = f P,
~
y(p —q)

~

'5(~+ep —ep, q)
(2~)

with

dkkn(k),
4~ q &w

(3.12)

—q3'w= +
2

(3.13)

Contrary to yp, Eq. (3.8), y~ is the minimal value of the
momentum of a nucleus which absorbs the transferred en-

ergy and momentum m, q while being and remaining on
the energy shell.

C. The West approximation

Here we just cite the result of the original attempt by
West (W) to account, in an approximate fashion, for
FSI's:
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D. Eikonal approximation
In Ref. 53 we studied an eikonal approximation (eik)

for Fp (q) for large
~ p ~

. Here we consider the same for

the Green's function in (3.2), when m
~

V
~
a/p && I (a is

the range of V). We may then write for the propagator G
in Eq. (3.2) (r=b, z; U =

~ p ~
/m), 6

Z

G""(p /(2m);r, r')= —5' '(b —b')0(z —z')exp i—p(z —z')+ —f V(b,z")dz"
U U

(3.14)

Using g, Eq. (3.5), now substitute Eq. (3.14) into Eq. (3.2). Using the parity of the 9 function, one obtains, for real V,

R""(q,co) = f d b f f dz dz'Po(b, z)cos (q —g)(z —z')+ f V(b, z")dz" Po(b, z') .2' Z'
(3.15)

If, in addition,
~

z ~, z'
~

&a, with a the range of V, an average value ( V) can be taken out of the z" integral. Even if
either

~

z
~

or z'
~

lies outside the range a the procedure is still permissible in the case of strong binding. Contributions
from

~

z ~, ~

z' & a are then strongly suppressed by a rapidly decreasing Po(b, z ). Thus,
r

R" (q,co)- f d b f f dzdz'Po(b, z)cos q —g+m m(v)
2m.g

(z —z') Po(b, z') (3.16)

f dkkn(k),
4~ g &eii ~

(3.17)

with

m( v)
y i= —q+ (3.18)

R ~(q, co) — f dk k n (k),
4~2q ~&v ~

(3.19)

with [Rev,~,(p+q)~(v))

Notice that the derivation requires V to be real. An equa-
tion like (3.17) appears occasionally in the literature. It
obtains when, in an ad hoc fashion, FSI's are accounted
for, by inserting ReV z, (p+q) in the 5 function in Eqs.
(3.7) or (3.12). The former leads to

IV. NUMERICAL RESULTS FOR A PARTICLE
BOUND IN A WELL

We emphasized in the Introduction the need to study
the response for an exactly solvable model. As may be ex-
pected, such a model will be a primitive one, yet it has the
advantage that a meaningful comparison can be made be-
tween the exact response and approximations. Even more
important will be the possibility of formulating a criterion
for y scaling.

We thus investigate the response of a particle bound in
a square well. ' As in Ref. 53, we study two sets of pa-
rameters:

"Strong binding": Vo ———52 MeV, a =1.97 fm,

e= —23.52 MeV, (4.1)

yi ———q +(g —2m ( V) )'
r

m(v)—q+ 0—
g&&(2m( v) )'/'

(3.20)

R;(q, co)=g, '(q, co) f '

dk. k n (k),
4m-

(3.21)

with g; simple functions of the kinematical variables q, co.
(ii) By definition the maximum of R corresponds to the

QEP and is, for R;, apparently attained for y;(q, co)=0.
For fixed q the latter equation defines co;, which all are
close to co-q /2m.

Equation (3.19), to be compared with (3.17), results from a
prescription rather than from a derivation. Notice, more-
over, the factor 1/q instead of 1/g. The difference of the
two grows with ~y ~, the distance from the quasielastic
peak (QEP).

We now make two remarks which seem to hold for all
mentioned approximations R; of the exact R".

(i) All are of the form

"Weak binding": Vo ———21.54 MeV, a = 1.97 fm,

e= —2.225 MeV . (4.2)

The kinematical range covered corresponds to
0.5 &E(GeV) (2.0, 8=30',90. With E the incident en-

ergy and co the energy transfer, the three-momentum
transfer reads

q =co +4E(E —co)sin (0/2) . (4.3)

We first calculated R by means of Eqs. (3.1) and
(3.4)—(3.6). In order to have a numerical check, we also
proceeded from Eq. (3.2). Its partial wave expansion is
readily shown to read

R (q, co) = g(21+ 1)
8m.

~ dk k P(q, k)ti(k, g)x Pi(q, g)+
k —l'g

(4.4)
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from threshold, the corresponding negative y, as usual,

quickly reaches the QEP value y -0. However, for a con-
tinuingly increasing co, values of y only slowly increase
and actually tend to oscillate. This immediately explains
the unusual behavior of R as shown in Figs. 3(a) and 3(b).

One observes in all cases that around the QEP (q —g or
y;-0) contributions from the final state contributions
(FSI's) to R are very small. Thus, for all approximations
to FSI's, one has, for y; =0,

(4.7)

The regions away from the QEP are of greatest interest
and there the quality of the various approximations is
tested in a discriminating way.

Inspection of Figs. 1 and 2 shows that, with the excep-
tion of the low co side of the QEP for the lowest E investi-
gated, the eikonal approximation gives, over several de-

cades, the best rendition of R'".
Next, we consider the BA to the FSI, which, as expect-

ed, is universally superior to the PW approximation with
R" =0. One will not fail to observe the remaining
discrepancy between R'" and R . Apparently, R" is
never negligible.

This is illustrated in an alternative fashion in Table I.
There we indicate (for SB results) the position of the QEP
and q, co values in the wings: FSI's are clearly of irnpor-
tance for kinematical situations represented in Figs.
1(a)—1(c).

Of particular interest are the results for the West ap-
proximation. While competing in quality with R"" for
E =0.5 GeV, R otherwise seems to be a poor approxi-
mation on the elastic side of the QEP. At this point we
reca11 the similarity between y~ and yFG, the y variable
for a Fermi gas. This similarity has led to the statement
that a fit by means of the West approximation implies
that the system behaves as a noninteracting Fermi gas. It
may be useful to recall that West originally intended to
calculate R for a general system of interacting particles
(the only assumption made in Ref. 37, namely locality of
pair forces, hardly being a restriction). Therefore, had
R included R", it ought to be close to R'" for all q, co,

which is not the case. In addition, one would expect y~
to depend on V, as does y„k.

It indeed turns out that West s original derivation is er-
roneous in general; only if y is fixed and q~oo does it
give the correct asymptotic expression. However, in that

10
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TABLE I. For E =0.5, 1.0, and 1.5 GeV (8=90') we give, for the SB case, (~ )osp, the position of the QEP. In the subsequent line
we give for each E two pairs ( ) corresponding to kinematical values well below and above the QEP. For the latter, the last line con-
tains the ratio R '/R' . Quantities with dimensions are in CxeV.

0.5 1.0 1.5

QEP

0.59
0. 19

1.07
0.61

1.52
1.23

QEP

R '(q, co)

R'"(q, ~)

0.64
0. 10

3.89

0.54
0.30

—0.65

1. 17

0.40

2.46

1.02
0.80

—0.45

I.58
1.00

0.67

1.50
1.40

—0.21

here that n; =n (=n'""'). Equation (3.21) then becomes

47r' 1 dF(3')n(y;)=-
m y; dy;

(5.2)

Consequently, the momentum distribution n appears re-
lated to R;.

For what follows it will be more convenient to keep y
and q fixed: co; =u;(y, q) will then be an energy loss de-
pending on the approximation. Thus, as an alternative to
Eq. (5.1), one has

g';(q, co;)R;(q,co;)=F(y) .

At this point we emphasize the following:

(5.3)

(i) The scaling property expressed by Eq. (5.1) or (5.3)
demonstrably holds for a number of approximations R; to
R '" [Eqs. (3.7), (3.11), (3.12), and (3.17)].

(ii) Scaling is a useful tool only if, according to some

g;(q, co)R;(q, cu) =
2 J dk k n (k)=F(y;) . (5.1)

4~~ ly; l

The left-hand-side g;R;, though functions of q, co, appear
to depend on one variable y; =y;(q, co) only, or differently
stated, for the approximation i, g;R; shows perfect scal-
ing. y and I' are, respectively, scaling variable and scaling
function. For reference, we collect in Table II expressions
for y;,g;.

The interest in scaling in practice derives from (5.1):
With the response equation (2.2) directly accessible from
experiment and g; known for a given approximation i, Eq.
(5.1) leads to

we11-defined criterion, a single approximation is definitely
preferred.
In order to find such a criterion, we introduce functions
of two variables

P; (y, q)
—=g;(q, co; )R'"(q, co; ), (5.4)

which, of course, do not scale. From their definitions
(3.8), (3.13), and (3.18), one readily shows that, keeping
one y; fixed, for every y; (also see Ref. 41),

y; —
y~ ~ O(q '), (5.5)

e.g.,
mE0

3 ~=Vo(1+3 o/2q)—

y„k——yo —m( Vp)/q+O(q ) .

One also checks that for all i (cf. Table II),

(5.6)
y fixed

e.g. , gBA ——q(1+yo/2q) ~q, etc.
We now return to the well-defined functions P;(y, q),

Eq. (5.4). From Eqs. (5.5) and (5.6), one finds

F(3) .
q~ oo

Equation (5.7) expresses the fact that for fixed y all
asymptotic limits equal the PW result. Thus, with (5.6),

(5.8)RFsI 0
q~oo

If a given approximation j is considered to be superior,
Eq. (5.4) reads, for that j,

TABLE II. Scaling variables and characteristics kinematic
variables [cf. Eqs. (3.21) and (5.1)] for various approximations i

P/(y, q) =$)(q, coj )R'"(q, coJ )

-gj(q, co&)RJ(q, ruj ) =F(y), (5.9)

PW

BA

West

Eikonal

I

—q+4I

I

—q+O'
I

mEp

2 2q q

I

—q+g —I ( v)/g I

0+q
2q

2

where F(y) is the limit (common to all approximations)

4, (J,q) F(J) (5.10)

Equations (5.9) and (5.10) enable the formulation of a cri-
terion. Provided that the approach to the scattering limit
is smooth, the faster the approach to scaling the better the
quality. No precise mathematical criterion will be neces-
sary for the model: the fastest approach of PJ(y, q) to
F(y) is usually judged by the eye.
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FIG. 4. (a) Functions of 4;(y, q), Eq. (5.4), for y =0.2 and 0.0 CseV. Horizontal soli p p
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for y = —0.6 GeV. ( ) Se . e arne as (a) or y = —0.8. CxeV.f
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m(1 —x )

' 1/2
4 2

1+

1 /2 —1

4m x+ 1+

One further checks that also all relativistic variables y;"'
tend to the same limit [cf. Eq. (5.5)], and thus, for fixed y,

rel m(1 —x )

g2~ ~ 2x

No numerical comparison could be made, since our model
is intrinsically a nonrelativistic one.

We have implemented the program implicit in Eqs.
(5.9) and (5.10) for the model. Formidable numerical
problems had to be overcome. These are clearly due to
large I values and, simultaneously, large arguments in the
spherical Bessel and Hankel functions to be retained in
the partial-wave sum (3.4).

For the SB parameters (4.1), we assembled in Figs.
4(a)—4(e) results for P; (y, q) for y (in GeV) =0.2,
( —0.2), —0.8. Except for y =0.2 GeV, the investigated
kinematical regions are on the small co side of the QEP.
Notice that, although for fixed y and q, the energy loss co

varies with the approximation, only co„l,has been entered
in the figures. Also parallel to the horizontal axis, we
give in each panel of Fig. 4 the asymptotic value F(y),
Eq. (59).

The following observations can be made.
(1) Except for y =0, and relatively small q, the eikonal

approximation approaches the scaling limit F(y) faster
over the largest q range. The exception can be under-
stood, since for y =0 and small q, also co and thus g are
small, which is contrary to the eikona1 condition.

(2) The preference for P„i,becomes more pronounced
for decreasing (negative) y, i.e., for regions away from the
QEP. This proves the importance of the remnant FSI,
which the eikonal approximation accounts for better than
any other.

(3) All P; indeed tend to F(y), but the approach to the
asymptotic limit is slow. In some cases the approach is so
slow that P; (y, q) for large q appears to be nearly a con-
stant, which actually is not yet the true asymptotic limit
F(y). The consequent application of Eq. (5.2) then leads
to a faulty extracted n (y).

In our attempt to study the approach of scaling of
P;(y, q) one apparently samples only a small kinematical
region, where co is small and q large. Only for large

~ y ~

will large q leave co relatively small. That region is usual-
ly the y-scaling regime: for those the eikonal model is
vastly superior. For

~ y ~

&0.5 GeV there hardly is a
domain where co is small and q is large.

We conclude this section with remarks bearing on the
relation between y and x scaling. Since the latter is used
in the relativistic regime, we should also use relativistic
analogues of y;, e.g. ,

'

1/2
4 2

fy"'/ =+ 1 ——1+
2 q Q

where Q =q —co . Using Eq. (1.1),

Next, we remark that perfect x and y scaling are both
asymptotic properties: For decreasing q, scaling becomes
imperfect, which for deep-inelastic scattering is primarily
due to gluon exchange. Even when using a different x
variable, still of kinematical origin, imperfect scaling is
only somewhat remedied.

Now consider y scaling; for instance, in the PW vari-
able y0. For decreasing q, FSI will cause responses to be-
come functions of y0 and q, i.e., y scaling becomes imper-
fect. However, our model is simple enough to permit con-
struction of a dynamical y variable which includes FSI ef-
fects. Consequently, scaling in that variable remains near-

ly perfect down to q values where y0 scaling shows signi-
ficant q dependence.

VI. CONCLUSIONS

Above we have described model studies of inclusive
scattering from a system having only one degree of free-
dom, viz. , a proton bound to an inert core. Together with
exact calculations of the basic (longitudinal) response R,
we also computed a number of approximations R;. Ex-
cept for low incident energies, R""appears to be superior
over a wide range of kinematical conditions.

For all approximations studied we could easily establish
a kinematical factor g; which, when multiplying R;, is a
function of one variable y;; that is, g;R; =F(y;), with F
simply related to the single nucleon momentum distribu-
tion scales in the variable y;. In contradistinction to these
approximations R;, there is no a priori reason why these
factors multiplying the exact response R""' will do the
same, except asymptotically for q~0o and apparently
also at the QEP.

One can now ask how close one is to the scaling limit
away from the QEP and the model answers this question.
Again, we found that the exact response R'"(y, q), now
multiplied with the kinematical factor g„i,(y, q), ap-
proaches the scaling limit fastest, in particular for increas-
ing /y [.

The result clearly establishes the following for the
model.

(a) A criterion for y scaling.
(b) The importance of remnant FSI in virtually all

kinematical regions except at the QEP.
(c) The superiority of the eikonal approximation to ac-

count for the FSI and ipso eo, the same for the scaling
variable y„l,. The latter statement implies that y„zdeter-
mines best high components of the single particle rnomen-
tum distribution [cf. Eq. (5.2)].

A second point relates to the y-scaling phenomenon it-
self. Perfect scaling clearly holds when FSI are negligible.
However, the converse is not true: the observation of ap-
proximate scaling in some y; is not in any way proof that
FSI are negligible. Indeed, we showed that in some cases
an incorrect asymptotic limit is reached. From it one
might derive an incorrect momentum distribution.

The above completes a program to study y scaling in a
soluble model. Rather precise questions have been formu-
lated and, within an intrinsically limited scope (only some
approximations were tested), well-founded and conclusive
answers could be given.
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Some of our conclusions may well be approximately
valid for actual many-body systems, but very little can be
proved. For instance, only for an independent particle
model is R known to scale. Not even the plane-wave im-
pulse approximation to R scales rigorously for finite q, as
does its counterpart R in a model with only a single de-
gree of freedom. Finally, we do not know of any general
and reliable treatment of FSI's in A(e, e'p) which leads to
scaling, as does the eikonal approximation for the model
studied. Imperfect scaling apparently occurs in systems
with short-range interactions and systems as diverse as
nuclei and liquid atomic He (and that sometimes in

several y;!). For these, one expects a clearly preferred y
which undoubtedly will depend on the interparticle poten-
tial.
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