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A general parametrization which enables us to construct all possible approximations to the brems-
strahlung amplitude is applied to explore generalizations of existing soft-photon approximations.
We establish the existence of theoretical ambiguity in defining the soft-photon approximations and
we show how the bremsstrahlung cross section calculated from a soft-photon amplitude depends on
the parameters. We also show that if the bremsstrahlung spectrum exhibits resonant structure, then
the position of this structure Ky and its width I y can be predicted by either performing the detailed
bremsstrahlung calculation or using two simple formulas which relate Ky and I y directly to the
resonant energy ER and the width I,l of the resonant structure observed in the elastic scattering
cross sections. This new information about Ky and I y can be used to study the validity of any
bremsstrahlung amplitude. All approximations have been divided into classes, and the following ap-
proximations have been systematically studied: (i) the one-energy —one-angle approximation, which
is the generalized Low's approximation, and (ii) the two-energy —one-angle approximation, which is
the generalized Feshbach-Yennie approximation. We find that all soft-photon amplitudes in the
one-energy —one-angle approximation fail to adequately describe the proton-carbon bremsstrahlung
(p' Cy) data near the 1.7-MeV resonance. These amplitudes predict the values of Ky and I y which
do not agree with the experimental ones. Although the problem comes from both the leading term
and the second term of the amplitudes, the major difficulty lies in the derivatives of the elastic
scattering amplitudes in the second term. Our study also shows that the limited existing data (which
are available only in the soft-photon region, K & 200 keV) can be described by many soft-photon am-
plitudes in the two-energy —one-angle approximation. Since these amplitudes in the two-
energy —one-angle approximation predict quite different resonant structure with different values of
Ky and I y at higher photon energies (200 keV & K & 600 keV), a new p

' Cy experiment is suggested
to test these amplitudes so that the best one can be selected.

I. INTRODUCTION

During the past three decades, nuclear bremsstrahlung
has attracted much attention mainly because of the fol-
lowing reasons: (1) It is the ideal process for investigating
the off-shell effects. The use of nucleon-nucleon brems-
strahlung for the study of the off-energy-shell behavior of
the two-nucleon interaction is perhaps the most well-
known example. In studying nucleon-nucleon bremsstrah-
lung, one also hopes that from among the many different
phenomenological potentials one can distinguish, by its
off-energy-shell behavior, the best two-nucleon potential. '

(2) It can be used to determine the electromagnetic proper-
ties of resonances. For instance, the study of pion-proton
bremsstrahlung (sr—+py) in the region of the b, (1232) reso-
nance was originally suggested for investigating the elec-
tromagnetic multipole moments of the b resonance. (3) It
can be used to study nuclear reaction. The study of
nucleon-nucleus and nucleus-nucleus bremsstrahlung in
the vicinity of resonances, for example, was originally
motivated by the hope that the measurement of these
cross sections could be used as a tool for investigating nu-
clear reactions.

The idea of using bremsstrahlung emission as a tool for
investigating nuclear reactions was first proposed by Eis-
berg, Yennie, and Wilkinson in 1960. Their classical
treatment was extended later to a quantum mechanical

treatment by Feshbach and Yennie. Briefly, the ampli-
tude which represents the photon emission before nuclear
scattering and the amplitude which represents the photon
emission after scattering add coherently. Since these two
amplitudes differ in phase by car (co is the radiation fre-
quency, r the time delay), the bremsstrahlung cross sec-
tion evaluated from these two amplitudes (and an internal
amplitude obtained through the gauge invariant condi-
tion) will contain an interference term which depends
upon the time delay ~. For small values of co~, one ob-
tains a typical, smooth bremsstrahlung spectrum with
I/K dependence (K is the photon energy). As co~ in-
creases, the interference between the two amplitudes is al-
tered, causing a change in the bremsstrahlung spectrum.
For example, when a long-lived resonant state is formed,
the bremsstrahlung spectrum will show structure. A
quantitative measurement of the bremsstrahlung cross
section can then provide a measure of the time delay.
This information about the time delay can be used to dis-
tinguish unambiguously between a direct nuclear reaction
and a compound nuclear reaction. A serious attempt to
measure the proton-carbon bremsstrahlung (p' Cy) cross
sections near the 1.7- and 0.5-MeV resonances and to ex-
tract useful information about the time delay was made
by the Bologna group and the Brooklyn group ' and
these results have been confirmed by a group from Tok-
yo. Each group has clearly observed the resonance struc-
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ture in the measured p' Cy spectra and used these spectra
to extract a delay time of the order of 10 sec. In addi-
tion to the ~—+

py and p' Cy processes, which have already
been measured systematically, the proton-oxygen brems-
strahlung (p' Oy) has also been studied recently by the
Brooklyn group. '

Most of the bremsstrahlung calculations performed in
the past were either model independent calculations or po-
tential model calculations. The model independent calcu-
lations are based upon a fundamental theorem, known as
the soft-photon theorem or the low-energy theorem for
photons. It was first derived by Low" and was extended
by Adler and Dothan. ' This theorem states that the first
two terms in the series expansion of the differential brems
strahlung cross section (or the bremsstrahlung amplitude)
in powers of the photon energy may be calculated exactly
in terms of the corresponding elastic amplitude and the
electromagnetic constants of the participating particles.
Thus, the theorem provides a method for constructing an
approximate bremsstrahlung amplitude, which can be
used to calculate the bremsstrahlung cross section in
terms of the corresponding elastic amplitude.

However, the soft-photon theorem states nothing about
the energy and the scattering angle at which the elastic
amplitude should be evaluated. Since there are two dif-
ferent energies (s; and sf) and two different scattering an-
gles (tz and tq) which can be defined for any bremsstrah-
lung process, the elastic amplitude can be evaluated at any
linear combination of s; and sf [s ~

——(as;+psf)/(a+p)]
and any linear combination of tz and t&

[t p =(a'tz+p'tq)/(a'+p')]. This is the theoretical am-
biguity involved in using this theorem, and this ambiguity
implies that the prescription used to construct an approxi-
mate bremsstrahlung amplitude is by no means unique.
This can be seen from the fact that several approxima-
tions to the bremsstrahlung amplitude have been proposed
by many other authors since Low first put forward his
famous soft-photon theorem in 1958.' These approxima-
tions, called soft-photon approximations (SPA's) or on-
shell approximations, have played an important role in the
study of bremsstrahlung processes. Among the approxi-
mations proposed so far, Low's original SPA, the external
emission dominance approximation of Nefkens and Sober
(EED), ' the modified SPA of Nutt, Liu, and Liou, ' the
Feshbach- Yennie approximation (FYA), ' and many other
approximations' have been studied and these approxima-
tions have been applied to predict either the ~+—

py or the
p' Cy cross sections. But a systematic study of all possi-
ble approximations to the amplitude has not yet been
done. Such study is required for our work on nuclear
bremsstrahlung in the vicinity of a resonance, especially if
we wish to find a new approximation which can be used
to describe any bremsstrahlung process with or without
resonance.

An important connection between the ambiguity prob-
lem of the soft-photon theorem and the validity problem
of the soft-photon approximations was not fully under-
stood in the past, and the ambiguity problem was com-
pletely ignored. Realizing the importance of this prob-
lem, we have proposed here a special parametrization
which enabled us to generate all possible linear combina-

tions of energies and angles so that the most general
bremsstrahlung amplitude can be constructed. We then
used this general bremsstrahlung amplitude to study the
range of validity of various bremsstrahlung approxima-
tions and the nature of the resonant structure predicted by
these approximations in the resonance region. To study
all approximations systematically, we have divided them
into several classes. Two classes have been systematically
studied. We have applied the constructed amplitudes to
predict the proton-carbon bremsstrahlung cross sections
near the 1.7-MeV resonance and the pion-proton brems-
strahlung cross sections near the b, (1232) resonance and
we have obtained very interesting results. In this article
we wish to report the result of our study.

II. BREMSSTRAHLUNG AMPLITUDE

a"+S "=sf"+Sf"+K" . (2)

As we shall see later, the main purpose of this article is to
study how a given amplitude (or the bremsstrahlung cross
section calculated from a given amplitude) will depend on
the choice of the total energy squared and the momentum
transfer squared. The answer to this question does not de-
pend on whether the particles (A and 8) have spin or not.
Therefore, for the sake of simplicity, we shall discuss only
the spinless case and assume that particles 3 and B have
charges Zze and Zze, respectively, but they have no spin.
In our actual calculations of the p' Cy and the m—+py
cross sections, however, the spin of the proton has been
taken into consideration.

It is well known that the total bremsstrahlung ampli-
tude M& consists of the external scattering amplitude Mz
and the internal scattering amplitude M„:

We consider photon emission accompanying the
scattering of two particles 3 and B:

& (q/')+& (p/') ~& (qj" )+&(pj")+y(K" ) .

Here, q/' (qj") and p/' (pg) are the initial (final) four-
momenta for particles A and B, respectively, and K" is
the four-momentum for the emitted photon. These five
momenta are defined in the laboratory frame as

q/'=(m +E;, 0,0,q;),
p/'= (M, O, O, O),

qf" = (m +Eq, qf singq cosPq, qf singq sinPq, qf cosgq ), (1)

pf = (M +E~, pf sing~ cosP~, pf sing~ sing~, pf cosg ),
K"= (K, K singrcosgr, K singrsingr, K cosg&),

where

E;=(m +q;)' —m,

Eq ——(m +qf)' —m,
E~=(M +pf)'~ —M,

and m and M are the masses of particles A and B, respec-
tively. These four-momenta satisfy energy-momentum
conservation:
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M~ ——Mp+Mp . (3)

M& can be determined exactly from four external emis-
sion diagrams [see Figs. 1(a)—(d)]. In these diagrams, T„
( x =a, b, c,d ) represent the half-off-shell T matrices
which depend upon three Lorentz invariants. Choosing
these three invariants to be the total energy squared s, the
momentum transfer squared t, and the square of the in-
variant mass 5 of the off-mass-shell leg on which the
photon emission occurs, we can define four T matrices as

and a„,P„, a„', and P„' (x =a, b, c,d) are any arbitrary real
numbers. Using the following expressions,

s; —s ~ =2[P„/(a„+P„)](q;+p;).K,

sf —s p = —2[a„/(a„+p„)](q;+p;)K,

t~ t, &
————2[p„'/(a„'+ p„')](q; —qf ) K,

tq t, &
———2[a„'/(a„'+p„')](q; qf )-K—,

T, —:T(s„t„b,,),
Tb=T(sb)tb)hb) )

T, —:T(s„t„b,,),
Td —= T(s)t, t)t, bg ),

where

S~ —S~ —Sg

(4)

we obtain

T, =T,"+2[P,/(a, +P, )](q;+p; ).KT,'
—2[p,'/(a' +p,')](q; qf).K—T,'+2qf KT, +. . .

2[ah /(ab +Pb )](q; +p; ) KTb

2[13b—/(ab+ p' )b](q, qf ).KT,'—2q,'KT,—+ .

sb =sg =sy

t~ —tg —tq,

f~ =lb ——tp,
b,, =(qf+K)
Ab ——(q; —K)

b.,=(pf+K)
b,g ——(p; —K)

s;=(q;+p;) =(m+M) +.2ME;,

sf ——(qf+pf) =(q;+p; —K)

=s; —2(q;+p;) K

=(m +M) +2M(E; —K/X),
X =M/[(m +M +E; ) (E; +—2mE;)'~ cos6~],

t~ =(pf —p;) =[q; (qf+K)]—
=tq —2(q; —qf) K,

tq (qf —q; ) = [p;———(pf +K) ]

=tp —2(p; pf).K . —
In terms of these four half-off-shell T matrices, M„

can be written in the form

q,.

q.
,

(c)

pt

K

p(+K

pt

P;

pt

P;

(9b)

M =Z„(qf /qf K)T, Z„(q;„/q; K—)Tb

+Zg(pfp/pf. K)T, —Zg(p;p/p; K)Tg .

M„must be expanded in powers of E in order to obtain
the leading term of M„[the internal emission diagram is
shown in Fig. 1(e)] from the gauge invariant condition.
Such an expansion is not unique because T„(x=a,b, c,d)
can be expanded, in general, about (s & (k), t, & (k)),
where

s ~ =(a„s;+P„sf)/(a„+P„),
t, g (a„'tp+P„'tq )/(a„'+P„'), ——

X Z

(e)
FICx. 1. Feynman diagram for bremsstrahlung: (a)—(d) the

external scattering diagrams; (e) the internal scattering diagram.
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T, = T,"+2[P, /(a, +P, )](q; +p; ) KT,'

+2[a,'l(a,'+P,')](q; qf—)-KT,'+2pf. KT, +
(9c)

Td = Td 2[—ad/(ad+Pd )](qi +p )'KTd

+2[ad l(ad +Pd )](q; qf—).KTd —2p;.KTd + .

(9d)

and

M„=Zq(qfp/qf'K)T, " Zq—(q;z/q;-K)Tb +Zs(Pfp/Pf'K)T, ' Zs—(P;„/P; K)Td

+(q; +p; ).K I2[P, I(a, +P, )](Zq qfp/qf. K) T,'+2[ab l(ab+Pb )](Z&q;„/q; K) Tb

+2[P, I(a, +P, )](zopf„/pf. K)T,'+2[adl(ad+Pd)](z~p i, /p;. K)Td )

+ (q, qf—) KI.—2[P,'/(a,'+P,' ) ](Z„qf„/qf .K)T,'+ 2[Pb /«b +Pi, )](Z„q,„/q;.K) Tb

+2[a,'/(a, '+P,')](Zap'/pf K)T 2[ad/(ad+Pd )](ZBpipl p K)Td )

+2(Zgq»T. +Z„q;„T, +Zspfi, T, +Z~p;PTd )+
where

(9e)

T„'=dT„"/Bs ~, T„' = AT„"/dt, &, T„=dT(s fi, t, &, , b„)/Bb,„(x=a, b, c,d), (9

and T„"=T(s p, t, & ) represents the T matrix evaluated at s p and t, , for the corresponding elastic (nonradia-' a„'P„' X Z a„' P„'

tive) process (i.e., the A Belastic sca-ttering process).
To obtain the leading term of M&, we follow Low s prescription to impose the gauge invariant condition:

K"M = —K"MP P
= —(Zq T,' Z„Tb—'+ Zs T,' Zs Td')—

—2(q, +p, ) KIZ~ [P, /(a, +P, )]T,'+Z~ [ah l(ab+Pb)]Tb+Z~[P, I(a, +P, )]T,'+Zs[ad/(ad+Pd)]Td I

—2( q; qf ).K I
——Zz [P,'I(a,'+P,')]T,'+Za [Pb I(ab+Pb ) ]Tb+Za[a l(a,'+P,')]T,' Zz [ad I(a—d+Pd ) ]Td I

2(Z„qf.KT, +—Zgq;. KTb +Zopf KT, +Zgp; KTd )+ (10)

(12)

From Eq. (10), we obtain

M„=—Zg [(qf„+Pf„)l(qf +Pf ) K]T,'+Zw [(q i +p~)I(q;+p; ) K]Tb'

—Zg [(qf„+pf„)l(qf +pf ) K]T,' +Zs.[(q q+ p q) l(q, +p, ) K) Td'

—2(q;+p;)&[Za [P, l(a, +P, )]T,'+Zg [ab/(ah+Pb )]Tb+ Za[P, /(a +P )]T +Za [ad/(ad+Pd)) Td] I

—2(q; —qf )&I
—Za [P,'/(a,'+l3,')]T,'+Z„[Pb/(ab+P'b)]Tb+Zs[a, 'l(a,'+P,')]T,' Za[ad/(ad+—Pd)]Td I

—2(ZqqfpT, +Zgq;qTb +ZgPfqT, +ZsP;qTd )+ (11)

The total bremsstrahlung amplitude Mz is then obtained from the sum of M& and M& [i.e., to combine Eq. (9e) with
Eq. (11)],which can be written as

M„=A„(k) /K +B„(k)+C„(k)K + .

where
A„(K)/K =+ Z& [qf&/qf. K (qf&+pf&)I(qf —+pf ).K]T' Zz [q &Iq;.K —(q —&+p; ) l(q; +p; ) K]Tb'

+.Zz[pf&/pf. K —(qf&+pf )/(qf +pf ) K]T,"—Zz[p&/p;. K —(qi&+P; )l(q, +P; ) K]Td
and

Bp(K)=+2Z&[P, /(a +P, )][qfplqf K (qjp+pj )/(iq +pij) K](qi +pi) KTg'

+2Z& [ab /(ab +Pb )][q z/q, K —(q,„+pi&)/(q; +p; ).K](q; +p; ).KTb

+2Zs[P, I(a, +P, )][pf„/pf K (q;„+p;„)l(q; +p;—).K](q;+p; ).KT,

+2Z~[adl(ad+Pd)][p;„/p;. K (q;„+p;„)l(q;—+p;) K](q;+p;).KTd

—2Z„[Pa/(a,'+P,')][qf&/qf K —(q;& qf„)/(q; —qf ).K](q; —qf )—KT'

+2ZA [Pb /(ah +Pb ) ][quip/qi K (qip qfp)I(qi qf ) ' ](q' qf ) b'
+2Z& [a,' l(a,'+ P,

'
) ][pf„/pf .K (q;„qf„)/(q; qf )—.K](qi—qf ).KT,'— —

2Z&[ad/(ad+Pd )][—p&IP; K —(q;& —qf&)l(q; qf ) K](q; qf ) KTd—. —

(13a)

(13b)
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M„" =A„(k)/K+B„(k) . (14)

We can see from Eqs. (13a) and (13b) that A&(K) depends
only on T„" (x =a, b, c,d), while B&(K) depends on T„'
and T„'. Both A&(K) and B„(K) are independent of the
off-shell derivatives T„,but they are still functions of K.
(Since, in general, P„&0 and q/& and/or p/& depend on K
implicitly. ) As for C„(K) and the coefficients of other
higher powers in K, they involve the off-shell derivatives
which cannot be determined from the corresponding elas-
tic amplitude. Therefore, only the first two terms of the
expansion given by Eq. (12) can be used to calculate the
bremsstrahlung cross section from a given elastic scatter-
ing amplitude. The bremsstrahlung amplitude used in
soft-photon approximations can be written in the form

M„"=A„(k)/K . (15)

The amplitude M& (or M&) depends on sixteen parame-
ters, a„, P„, a„', and P„' (x =a,b, c,d), and is therefore
very general. By varying these parameters, it can be used
to study all possible soft-photon approximations.

III. SOFT-PHOTON APPROXIMATIONS

To study M& and M& systematically, we have divided
them into the following classes.

(i) One-energy —one-angle approximation (OEOA):
This approximation is defined by choosing a, =nb
=a, =ad ——a, /3g /3b ————P, =/3d ——P, ag ——aI, =a,' =ad
=a', and P,'=Pb ——P,'=/3d=/3'. The amplitude in this
approximation which depends only on s p and t ~ can be
written as

In some calculations, such as the EED approximation of
Nefkens and Sober, '" for example, only the leading term
of Eq. (12) has been used. In that case, the amplitude be-
comes

M„" (s p, t p )=M„"(s t3, t tr)+B„(s p, t p ),
where

(16a)

and

M„(sett, t~tt)=[Z&(q/„/q/ K —q;„/q; K)+Zs(pI„/p& K —p,.„/p; K)]T(s~&,t~& ),

B„(s tt, t &)=2[Z& [/3/(a+/3)](q&~/ K/qI K pI„)+Z&—[a/(a+/3)](qt~; K/q; K —p;„)
dT(s t3, t p )+ZB [P/(a +/3) ](p/„q/ K /pI. K q&„)+Za [—a /(a+ /3) ](pi&qi'K/pt'K —qi&) l

Bs~p

(16b)

+2[Z„[P'/(a'+P')](q;„/q; K q/„/qI K)—

dT(s p, t p )—Z s[ a' /( a' +P')](p;„ /p;. K pI„/pI. K) I—(q; qI) K—
ta'P'

(16c)

In deriving Eqs. (16b) and (16c), we have used the fact that K"K„=Oand we have ignored those terms which are propor-
tional to K& since O'K& ——0. Here, e" is the photon polarization.

The OEOA is a generalization of Low's original SPA. To obtain Low's original result from Eq. (16a), we assume that
particle A has charge e and particle B is neutral, i.e., we have Zz ——1 and Zs ——0. By choosing a=P=1, P =0, and
a'=1, we obtain, using s =(s;+s/)/2,

dT(s, t )
M„" (s, t~)=(qI„/q/. K q;„/q; K)T(s, t—~)+(q&~& K/q& K p&„+q~;.K/—q; K —p;„)

Bs
(17)

which is precisely Eq. (1.7) of Ref. 11. Low's original
SPA has been extended and applied to calculate cross sec-
tions for various brernsstrahlung processes.

The EED approximation used by Nefkens and Sober is
also a good example of the OEOA. This approximation
uses the amplitude M„given by Eq. (16b) and it is
evaluated at (s, t) or (sa, ta). That is, M„"(s,t) or
M„"(sa, t0) is used. Here, s = (s; +sI )/2 and
t=(tq+tz)/2 are obtained by choosing a=@=a'=P'=1,
but s0 and t0, which are defined by

I

are independent of a, /3, a', and P'.
Another interesting example of the OEOA is the modi-

fied SPA used by Nutt, Liu, and Liou. ' ' This approxi-
mation uses the amplitude given by Eq. (16a) with the pa-
rameters chosen to be a = 1, P=O, and

a'/P' = —(qI —q; —
z R& ).Rq /(p/ —p; ——,

'
R~ )-R„,

where Rq and Rz are defined by

gyp = llm QIp+Rqp,k~0

and

s0 ——lims p
——s;k~0

to ——lim t
k~0

pyp = 11m/y~+Rpp
k o

Rqp+Rp„+K„=O .
(18)

If Eqs. (19) are used to expand the amplitude further in



656 M. K. LIOU AND Z. M. DING 35

powers of K, Eqs. (41) and (42) of the Ref. 18 can be ob-
tained. (In Ref. 18, both A and B are assumed to have
charge e, i.e., Zz ——Ztt ——1.) The amplitude obtained in
Ref. 18 is evaluated at (sp tp).

(ii) One-energy —two-angle approximation (OETA):
j

The amplitude in the OETA is evaluated at one energy
but two different angles. For example, we can choose
a~ =ab ac =ad a /3 /3b /3 /3d /3 a =ab =ai,
a,'=ad =a2, p,'=pb =pi, and p,'=pd =/3z and obtain the
following amplitude:

AB AM„(s tt, t,&,t,&)=M„(s tt, t,&,t,&)+B„(s t3, t, „t, , ),
1 1 2 2 1 1 2 2

and

B&( s&p |t ig t irg ):2zg [/3/(a+/3)](qf+f K/qf K pf )
Bs

dT(s t3,t, , )
1 1+2zg [a/(a+/3)](q;g;. Klq; K —p;„) 9s

dT(s t3, t, , )
z~z

+2Z~[/3/(a+/3)](pfpqf. K/pf K qfp) Bs
B)T(s tt, t, p, )

where

M„"(s tt, t,&,t, , )=+Zz(qfplqf K q;~/q;—K)T(s tt, t, , )+Ztt(pf„/pf K —p;~/p; K)T(s ts, t,&)

aT(s.~,t, , )
1 1

(20a)

(20b)

+ 2ztt [a/(a+/3)](p;„q;. K/p;. K —q;„)
asap dT(s p, t,~ )

+2Z~ [/3'i/(ai+/3'&)](q;„/q; K qf„/qf. —K)(q; qf ) K—
"dT(s p, t, p, )

(20c)—2Z& [a2/(a2+/32)](p;&/p; .K pfi, /—pf K)(q; —qf ) K Bt,p,

An amplitude used by a UCLA group in the calculation of the m
—

py cross section is a good example of this approxi-
mation. That amplitude, which is obtained by choosing a=/3=1, a'i ——/32

——1, and a2 ——P', =0, is evaluated at (s, t~) and
(s, tq ).

(iii) Two-energy —one-angle approximation (TEOA): The amplitude in the TEOA is evaluated at a common
momentum-transfer-squared t tt (i.e., we choose a,' =ab ——a,' =ad ——a' and /3,

'
=/3b ——p,

'
=/3d ——p') and two different en-

ergies which can be chosen from s & (x =a,b, c,d) An import. ant example of this approximation can be obtained by
Z Z

choosing a, =a, =ai, ab ——ad =a&, p, =/3, =p&, and /3b
——/3d ——/3z leading to the following amplitude:

AB
Mz (s~ tt, s~ tt, tetr)=M„(s~ tt, s~ p, tetr )+B&(s~ ts, s~ ~, t~tt ),

where

M& (s~ tt, s~ p &t~ fr ) =[Zqqf&/qf. K +Z~pf&/pf. K —(Zq +Z~ )(qf&+pf&)/(qf +pf ) K]T(s~ p, tetr )

—[Zgqi„/q; K+Z~p;I /p; K —(Zw+Za)(%) +Pi) )/(qt+Pi) K]T(s~,tt, , t~p-)

(21a)

(21b)

B„(s.tt, s. tt, t. tt) =2[/3, l(a, +/3, )][Z,qf„/qf. K+Z,pf„/Pf. K (Z, +Z, )(q,„—+P,„)l(q, +p; ) K]
B)T(s p t p )

X(q;+p; ).K
Bsa P

+2[a,l(a, +/3, )][z„q,„/q,"K+z,p, „/P, K —(z, +z, )(q,„+P,„)/(q, +p, ) K]
BT(s tt, t tr )

X(q;+p; ).K
sa p

dT(s
,p, , t p )—2zg [/3'/(a'+/3') J[qf„/qf .K (q;q qfq) l(q; q—f ).K]—(q; qf ) K- —

ata'P

BT(s tt, t p )
+2zq [/3'/(a'+/3') ][q&/q; .K —(q;„qf~) l(q; qf ) K](—q; qf ).K— —

taP
aT(s. , t..~)

+2Z~[a'/(a'+/3')][pft, /pf K —(q;„qf„)l(q; qf) K](q—; qf) K- —
ata y

dT(s, ts, t p )—2zq[a'/(a'+/3')][p;&/p; K —(q;& qft, )/(q; —qf ) K](q;——qf ).K
taP

(21c)
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The approximation defined by this particular amplitude is a generalization of the original FYA, ' which corresponds to
a~ /3——2 1——and P~ ——aq ——0. If Zz ——1, Zs ——Z, and a'//3'= (q—f q—; ——,'R~) R~/(pf —p; ——,'R~) Rz are used, then we
obtain an amplitude which is very similar to Eq. (15) of Ref. 16. (Equation (15) of Ref. 16 can be precisely reproduced if
qfp and pf„are also expanded in powers of K [using Eqs. (19)] before we impose the gauge invariant condition to obtain
the leading term of M„.)

(iv) Two-energy —two-angle approximation (TETA): The amplitude in this approximation is evaluated at two different
angles, which can be chosen from t,

&
(x =a, b, c,d) and two different energies, which can be chosen from sa„' p„' X X

(x =a, b, c,d). For example, an amplitude can be obtained by choosing a, =a, =a~, ab ——ad ——a2, P, =P, =/3, ,
Pb =Pd ——P2, a,' =ab ——a'i, a,' =ad ——ai, /3,

' =Pg ——/3'), and /3,
'

=/3d —Pi. We have

AB AM„(s~ p, t, ~;s~ p, t, ~)=M„(s~ p, t, ~;s~ p, t ... )+B„(s~p, t, .„s~ p, t, „, ) 7
1 1 a1~™1 2 2 a2Pp 1 1 a 1@1 2 2 a2p2 1 1 alp1 2 2 a2p2

where

(22a)

Mz(s tt, t,&',s p, t,& ) =+Z„[qf„/qf K (qf„+—pf„)/(qf+pf ).K]T(s ~,t,& )

—Z~ [qi~/qi"K —(qi„+pi~)/(qi+pr ) K]T(s p, t, )

+Zg[pf„/pf K —(q»+pf„)/(qf+pf ) K]T(s p, t,& )

Zs[p;„/—p; K (q;„+—p;„)I(q;+p; ).K]T(s tt, t, , ) (22b)

and

B„(s tt, t,&,s tt, t,& )=+2Z& [P& (/ a~ +/3&))[qf„/qf. K —(q;„+p;„)/(q;+p;) K)(q;+p; ).K
"r)T(s tt, t, p, )

BSa p

dT(s, p, t, p, )

Bs

i3T(s tt, ,t,p, )

BSa p

+2Zg [ az /( az +/3z)][ q„ /q' K (q, +P, )—/(q +P ) K](q +P ) K

+2Zs[/3)/(a)+/3) )][pf„/pf.K (q;„+p;„)/—(a+P() Kl(q +p )'K

+2Zs[a2/(ay+/32)][p;„/p;. K (q;„+P;„)/(—q;+p;) K](q +P ).K
dT(s,p, t, p. )

BSa p

—2Zw [P'i/(a'&+/3'i)][q»/qf K (q;„qf„)/(q—; —qf—).K](q; qf ). —
BT(s p, t + )

Bt,+

+2Zq [/3', /(a'~+/3I )][q;„/q;.K —(q;„qf„)/(q; qf ).—K](q; —qf—) K
a

1 1

dT(s, p, t, , )

+2Zs[a2/(a&+/3z)][pfp/pf K —(q;& qf&)/(q; —qf ) K—](q; —qf ).
a2P2

2Z&[ai/(ai+/3'2)][—p;„/p; K —(q;„qf„)/(q, qf ) K—](q, qf ) K— — (22c)

Various TETA approximations can be obtained from Eq. (22a) by varying parameters a~, /3&, a2, /3z, a'~, /3'~, ai, and Pi.
These new approximations have never been studied. Obviously, many more approximations, such as three-energy —one-
angle, four-energy —two-angle, etc. can be defined.

IV. BREMSSTRAHLUNG CROSS SECTION NEAR A RESONANCE

We have used the proton-carbon bremsstrahlung process, p' Cy, near the 1.7-MeV resonance as an example to study
the one-energy —one-angle approximation and the two-energy —one-angle approximation. If 0~, P~, 8~, P~, and K are
chosen to be independent, then the bremsstrahlung cross section in the laboratory system can be written as
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3
o'r= ——f (2') 5 (q;+p; —qf —pf K—) —, g (M„d')+(M"e&) J(qfdqf/2Eq)(d pf/2E&)(K /2K),

d AqdQydE

where

J=e m [(p;.q;) m—M ]', M„=u(qf, vf)M„" u(q;, v;),

(23)

or

M„=u(qf, vf )M„u (q;, v; )

and Mz (or M&) is given by Eq. (16a) [or Eq. (16b)) for the OEOA approximation and by Eq. (21a) [or Eq. (21b)] for
the TEOA approximation (with Zz ——1, Zs ——6). Here, we should point out that Eqs. (16a) and (21a) were derived origi-
nally for two (spin-zero) spinless particles. The main reason why they can also be used for the p' Cy process, which is a
spin- —,—spin-0 case, is because the incident proton energy is about 1.7 MeV and K &500 keV (or K/q; «1 and

K/qf « 1), which allows us to make the following approximations:

u(qf, vf )I „[1/(q f+K —m)]=u(qf, v/)y„[1/(qf +JC m)—]=u(qf, vf )(qf„+ ,
'

y„JC)/—qf.K=u(qf, vf )qf„/qf K,
[I/(q; —SC —m)]I &u(q;, v;)=[( q;„+ ,—Sly„)—/q; K]u (q.;,v;)= q;~—/q; Ku (q;, v; ),

where

I „=1'„r, Ao—„~—"/.m, o.„=i[y„,y ]/2,
and A, Is the proton anomalous magnetic moment. (The
contribution from those terms which involve A, is negligi-
ble in this case. ) In this study, particular attention is paid
to two energy regions, the energy region very far from any
resonance and the energy region of a resonance (in this
case the 1.7-MeV resonance), and we shall concentrate
mainly on how M„and M& depend on s~ p . This can

X X

be done by evaluating T" at a fixed momentum-transfer-
squared t (or at a fixed scattering angle) and varying only
a„and P„(not a„' and /3„').

We have obtained some interesting and important re-
sults which can be summarized as follows.

(i) OEOA: In the energy region very far from any reso-
nance, the calculated bremsstrahlung cross section,
or (s &, t ir), for a given set of a, /3, a', and /3', de-
creases monotonically with increasing K. As a and P are
varied (keeping a' and /3' unchanged), we obtain various
spectra which form a band. All predictions within this
band are equally valid. This theoretical ambiguity cannot
be avoided. The ambiguity will be small if the width of
this band is very narrow, and in this case any set of (a, /3)
can be used. A set which was most commonly used in the
past was (a,P)=(1,1). i.e., s &

——s= —,(s;+sf). On the
other hand, if the width of the band is wide, then a set of
parameters (a, /3, a', P') which gives the best fit to the data
can be determined from the experiment. In the case of
p' Cy, the width of the band is found to be very narrow,
indicating that the calculated p' Cy cross sections are
quite independent of a and /3. Figure 2 shows a narrow
band for 0&@/a&10 and t & to. It also shows that-—
the p' Cy cross sections predicted by the amplitude
M& (s p, to) are in good agreement with the experimental
data in the energy region very far away from any reso-
nance.

In the energy region of a resonance, the bremsstrahlung

spectrum calculated from Mz (s &, t ir) or M„"(s &, t &)
will show resonant structure if s p&s; (i.e., if P&0). The
predicted structure will be centered about a photon energy
Kz in the bremsstrahlung spectrum and it will have a
width I &. Both E& and I

&
will depend on a factor of the

form (a+/3)//3 when a and /3 are varied. Furthermore,
we have found that Ez and I

&
can be accurately given

without actually performing a complicated bremsstrah-
lung calculation. As shown in Appendix A, if we assume
that the cross section o.,&

of the corresponding elastic
scattering process exhibits a resonance with the resonance
energy Ez and the width I,&, then we obtain, based purely
on kinematical arguments, the following expressions for

I)
CD

I

0)

O
0.8—

p (. Y

E, = I. 594 MeV

eq = l55

(~, P) = (I,o) —(I, Io)

04—

l60 20040 80 l20
K (keV)

FIG. 2. The relative p' Cy cross section o„~ as a function of
photon energy E at an incident proton energy of 1.594 MeV.
The solid band represents the calculation using the amplitude
M„"(s e, to) in the OEOA approximation with (a, P) changing
from (1,0) to (1,10) and the dashed band represents the calcula-
tion using the amplitude M„" (s~~, to) in the OEOA approxima-
tion with (a, P) changing from (1,0) to (1,10). The data are from
Ref. 7.
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Kr and I r.
K, =K,(a+P)IP, P~O (24)

(25)

where

r (l, O. 5)
rr (l, l)
III (l, 2)
ZZ EED(s, t)

Ko (E;——E—q )N,

N =M/[(m +M+E;) (E;—+2mE; )'/ cosOr] .

Equations (24) and (25) enable us to predict (within 10%
error) the values of Kz and I z in terms of the observed
values of Ez and I,~. The dependence of K~ and I z on a
and /3 is very interesting. It implies that a and P can be
determined experimentally, by comparing the predicted
structure with the observed one, and selecting the best ap-
proximation for o.

z jn the resonance region.OEOA ~

In order to compare with the Brooklyn data, we have
calculated the p' Cy cross section relative to the p' C
elastic cross section, o.„~ ——o.

z /o. ,&, as a function ofOEOA OEOA

K near the 1.7-MeV resonance. Some results of the calcu-
lated o.„~ at E; =1.88 MeV for 0 =155 are shown in
Fig. 3. As we have already mentioned, we have concen-
trated mainly on how cr„,&

depends on s tt. Therefore,
a fixed momentum-transfer-squared t I3 has been used in
all these calculations. We have chosen t ~ to be
t = ,

' (t~+t~) o—r to ——limk ot tr. The values of (a,P) for
those spectra labeled I, II, and III in Fig. 3 are (1,0.5),
(1,1), and (1,2), respectively, and t tr used in these calcu-
lations is tp. Note that the spectra with label II calculated
from the parameters (a,/3)=(1, 1) are identical to the
spectra calculated in Low s original approximation.
These figures show clearly that every spectrum exhibits
resonant structure in the form of a peak. In Fig. 3(a) the
spectra are calculated from M„"(s tt, to ). As we know, the
levels associated with the 1.7-MeV resonance are two
closely spaced levels of —, and —, in the compound nu-5+ 3—

cleus ' N. Since the main resonant peak in every spec-5+
trum arises from the level of —, , we can use Ett ——1.734
keV to predict the position of the main resonant peak
from Eq. (24). Using N = —,", , the values of Kr calculated
from Eq. (24) are 404, 269.6, and 202 keV for spectra I,
II, and III, respectively. These values are to be compared

QEOA.with the following exact values calculated from o.
re~

405, 270, and 204 keV. The agreement is excellent. We
have also found that the values of I

&
calculated from Eq.

(25) are in very good agreement with those calculated
from o,,I . In Fig. 3(b) the spectra are calculated from
the amplitude Mz (s tI, to). The giant peaks obtained in
these calculations arise mainly from the term involving
dT"/Bs I3 in B&(k). The values of Kr calculated from
Eq. (24) are still in good agreement with those calculated

oughly propor-
tional to

~
(s; s tI)dT"—/ds tt ~

rather than to o,I/K, we
have slightly modified Eq. (25) to take into account the
variation of BT"/Bs ~ in the resonance region.

Unfortunately, a comparison with the experimental
data shows that the OEOA cannot be used to describe the
p' Cy spectra near the 1.7-MeV resonance. The observed
peak appears at Ko (E; E——tt )N-—135 keV rather than at
K~=Ko(a+/3)/P as predicted by Eq. (24) or o,,~

. If
we choose p »a such that (a+p)/p~ 1, then we can ob-
tain a peak at Ko, but the shape of the structure (the giant
peak) will be in complete disagreement with the observed
one. In order to show this point clearly, we have used
(a, /3)=(0, 1) and t tt =to to calculate o„I . As shownEOA

in Fig. 4, we have obtained a giant peak at Kp ——135 keV
which is not observed experimentally. We must point out
here that this conclusion will remain unchanged even if to
is replaced by any other t & mainly because t & (or the
corresponding scattering angle) changes slightly with K in
the energy region of the calculated spectrum,
0~ K &K'-600 keV, and K,„&&K'&K& in this case.
(If K' &Kz, then no structure would appear. ) Here, K,„
is the maximum kinematically allowed photon energy. To
demonstrate this point, we have applied the EED approxi-
mation, evaluated at s=(s;+sf)/2 and t=(t~+t~)/2, to
predict the spectrum in the region 0& K ~400 keV. As
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FKx. 3. The relative p' Cy cross section o.,d as a function of
photon energy K at an incident proton energy of 1.880 MeV.
Curves represent calculations using the amplitude (a)
M& (s ~, to ) in the OEOA approximation and M„"(s, t ) in the
EED approximation, and (b) M„(s ~, to) in the OEOA approx-
imation. The data are from Ref. 7.
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FICr. 4. The relative p' Cy cross section o.„~ as a function of
photon energy I(: at an incident proton energy of 1.880 MeV.
The solid curve is calculated from the amplitude M„"(s p, to) in
the OEOA approximation with (a,P)=(0, 1) so that
(a+p)/p=1. The data are from Ref. 7.
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shown in Fig. 3(a), we have obtained a spectrum with a
resonant peak around 270 keV, which is very similar to
spectrum II, as expected. Finally, it should also be point-
ed out that the modified SPA used by Nutt, Liu, and
Liou' ' ' does not predict any resonant structure in the en-
ergy region of a resonance; it always gives a typical
smooth spectrum with 1/K dependence. Up to 250 keV,
the spectrum predicted by this modified SPA is almost
identical to the spectrum labeled I in Fig. 3(a).

Equation (24) can be applied to resolve a mystery found
in the pion-proton bremsstrahlung, ~—+py, calculation.
The m. +—

py cross sections near the b, (1232) resonance have
been calculated by a group from UCLA using an ampli-
tude in the OETA, M& (s, tz, tq), in order to describe the
spectra measured by the group. Instead of getting a
resonant peak at the expected photon energy Eo ——50—70
MeV, the calculated cross sections rise steeply with in-
creasing E above 80 MeV. ' This mysterious result can
be explained as follows: Since s~p ——s was used in M„, a
resonant peak would be predicted at Ez ——2Eo since
(a+P)/P=2. If Ko is about 60 MeV, then a giant peak
will be predicted at 120 MeV (not at 60 MeV, as might be
expected). Therefore the predicted spectrum exhibits a
minimum around 60 MeV and tends to rise with increas-
ing E above 60 MeV. Our study shows that the giant
peak comes from the B„ term of the amplitude M&,
especially the term which involves BT"/Bs. The predict-
ed spectra will be in better agreement with the data if M&
is used. In fact, the EED approximation evaluated at s
and t, which is inadequate to describe the p' Cy data,
gives good results for the m. +—

py case. As we have dis-
cussed in Appendix B, the reasons that the EED predicts
monotonically decreasing spectra in this case are that t (or
the scattering angle) changes substantially with K in the
region 0 & E &E'-120 MeV and that Ez is very close toE,„and E', i.e., E,„-E'-E&.

(ii) TEOA: The generalized FYA defined by Eq. (21a)
or (21b) is the most important example of the TEOA ap-
proximation. The amplitude used in this generalized
FYA, which is evaluated at S ~ and S p, depends on

four parameters (a„P~,az, Pz). In the energ region far
from the 1.7-MeV resonance, the calculated o„~ for the
p' Cy process is very similar to the one obtained in the
OEOA, because of the smooth energy dependence of the
scattering amplitude. In the vicinity of the resonance,
however, the generalized FYA predicts a quite different
resonant structure from that predicted in the OEOA.

The prediction of the resonant structure is the most in-
teresting and important test of the approximation. By
varying four parameters, we obtain various spectra with
one or two resonant peaks depending on the values of
s ~ and s ~. If s p~s;&s ~ and s ~&s ~ (i.e.,
P~&0, P2&0, and @~&f32), then two resonant peaks are
predicted. Applying Eqs. (24) and (25) to this case, we
have K&' ——Ko(a;+P; )II3; and I r' %1,~(a;+P; )IP;, ——
i =1,2. On the other hand, if s ~ ——S; and s ~ &S;
(i.e., /3, =0, 132&0), then only one resonant peak is predict-
ed at K~ '. A typical example is the original FYA, which
predicts a single peak at Ey ' ——Eo with ry(') =Nr, l

Some results of the calculated o.„~ are shown in Figs.

5(a) and 5(b). The values of the parameters (a&,P&,a2, 132)
for those spectra labeled I, II, III, and IV are (1,0,0, 1),
(1,1,0, 1), (1,0.5, 0,1), and (1,—, ,0, 1), respectively. Again,
to is used in these calculations mainly because the calcu-
lated cross sections are insensitive to the variation of t in
the p' Cy case. Note that the spectra with label I calcu-
lated from the parameters (a~, P~, aq, P2) =(1,0,0, 1) are
identical to the spectra calculated in the original
Feshbach- Yennie approximation. Four spectra shown in
Fig. 5(a) are calculated from the amplitude
M„"(s ~,s &, to). All of these spectra exhibit a com-

mon resonant peak (the first peak) at Kz ' ——Ko —135 keV
since (a2+P2)/P2 ——1. The spectra II, III, and IV show
also a second resonant peak at Kr" ——Ko(a, +)t3&)/P&.
The existence of the first peak at 135 keV has been veri-
fied by the experiment, but no data are available to verify
the existence of any other resonant peaks. All four spec-

culated from M~ (s
ment with the data in the energy region E & 100 keV, but
the observed peak cannot be satisfactorily described by
any of these calculations.

Four spectra shown in Fig. 5(b) are calculated from the
amplitude M„" (s p, s tt, to). Like those shown in Fig.
5(a), these four spectra have a common peak at 135 keV
and every spectrum, except spectrum I, has a second peak
at K'r" =Ko(a+ @~ ) /P~. The contribution from the
8&(k) term of the amplitude Mz is not negligible in the
resonance region. It increases the cross section substan-
tially near the second peak (mainly due to the term involv-
ing dT„"/Bs tt ) and decreases the magnitude of the cross

section slightl~ near the first peak (mainly due to the term
involving dT„'/dto). As we can see from this figure, the
existing data in the energy region E &200 keV can be
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FIG. 5. The relative p' Cy cross section o„~ as a function of
photon energy K at an incident proton energy of 1.880 MeV.
Curves represent calculations using the amplitude (a)
M„"(s ~,s ~, to) in the TEOA approximation, and (b)

2 2'
M„" (s ~,s p, to ) in the TEOA approximation. The data are1122
from Ref. 7.
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described by all four calculations, but these four calcula-
tions give quite different results in the en=rgy region
K ~200 keV. Thus a precise measurement of the cross
sections in the region K & 200 keV can be used to deter-
mine a set of the best parameters. Finally, it should be
pointed out that any calculation with the parameters
(l, e,O, I), where F. &KD/(K, „—K0), will give a spectrum
which is almost identical to spectrum I.

V. CONCLUSION

We conclude the following.
(i) We have constructed the most general bremsstrah-

lung amplitude which can be used to study the predictive
power of all possible approximations or models, including
those well-known approximations that have previously
been used. This general amplitude has been divided into
many classes of approximations and two classes of ap-
proximations have been systematically studied. Special
attention is given to the understanding of how these ap-
proximations depend on the choice of s ~ and t, &.X Z a„'P„'

The main result which we have obtained from our study is
that for a given amplitude we know what kind of resonant
structure it will give in the resonance region. More pre-
cisely, we can predict the position of the structure in pho-
ton energy Ez and its width I z by either performing a
detailed bremsstrahlung calculation or using two simple
formulas which relate Kz and I z directly to the observed
resonant energy E~ and the width I,&. This new informa-
tion can be used to study the validity of any bremsstrah-
lung amplitude (or to determine which set of s tt and

X Xt, &
is physically acceptable) when the predicted result is

axe
compared with the experimental data. The formulas
which determine Kz and I z in terms of Ez and I,~

are
very useful. An application of these two formulas is that
they can be used to determine the energy region in which
both the theoretical prediction and the experimental mea-
surement should be performed.

(ii) We have shown that there is a theoretical ambiguity
which cannot be avoided. (This ambiguity cannot be re-
moved by imposing the gauge invariant condition and, to
the best of our knowledge, there is no other first principle
which can be used to remove this ambiguity. ) Mathemati-
cally, this ambiguity means that the bremsstrahlung am-
plitude can be evaluated at s tt and t, &, where a„,P„,X Z a„'P' '

a', and P„' (x =a,b, c,d) are arbitrary real numbers. Since
not all of these parameters are physically acceptable and
there is no other principle which can be used as a guide to
select a set of correct parameters, we rely entirely on ex-
periment to resolve the theoretical ambiguity. That is, we
provide all possible results calculated from a given ampli-
tude (or approximation) so that the validity of this ampli-
tude (or approximation) can be determined by comparison
with the experimental data.

(iii) We have shown that the one-energy one-angle ap-
proximation cannot be used to describe the p' Cy data
near the 1.7-MeV resonance. This conclusion is drawn
from a systematic study of the amplitude in this approxi-
mation, which is evaluated at all possible values of sax z
and t, & . Generally speaking, the resonant structure

Z X

predicted in the OEOA approximation, including the
EED, is quite different from the observed one (different in
either the position of the peak or the shape of the struc-
ture or both).

(iv) We have shown that the existing experimental
p' Cy data (available only in the energy region K &220
keV) near the 1.7-MeV resonance can be described by the
two-energy —one-angle approximation evaluated at many
(infinite) different sets of parameters. We have also
shown that different sets of parameters give quite dif-
ferent cross sections in the energy region 220&% &600
keV, but no experimental data are available in that region.
Since the data in that region can be used to rule out some
sets of parameters which are physically unacceptable, our
study provides strong justification for doing new experi-
ments. New experimental data will play a very important
role in constructing a new theory.

(v) Although more thorough studies are needed, the re-
sults of our investigation seem to indicate that any brems-
strahlung amplitude which involves BT„'/Bs & will not

be valid in the energy region of a resonance. Since any
term involving BT„"/Bs p comes from the expansion of

Z X

T„' in powers of s, which is not valid in the resonance re-

gion, and the derivation of every amplitude in the OEOA
must involve such expansion, this indication implies that
all one-energy approximations would be inadequate, and
hence the two-energy approximations would be required
to describe the bremsstrahlung cross sections near a reso-
nance. This conclusion agrees with what Kruger and
Schultz have found in their study of the validity of the
soft-photon approximations when these approximations
are applied to calculate the free-free cross sections near a
resonance in atomic physics.
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APPENDIX A: THE EXPRESSIONS
FOR E AND I

Let us assume that the elastic scattering cross section,
o,~, of the corresponding elastic scattering process (the
A -B system) exhibits a resonance with the resonance ener-

gy Ez and the width l,~, and that the bremsstrahlung
spectrum, or, calculated from the amplitude
M„(s &, t tr) or M&(s tt, t tt) shows resonant structure,AB

which is centered about a photon energy K& in the spec-
trum o.

z and has a width I &. What we try to derive
here are two simple expressions which relate E~ and I z
directly to Ez and I,~, respectively. These expressions are
good for the one-energy —one-angle approximation, but
they can be extended very easily for the other approxima-
tions.

As we know, M„" (or M„") involves four different T
matrices, T(s &,t, ), x =a, b, c,d In the OEOA ap. -

x x x~x
proximation, we have s ~

——s ~ and t, &
——t 13. Thus

X X a„'P'

all four T matrices are identical and are evaluated at the
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same energy s ~ and the same scattering angle t

T(s p, t, ~ )=T(s p, t tr) .

Now, suppose the elastic scattering cross section o.,~
shows

a resonance at the resonance energy Ez. In terms of Ez,
we can define sR as

sz ——(m+M) +2M' . (A2)

If P&0 and s &(0) is much greater than s~ (i.e., E; &~E~
and far away from any resonance), then a typical brems-
strahlung spectrum with a characteristic 1/K dependence
will be predicted because the effect of the resonance will
be very small. As K increases, s ~(K) approaches s~ and
the resonance effects become significant. In the energy re-
gion of the resonance, i.e., when

s p(Ky):sR (A3)

we expect a resonant peak (structure) to appear in the
bremsstrahlung spectrum at K=K~. Substituting Eqs.
(Al) and (A2) into Eq. (A3) and solving the equation for
K&, we obtain

K~ =Ko(a+p)/p, p~0
where

(A4)

Kp (E; Eg)N .—— — (A5)

To derive the expression for the width I &, we write
s t3(K) in the form

s p(K) =(m +M) +2ME &(K),

where

(A6)

E g(K) =E;—[p/(a+ p) ]K/N . (A7)

From Eq. (A7), for a given E; and gz, b,E ft (the change
in E t3) can be written in terms of ~ (the change in K)
as

5E p [Pl(a+P)]5K/N .——— (A8)

This equation is very useful. For example, if we choose
AE ~ to be the energy difference between the beginning
point and the ending point of the resonant structure ob-
served in cr,], then AK will be the energy difference be-
tween the ending point and the beginning point of the
resonant structure predicted in o.

&
. Thus, we can de-

fine r,~
——

~

b,E p ~

to be the width of the resonance ob-
served in o.,&

and 1 ~=
~

bK
~

to be the width of the
resonant structure predicted in cr&, and write the ex-
pression for I z in terms of I,] as

If we use the following expressions for s; and sf [see Eq.
(5)],

s;=(m +M) +2ME;,

sf ——(m +M) +2M(E, K/N—. ),
we can write s ~ as a function of K in the form

s &(K)=(m+M) +2M[E; —[/3I(a+/3)]K/N j .

(Al)

r, =[(a+p)/p]Nr„, p~o. (A9)
It should be pointed out that the values of K& and I z

obtained from the actual bremsstrahlung calculation [not
from Eqs. (A4) and (A9)] may depend on which ampli-
tude, M& or M& ——Mz +B&, is used in the calculation of
o. . This is because o can be dominated either by
M„", the leading term of the amplitude, or B„,the second
term of the amplitude, in the energy region of a reso-
nance. As we have already mentioned, M& depends only
on T":T(s—p, t &), while B„depends on BT"/Bs p
and/or BT"/Bt &. Therefore, in the case when the con-
tribution from B„ is negligible, o.

&
calculated from ei-

ther Mz or M„will be about the same and roughly pro-
portional to o,~/K (or cr,~/K plus a constant). In this case,
the values of K~ and I z calculated from Eqs. (A4) and
(A9), respectively, will be in very good agreement with
those obtained from the exact bremsstrahlung calculation.
On the other hand, if B& &&M„ in the resonance region,
then o. calculated from M" will be much greatery
than that calculated from M&. Consequently, the width
of the resonance I ~ predicted by the amplitude M„" will
be much wider than that predicted by the amplitude M&
and the position of the resonant peak K& predicted by
these two amplitudes may be different. [err~ ~ calculated
from M& is still rou hly proportional to cr,~/K, but crz
calculated from Mz will be approximately proportional
to

~
(s; s~)BT"/"r)s —

ts ~

. The contribution from the
term involving BT'/Bs tt is much more important than
that from the term involving dT"/Bt tr in the resonance
region. ] In this case, Kz calculated from Eq. (A4) can be
different from that obtained from the actual bremsstrah-
lung calculation using the amplitude M„. To get the
same value of K~, Ez in Eq. (A4) has to be replaced by
Ez ——Ez —C, where C is a constant energy, if the expres-
sion for K& given by Eq. (A4) remains unchanged. How-
ever, Eq. (A9) for I z must be slightly modified to take
into account the variation of BT'/Bs ~ in the resonance
region. Details of the modification will not be discussed
here because the result of our study seems to indicate that
any amplitude which involves BT"/Bs ~ cannot be used
to describe the bremsstrahlung spectra in the energy re-
gion of a resonance.

APPENDIX B: THE EED APPROXIMATION

In this appendix we try to explain why the ~+—py spec-
trum, o.~z, calculated in the EED approximation shows
a typical bremsstrahlung spectrum with 1/K dependence
without any resonant structure for most of the photon
counters G; (i = 1,2, . . . , 19), in good agreement with the
experiment.

Nefkens and Sober have calculated o.~z from the fol-
lowing formula:

cr~y ——GKD "DpEED

where

D&=+q/'/q; K pf'/p; K+—qg/qf K+pj"./pf. K,
82

G = (e /16~ )s '
qf /[ q; [qf (s ' —K)+E~ (qf K) ]],
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and d o ~(s, t ) /d Q is the n +—
p elastic scattering cross sec-

tion evaluated at s and t. In the published EED calcula-
tions, do~/dQ was evaluated at (i) sp and tp and (ii) s
and t. Here, sp ——s; =limk ~f, tp ——limk pt~ =limk ptq,
s= —,(s;+sf), and t=

2 (tz+tq). The amplitude used in

case (i) is identical to our amplitude M„(sp, tp) given by
Eq. (16b) with Zz ——1, Zz ——+1 for n.+and-the T matrix
evaluated at limk ~ p

——sp and limk pt~p ——tp, which
can be obtained by choosing P/a =0 and

a'/P' = —(qf —q; ——,Rq ).Rq /(pf —p; ——,Rz ) Rz .

The amplitude used in case (ii) is the same as that used in
case (i), except that the T matrix in this case is evaluated
at s and t, which can be obtained by choosing a =P= 1

(s~p ——s) and a'=P'=1 (t tr =t) In o.rder to obtain Eq
(Bl), Nefkens and Sober have made another approxima-
tion. They have ignored the contribution from the proton
anomalous magnetic moment A, and they have used the
elastic projection operator, A(Pf ) = limk pA(pf )

=limk p(pf+M)/2M in their calculation. This elastic

projection operator, combined together with the amplitude
M„", enable them to write crier in terms of do~/dQ as
shown in Eq. (Bl).

Now let us explain why o.~z shows no resonant struc-
ture for the m+-py case and gives a typical bremsstrahlung
spectrum with 1/K dependence for most of the photon
counters G; (i = 1,2, . . . , 19), in good agreement with the
experiment. In case (i), do~/dQ is evaluated at sp and
tp. Since sp and tp are independent of K, der~/d 0 will
not vary with K. Therefore, if o~z is plotted as a func-
tion of K, its shape will be determined mainly by the fac-
tor KD"D, which is roughly proportional to 1/K. This
is why o~z decreases monotonically with increasing K.
To support this argument, we have calculated o.~~ andEED

we have obtained all spectra which are smooth curves
with 1/K dependence. Some of these calculations are
shown in Figs. 6—8 (the dot-dashed curves). As for case
(ii), der~/dQ is evaluated at s and t. Since s and t are
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FICx. 6. Comparison of EED predictions (the average cross
section over the ten photon counters G~ to G&0) with the m

—py
data at 298 MeV. The solid curves represent the results of cal-
culation using Eq. (B1) with the elastic n. —p cross section
evaluated at (s, t). The dash-dotted curves and the dashed
curves are also calculated from Eq. (B1), but with the elastic
m. —p cross section evaluated at (so, to) and (s, to), respectively.
The average experimental data are from Ref. 2.

FICr. 7. Top: The m+p elastic cross section, evaluated at
(s, t ), as a function of photon energy K at an incident pion ener-

gy of 298 MeV. Bottom: The m+py cross section as a function
of photon energy K at 298 MeV for the photon counter G14.
The solid curve represents the result of the EED calculation us-

ing Eq. (B1) with the elastic m+p cross section evaluated at (s, t ).
(This elastic cross section is shown in the top figure. ) The
dash-dotted curve represents the same calculation, but with the
elastic m+p cross section evaluated at (so to). The experimental
m+py data are from Ref. 2.
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counters. Without any resonant structure from the elastic
scattering cross section do~(s, t)/dQ, the shape of o~z
will be determined mainly by the factor KD"D . This is
the main reason why most of the calculated o~r (s, t) de-
crease smoothly with increasing K. Some of these calcu-

FIG. 8. Same as Fig. 7, but at 269 MeV for GI9.

functions of K, do /dQ is no longer independent of K.
This means that tr~r will depend on both the factor
KD"D& —l/K and der~(s, t)/de when tr~z is plotted as
a function of K. The fact that t depends on K implies
that the scattering angle will change with K. More pre-
cisely, as K increases the scattering angle used in the cal-
culation of do~(s, t)/dQ will be shifted from one angle
to another. The change in the scattering angle is not
small for the ~—+py case at 298 MeV. For G&4, for exam-
ple, the scattering angle is changed from 69 at K=15
MeV to 100 at 140 MeV. This change will cause
drr~(s, t)/dfl to change slowly and smoothly with in-
creasing K. There is another important factor which is
directly related to s. As we know, when K increases, s
will reach the resonant energy sz at a photon energy Kz.
s(Kr)=s~. In other words, the predicted resonant peak,
if any, is expected to appear at the photon energy Kr in
the bremsstrahlung spectrum. Our calculation shows that
K is about 110—140 MeV, depending on the photony

~ ~ +counters and the incident energy, for the m. —py case.
Since 110—140 MeV is close to the maximum kinemati-
cally allowed photon energy K,„and the measured pho-
ton spectrum is extended to about 120 MeV, no resonant
structure can be expected from der~(s, t )/dQ for most of
the photon counters. [If Kz &K,„and the photon spec-
trum is extended to K'' with Km» & K' & K&, then
do~(s, t)/dQ will show resonant structure in the energy
region 0& K &K'.] All these factors combined together
cause do~(s, t)/de to vary slowly and smoothly with in-
creasing K (see Figs. 7 and 8) for most of the photon
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FIG. 9. (a) The p' C elastic cross section as a function of in-

cident proton energy E; for Oq ——155. (b) The p' C elastic
scattering cross section, evaluated at (s, t ), as a function of pho-
ton energy K at an incident proton energy of 1.880 MeV. Every
point between the arrows A and B on this curve (cross section)
corresponds to a point between A and B on the curve shown in

(a). Note that the cross section in (a) is plotted as a function of
E; while the cross section in (b) is plotted as a function of K
(since s is a function of K). (c) A comparison of EED predic-
tions with the p' Cy data at 1.880 MeV for I9q =155 . The solid
curve represents the result of the EED calculation using Eq.
(Bl) with the elastic p' C cross section evaluated at (s, t) [This.
elastic p' C cross section is shown in (b).] The dashed curve
represents the same calculation, but with the elastic p' C cross
section evaluated at (so, to). The experimental data are from
Ref. 7.
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lations are also shown in Figs. 6—8 (the solid curves). It
should be pointed out that if t is replaced by to, which is
independent of K (i.e., the scattering angle is fixed), then
the calculated cross section cr~~ (s, to) will show resonant
structure, just as we have pointed out in Sec. IV. Some of
these calculations are shown in Fig. 6 (the dashed curves).

Although the EED approximation predicts m
+—

py cross
sections which are in good agreement with the UCLA
data, it gives very poor results for the p' Cy cross sections
(see Sec. IV). There is no contradiction between these two
predictions because the predicted cross section depends on
the incident bombarding energy, s ~ and t tr. Different
values of s ~, t ~, and the incident energy would give
quite different cross sections in the resonant region. This
is exactly the point we try to emphasize in this work. In
Fig. 9 the p' Cy cross sections tr~zz (s, t) are calculated in
the EED approximation using Eq. (B 1). Here again,
do~(s, t)/dQ is evaluated at (i) so and to and (ii) s and t.
If do~c/d0 is evaluated at so and to, then the predicted
cTpcy shows no resonant structure as expected for the
reason we have already discussed [see the dashed curve in
Fig. 9(c)]. If do.~c/dQ is evaluated at s and t, on the oth-
er hand, then the predicted spectrum shows resonant
structure with a peak which appears at E& ——2Eo-270
keV [since (a+P)/P=2] [see the solid curve in Fig. 9(c)].
Since the observed peak appears at I( o

——135 keV, the

predicted spectrum is therefore in total disagreement with
the experiment. This kind of result is exactly what we
have found in our one-energy

—one-angle case. To be
more precise, the curve for o.

pcy with do.pc/dQ evaluated
at s and t is very similar to the spectrum calculated from
the amplitude M„(s,to). This is because t changes slight-
ly with K in the energy region 10&K &400 keV (the
change in the scattering angle is less than 1.0 ), i.e., t -to
and ~pEcEyD(s, t}-~pcErD(s, to}. We have also found that
Kr «K,„ for this low energy p' Cy case. This fact, to-
gether with the fact that t -to, can be used to explain why
the resonant structure is predicted in the p' Cy case.

Finally, we should emphasize that the EED approxima-
tion of Nefkens and Sober has not only neglected the
second term B„ofthe bremsstrahlung amplitude, but has
also ignored the contribution from the proton anomalous
magnetic moment A, . The contribution from these terms
is not negligible for the m

+—

py processes near the b, (1232)
resonance. As we have already mentioned in Sec. IV, the
contribution from the B„ terms causes the calculated
~-py cross section to rise steeply with increasing K above
80 MeV. And our study shows that the contribution from
A. does change substantially the magnitude of the ~+—py
cross sections for some photon counters. For some cases,
the agreement between the predicted cross sections and
the UCLA data becomes very poor.
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inolves a soft-photon amplitude which depends on T(E; ) and
T(Ef), i.e., on two energies, E; and Ef. This amplitude can
be classified as the two-energy approximation and is similar
to the principal (leading) term of the Feshbach-Yennie ap-
proximation used in bremsstrahlung calculation. If T(E;)
and T(Ef ) in this two-energy amplitude are expanded about a
common energy E, and if those terms involving the deriva-
tives of T(E) with respect to E [i.e., BT(E)/BE, . . .] are
neglected, one then obtains the second amplitude [Eq. (5) of
their paper] which depends on T(E), i.e., only on single ener-

gy E. This second soft-photon amplitude belongs to the one-
energy approximation and is similar to the leading term of
Low's approximation used in the bremsstrahlung calculation.

These two soft-photon amplitudes are tested numerically by
the authors and they have found that the two-energy approxi-
mation gives much better results than the one-energy approxi-
mation. Although it has not been discussed explicitly by these
authors, the main reason why the one-energy approximation
fails to adequately describe the free-free cross sections near a
resonance can be understood as follows: The derivation of the
one-energy approximation requires the expansions of T(E; )

and T(Ef ) in powers of E and such expansions are not valid
in the resonance region (the contribution from BT/BE will be
very large). On the other hand, the two-energy approximation
which avoids such invalid expansions is expected to be a
better approximation.


