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Reaction ' O(m+, pp)' N at 60 MeV: Testing the quasi-deuteron mechanism
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A recently proposed phenomenological version of the quasi-deuteron mechanism for pion absorp-
tion is applied to low energy pions in flight. We analyze the 60 MeV high resolution data of the re-
action ' O(m+, pp)' N. The distorted wave calculations are successful for the transition to the 3.9
MeV 1+ state, but fail to explain triple differential cross sections for the transition to the ground
state. The strongly anisotropic recoil angle distributions for both states are well accounted for by
distortion and polarization effects, the latter being characteristic for transitions with L~O. Predic-
tions for 2+ and 3+ states are given which should allow us to verify our tentative explanation of the
recoil angle dependence.

I. INTRODUCTION

The mechanism of pion absorption in nuclei is still
poorly understood. ' Experimental efforts trying to
change this situation fall roughly into two categories: de-
tailed studies of the two-nucleon absorption mechanism
on one hand, and attempts to identify signatures of
many-body absorption mechanisms on the other. Here,
we focus on the first class of measurements, the prototype
of which is the (ir,NN) coincidence reaction. Only
very recently have sufficient statistics and energy resolu-
tion been obtained to allow the investigation of transitions
to definite final nuclear states. ' This opens the possibili-
ty for a quantitative exploration of the "quasi-deuteron
mechanism" (QDM) in complex nuclei. In a previous pa-
per' (hereafter referred to as I), we have advocated the
use of a phenomenological irNN absorption operator at
low energies, and presented first results for stopped pions.
In the present study, we apply the same strategy to
analyze the recent 60 MeV in flight absorption data on
0 from LAMPF.
Before turning to these new calculations, it may be

worthwhile to recapitulate some results of our preceding
work (I). Briefly, our approach consists of constructing a
phenomenological mNN —+NN transition operator with
free strength parameters characterizing its partial wave
content. This operator is then imbedded in a standard
distorted wave impulse approximation (DWIA) scheme,
and hopefully allows the correlation of a large variety of
data in an economic and physically motivated way. The
purely phenomenological approach may suggest a great
flexibility which can accommodate almost everything, at
the cost of having very little predictive power. However,
in practice, this is not the case: The mere assumption that
absorption proceeds via the QDM already yields very
strong correlations among different observables. For
stopped pions, for instance, we found that most distribu-
tions are governed by the recoil momentum distribution,
rather than the dynamics of the elementary absorption
process. In such a case, discrepancies with the data can-
not be reconciled by exploiting the freedom contained in
the m.NN~NN transition operator, but indicate nuclear

structure problems or a breakdown of the QDM as such.
In the (ir+,pp) coincidence measurement on ' 0 at 60

MeV, two distinct transitions leading to the ground state
and 3.9 MeV 1+ state of ' N were studied in detail. The
data show two unexpected qualitative features: The recoil
momentum distribution for the g.s. transition exhibits a
maximum at Pz ——0 in conflict with its generally assumed
L=2 character, and there is a very strong, state-
dependent variation with the direction of the recoil
momentum vector. In its simplest form, the QDM
predicts no dependence on this variable at all. These puz-
zling observations are the main motivation for the present
study.

The plan of the paper is as follows. Section II contains
the basic elements of the QDM for pions in flight, includ-
ing an analytically soluble simple model which has al-
ready proven instructive in the stopped pion case (I). In
Sec. III we compare this schematic model with the ' 0
data at 60 MeV, concentrating on the qualitative aspects.
Section IV is devoted to DWIA calculations and detailed
comparisons between measured and calculated triple dif-
ferential cross sections. It is followed by a brief con-
clusion.

II. THE QUASI-DEUTERON MECHANISM
FOR PION ABSORPTION IN FLIGHT

The aim of this section is twofold: First, we recall the
main features of our phenomenological ~—two-nucleon
absorption operator and collect some information on the
inherent strength parameters. Secondly, we discuss a
schematic model for pion absorption on a pair in a com-
plex nucleus, which exhibits the dynamical information
content of various experimental observables. This qualita-
tive discussion will serve as the framework for our
analysis of the experimental data later on. Since the for-
malism developed here is quite similar to the stopped pion
case (I), we shall be less explicit, concentrating on the nov-
el aspects for pions in flight.

At low pion energies ( T & 100 MeV), six partial wave
amplitudes are needed in order to specify pion absorption
on all possible NN pairs in relative s states. As a re-
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minder, we list in Table I the relevant quantum numbers.
Following paper I, we write the t-matrix element for the
reaction m.(NN)b, „„d~NN in a way which emphasizes the
spin structure:

( q I
r b I

K) = g S(S',S) V(S',S) .
S'

(2.1)

Here, sc and q are the initial ~—NN-pair and final NN
relative momenta and S(S',S) denotes a rank one spin-
transition operator connecting NN states with spin S and
S', cf. Appendix 1 of I. The Cartesian vectors V(S', S)
can be expressed in terms of the partial wave amplitudes
3; of Table I as follows:

~+(np) T =O~pp: V(1, 1)=V 3gA, q,

(NN);

'Si
Sp
SI
'Sp

Si
1S

3p

'Sp
3S
1D

'Di

=f g I

V(S',S)
I

', (2.3)

TABLE I. Allowed channels of the mNN~NN process, for
pion s and p waves and NN pairs in initial s states.

V(0, 1)=V 3g(A3K+A5Q) (2.2a) with the kinematical factor

with Q= [q(q.a. ) ——,
' a],

2
E(q)q Mpv'p(4M +p)

28m. U„ei ~ o 16m. i~
(2.4)

ir+(np)T, ~PP: V(1,0)=i)A,q,
1

(pp)~np: V(1,0)= g(A2q —A4x —A6Q) .
2

(2.2b)

(2.2c)

p and M are pion and nucleon masses, q is the final NN
relative momentum as determined by energy conservation,
and E(q)=(M +q )'~ . Following I, we adopt the nor-
rnalization

g is an overall scale factor which we may choose at our
convenience. The unpolarized differential cross section in
the c.m. frame is given by

(2.&)

which yields the following expressions for the differential
cross sections (2.3):

(2.6a)

(2.6b)

(2.6c)
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Here, PI stands for the L,th Legendre polynomial in K.q.
In our approach, the 3; are treated as free parameters, to
be inferred from experiment. Obviously, in reactions
(2.6a) and (2.6c) the unpolarized differential cross section
is not enough to pin down the A s unambiguously: it

only gives two or three numbers (the Legendre coefficients
aL ) as compared to five unknown (three complex ampli-
tudes, minus an overall phase). The total absorption cross
sections can be inferred from the Po coefficients in Eqs.
(2 6):

+I~ (
I
~3

I
+

I
~s

I
) [~+(np)T=O~PP]

I
~z

I

' [~+(np)T=i ppl,
K

I
~z

I

'+~'(
I
~41'+ 1~6 I

') [~ (pp) np] .
(2.7)

We have chosen the normalization of our amplitudes 3;
with the purpose that they enter with equal weight here.
Later on, we shall also need to know how the total absorp-
tion cross section for a S& pair depends on the M sub-
state of the absorbing pair. Choosing the m.-d relative
rnomenturn K as quantization axis, we find

~M=0= [ I
~i I'+~'(3

I
~3 I'+ s I

~5
I

')]
K

~M=+i= (
I
~i I'+ i'0~'I ~s I') .

K

(2.8)

As expected, s absorption ( —Ai) does not depend on
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M. p absorption via A& yields a weak M dependence
(oo:o.

&
——4:3), whereas A3 only contributes to the M=O

substate. The reason for this latter selection rule is the
fact that since A3 corresponds to a S~~ Sp transition
and a pion p wave (cf. Table I), (q

~
t»s

~
a, 1M ) can only

be proportional to ~&~,' for our choice of the z axis this
vanishes unless M=O.

Via detailed balance, we can relate the total md —+pp
cross section to the total pp~md production cross section

3 2 2
trprod z («rI )o»s (2.9)

Again, for later use, we have evaluated the total produc-
tion cross sections for a deuteron in a definite M substate,
using q as the quantization axis (i.e., the relative pp
momentum). The result is

AM o==gir
I
A3+v 2As

~

~M =+~= ~ «3
I

A
~
I'+~'I ~»3 —As

I
(2.10)

with g =2'~/q
Here, A3 does not give rise to any M dependence since,
after integrating over dQ„, there is no vector left.
strongly favors M=O production over M= 1 (by a factor
of 4), and A~, the s-wave production, is forbidden for
M=O: It would require a ~10)~

~

10) transition via a
vector operator; cf. Eqs. (2.1) and (2.2a). Note that unlike
the total cross sections (2.9), Eqs. (2.8) and (2.10) are no
longer related by detailed balance because the M substates
refer to different coordinate frames.

In I we estimated the s- and p-wave absorption strength
parameters

~

At
~

and
~

A3
~

+
~

A5
~

from the
pp~m+d reaction near threshold, pionic He-atom data,
and the imaginary part of the m-nucleus optical potential.
For pions in flight, two questions arise immediately:
What is the energy dependence of these parameters, and
which extra information is contained in the differential
cross sections?

For pp~~+d, the usual threshold parametrization,

TABLE II. Energy dependence of the p-wave strength
+

~

As
~

for the rrd~pp process, calculated under the
assumption that the s-wave strength remains at its zero energy
value.

T (MeV)

0
20
40
65
80

I
A3

I

'+
I
As

I

' (fm')

0.050
0.059
0.063
0.086
0.092

0.048&
~
A3

~
+

~
As

~

&0.081 fm at 62. 5 MeV,
(2.13)

0.067&
~

A3
~

+
~
A5

~

&0.091 fm at 82.8 MeV .

The corresponding threshold value for He is not known,
but for "He it is 0.068 fm . Thus, (2.13) suggests a weaker
energy dependence than in the deuteron case.

As for the absorption parameters of the pion-nucleus
optical potential, the MSU group' has found that the
values deduced from pionic atom data also give the
correct order of magnitude of the total absorption cross
sections, in the region 50—80 MeV. A quantitative con-
clusion cannot be drawn because the data' have large un-
certainties and tend to show larger ~+/vr differences
than the calculations.

The differential cross sections (usually parametrized via
coefficients of Legendre polynomials at ) contain addi-
tional information about the partial wave content of the
absorption amplitudes. Both the m. +d~pp and
m. + He~3p data are compatible with a2/exp 1.1 in the
region between 60 and 80 MeV. ' ' The fact that the 'D2
NN phase shifts have the largest inelasticities at low ener-
gies clearly shows the dominance of Az. If we then as-
sume that the next important term in Eq. (2.6a) is the in-
terference term linear in A3, we get the small ratio

o ( pp~+d ) =a(ir/p ) +P(a /p. ) (2.1 1)
u2/ap —1

Re( A 3/A ~ ) = =0.04 .
2 2

(2.14)

with a=0.18 mb, p=0.95 mb (Ref. 11), falls short of the
data at higher energies. Assuming that the energy depen-
dence is entirely due to the p-wave parameter as suggested
by the AN~NN mechanism, we obtain the parameters
listed in Table II (in paper I, different zero energy param-
eters have been assumed due to the use of the older values
for a and P of Ref. 12).

For He, Aniol et aI. ' have extracted the quasi-free
two-nucleon absorption cross section on np pairs of 10.2
(13.5) mb at 62.5 (82.8) MeV. Taking into account the
number of S& pairs, 1.5, this translates into

~
A,

~

'+ Ir'(
~
A,

~

'+
~
A,

~

')=
0.056 fm at 82.8 MeV .

(2.12)

The value for
~

A
& ~

is 0.015 fm at zero energy (cf. paper
I). If we assume that this s-wave parameter does not in-
crease with energy, we obtain the limits

The (m. ,np) coincidence measurements on He provide
complementary information on absorption from 'Sp
pairs. ' The total absorption cross section per pair is a
factor 20 lower than for S& pairs, at 62.5 and 82.8 MeV,
so that the amplitudes A2, A4, and A6 are, on the aver-
age, suppressed by a factor 7.7 as compared to A5. The
analysis of Ref. 13 suggests that none of these three am-
plitudes is as dominant as A5 in the spin triplet case.

We now turn to a simple model which allows us to
study gross features of pion absorption in complex nuclei
in closed form. We consider a single pair of nucleons
with quantum numbers (n, l~n2l2)LsJM and T, bound in a
harmonic oscillator well, and neglect all initial- and final-
state interactions. This model has been analyzed for the
case of stopped pions in I. After suitable changes in the
kinematics, we can take over many of the results derived
there. Let us denote by k, p~, and p2 the laboratory pion
and nucleon mom enta in the initial and final states,
respectively, and introduce the "natural" QDM variables
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do. P=f I (P,q, tt)
dQpdQqdP (2') q2 M(~ (p~g)z/4M)

(2.16)

with f from Eq (2..4). I(P,q, a) stands for the appropri-
ate spin sum over

~
Tf;

~

. There are four independent
kinematical variables: the "recoi1 momentum" P and
three angles needed to characterize the relative orientation
of the vectors P, q, and a. Only two of these variables (P
and cos8= P.q) survive in the limit of stopped pions.

In I we showed that I(P,q, a) factorizes into the proba-
bility of finding the NN pair with c.m. momentum P,
times the spin sum of the elementary absorption process:

/RP(P)
/I(P,q, a. ) =

4m
I(P,q, tr),

/

@„g(0)
/

(2.17)
I(P,q, a)=Tr[t,b, (q, a)p'; (P)t,b, (q, x)I .

The functions RL (P) (/3= [ n &/I n2lz I ) in the harmonic os-
cillator model have been given in Appendix 2 of I, for the
Os and Op shells. We have divided out the probability

~

C&„~(0)
~

of finding the two nucleons at zero separation,
so that the t, (bq, a) of Eqs. (2.17) is consistent with the
definition of t,b, in Eqs. (2.1) and (2.2). In cases where
different n-quantum numbers can occur in N„&(r),

~
@„~(0)

~

stands for the appropriate average. Note the
normalization condition

I

RL(I')
I

'
2~ 4~ N„, 0

(2.18)

2Mk —coPP=p, +p, —k, q= —,(p, —p, ), tt= . (2.15)
2M +co

P is the c.m. momentum of the NN pair prior to absorp-
tion (or minus the momentum of the recoiling nucleus), q
the relative momentum of the emitted nucleons, and ~ the
pion —NN-pair relative momentum, while co=(p +k~)'~~.
In these variables, the differential cross section for pion
absorption on the bound pair is given by

ferential cross section refers to a tensor-polarized "deute-
ron" and acquires a characteristic dependence on both the
direction of P and the state quantum numbers L,J. These
polarization effects disappear if one integrates over d Qp.

The evaluation of I(P,q, tt), Eqs. (2.17), in terms of the
vectors V(S',S) of Eqs. (2.2), is straightforward F. or 'So
pairs, one gets trivially

I(P,q, tt)= ~
V(1,0)

~
(2.21)

with V from Eqs. (2.2b) and (2.2c). This is proportional
to the differential cross section of the elementary
7rd~NN process; cf. Eqs. (2.7b) and (2.7c). For SI pairs,
the corresponding result is

I(P,q, ~)= —, (
~

V(0, 1)
~

+
~

V(1, 1)
~

)

—PL,J)I[)P V(0, 1) (' ——,
' [V(0, 1) [']

——,[ i

P V(1, 1)
i

——,
'

(
V(1, 1)

( ]I, (2.22)

with the V's from Eq. (2.2a). The first term on the right
hand side of (2.22) yields again the unpolarized cross sec-
tion, whereas the term multiplying g(L,J) (which mani-
festly vanishes if one integrates over dip) arises from the
polarization effects. Combining Eqs. (2.2), (2.16), (2.21),
and (2.22), we have arrived at the solution of our model
problem. Already in this idealized case, we notice a more
subtle interplay between the elementary absorption pro-
cess and the angular momentum structure of the transi-
tion considered than has been commonly assumed. Two
qualitative new features are predicted for absorption on
S& pairs with L&0: a characteristic state dependence

[via g(L,J)] very different from the trivial dependence
through

~
RP(P) ~, and a dependence on the direction of

P, or, equivalently, the recoil momentum. We illustrate
the size of these effects by evaluating (2.22) for the impor-
tant special case of a pure A5 absorption amplitude:

ff
p,' (P) in (2. 17) is the density matrix of the "deuteron" in
the initial state. As discussed in I, it is 1 for Sp pairs and
for S] pairs with L =0, but contains a certain amount of
tensor polarization for S] pairs with L&0: In the stan-
dard notation,

I(P, q, a)= —
r/ ~

I
As

I

X I[1+((L,J)][1+3(qk) ]
—3((L,J)(3q P q k —P k)~I . (2.23)

t~) ——1, t Ip
——0, t2p ——

1/2

g(L,J)Y2q(P) .
(2.19)

The factor g(L,J) describes the state dependence of p,'
and can be written (for the Os and Op shells) as

Considering that g(L,J) of Eq. (2.19) ranges from ——, to
+ 1 for s- and p-shell nucleons, it is clear that the depen-

dence on P and L,J can be very strong.
Instructive expressions can be derived by integrating the

cross section (2.16) over some of the kinematical variables.
Specifically, we focus on SI pairs and evaluate the distri-
butions in all three angles which occur naturally in the
QDM: qk, Pk, andq P.

g( L J)=
2 5L.J —(1 &t.z )

4 ~—3L —J+1
4 2J+1 (2.20)

A. q k distribution

Equations (2.17) reduce to the often assumed product
form (recoil momentum distribution times unpolarized
md~NN differential cross section) in the cases S=O or
L=O. For spin triplet pairs and L&0, however, the dif-

This angle is the one relevant for the elementary
md~NN cross section in the c.m. system. Upon integrat-
ing (2.16) over dP dQp, neglecting the P dependence con-
tained in ~ and q, we simply get
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Qc7 80'

dq-x d cos6c.m. d NN

(2.24)
By specializing to the cases of jure A, or A5 amplitudes,
one can recover here the 8 distributions for s and p ab-
sorption of stopped pions given explicitly in Table 2 of I.

The distribution (2.24) is independent of the particular
transition and directly reflects the underlying absorption
process.

B. f k distribution

The distribution in P.a is closely related to the recoil
angle distribution (cos8R ——PR k), since

PR k= —P k+O(cp/M) . (2.25)

The angular average over I(P,q, sc) needed here is

fdQ I(Pqa)= IAi
I

+a (IA3I + IA5I )
4m'

XP2(P k) . (2.26)

Including the kinematical factors of Eq. (2.16) and using
(2.8) for the total absorption cross section on a deuteron in
a definite M substate, crM, we can eliminate the ampli-
tudes A and find the compact expression

= —,[op+2oi —2$(L,J)(op —oi)»(P k)] .
d P.ar

(2.27)

The predicted P-sc dependence turns out to be rather weak
for A q dominance:

III. COMPARISON WITH THE ' O(7T+,pp)' N
DATA AT 59.6 MeV: QUALITATIVE FEATURES

Recently, the first high resolution coincidence data for
absorption of pions in flight have become available from
LAMPF. Wharton et al. have studied the reaction
' O(m. +,pp)' N at 59.6 MeV and have presented detailed
results for two specific final states of ' N, the ground
state and the 3.9 MeV excited state (both 1+, T=O). A
comparison between these two transitions is appealing be-
cause they are predicted to involve almost pure L =2 (g.s.)
[L=O (3.9 MeV state)] transfer. ' The transition to the
3.9 MeV state had already between measured before with
stopped pions. In I we showed that these zero energy
data can be well understood with the QDM. In this sec-
tion we shall confront the QDM in the simplified form of
Sec. II with the new 60 MeV data from LAMPF, concen-
trating on the qualitative aspects. Such a comparison is
greatly facilitated by the fact that Wharton et al. have
parametrized their data in a simple way, guided by the
QDM. A more quantitative study of certain aspects and
all actual cross section calculations will be deferred to Sec.
IV, where we shall employ a distorted wave approach.
For the moment, we tacitly assume that we may identify
the asymptotic pion and nucleon momenta with the vari-
ables entering the elementary absorption process, and do
not worry about absolute normalizations.

The data of Ref. 8 have been parametrized in terms of a
"Tmatrix" of the following form:

d P.sc

=2m'
I
A5

I
[1——,

'
g(L,J)P2(P ir)] . (2.28) I

7 I'=f(&R)[i+o2»(~ q)]g(PR Pl P2) (PR

(3.1a)

C. P q distribution

with

g ( PR |Plip2) N(~R )I. 1+B(~R )PR Pl PR P2]
Following the convention for stopped pions, we shall

refer to the angle between P and q as 0. We can obtain
the 8 distribution for pions in flight by integrating over
d 0„. The angular average yields

2 fdQ+(P, q, x)
4~g

=
I
Ai I'+~'(

I
A3 I'+

I
A5 I')

+4(L J) [ I
Ai

I

—~ [ I
A5

I

+2i 2«(AiA5 )]}
X&2(P.q), (2.29)

do. I q [o'p+2o1 —2$(L J)(c7p —o i)P2(cos8)]dcosO 3 ~2

(2.30)

where we have again neglected 0 (cp/M) corrections.
Comparing (2.29) with the expressions (2.10) for the pro-
duction cross sections of polarized deuterons (o~) in the
inverse reaction pp~~+d, we get an expression closely
analogous to (2.27):

X [1+C(PR )cos8R ],
N(PR ) = [1 B(PR )/3] ', —cos8R PR.k . ——(3.1b)

(3.2b)

Since the phase space factor has been pulled out already,
we can directly compare

I

T
I

of (3.1a) with the spin
sum I (P,q, v) introduced in Eq. (2.16). The various func-
tions and coefficients appearing in Eqs. (3.1) will be dis-
cussed as we go along. We proceed in two steps: First,
we compare the integral of

I

T
I

over the recoil angles
with the corresponding QDM prediction. In this way we
eliminate the complicated function g in (3.1b) and the ten-
sor polarization effects discussed in Sec. II ~ In the second
step we shall examine in detail the recoil angle dependence
of

I

T
I

and I(P,q, a).
Upon integrating

I

T
I

of (3.1a) over dpi, we obtain
an expression of the same general structure as in the
QDM of Sec. II; cf. Eqs. (2.17) and (2.22):

f I

& I'd&~-f(I'R)[1+o2I'2(~ q)] (3.2a)

f I(»q ~)d&i -
I
&L. (I')

I
'[~p+tr2I'2(» q)] .
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Equation (3.2a) follows from (3.1a) because

Id Qpg ( Pz, p~, p2) =const (3.3)

3.9 MeV State

by construction. The Legendre coefficients aL entering
(3.2b) can be read off Eq. (2.6a). Obviously, f(Pz ) corre-
sponds to the deuteron momentum distribution, whereas
the ~ q dependence reflects the unpolarized elementary
md~pp cross section. The best fit parameters for az are
(within the uncertainties) consistent with the value 1.1 of
the free md~pp reaction, confirming the dominance of
the amplitude A& also inside the nucleus. As far as

f ( PR ) is concerned, we note that both L =0 and 2
transfer can contribute for 1+ states. If we rely on the 2-
cfp's of Cohen and Kurath' (CK), we obtain the recoil
momentum distributions shown in Figs. 1 and 2, together
with the data (arbitrary normalization). The agreement in

shape is reasonable for the 3.9 MeV state, but there is a
rather dramatic discrepancy for the g.s. at small Pz.
Within the QDM there are, in principle, two ways of gen-
erating a peak at Pz ——0: either one increases the L=O
component in the wave function as compared to the CK
results, or one assumes that absorption on pairs different
from 5& pairs is important.

The first alternative seems to be in conflict with other
two-particle transfer reactions. ' In order to illustrate the

amount of L=0 component needed, we have nevertheless
varied the (L=O)/(L =2) transfer ratio to get the qualita-
tive fit of Fig. 3 (solid curve). We have to increase the ra-
tio co/c2 ———0.078 (CK) of the 2-cfp's by a factor of 2.7.
The second possible explanation has been advocated in
Ref. 8. L, =2 transfer implies a 5& pair with an I.=2
c.m. wave function, or a D~ pair with L=O. The latter
component is equally strong in the nuclear wave function,
but not expected to show up, because absorption on a d
pair should be dynamically suppressed. If we allow the
ratio of absorption cross sections to vary freely, we can ar-
rive at the shape of f(PR) shown as the dashed curve in
Fig. 3 (the difference in shape between the two curves is
due to different n-quantum numbers involved). We need

du/dQ[ D)] =0.35
do/dQ[ S, ]

(3.4)

on the average, in the angular region covered by the exper-
iment (8, =63, . . . , 90 ). The angular dependence of
the two cross sections would be the same if both were
dominated by the Sq(AN)~'D2(NN) transition [this
would also be consistent with the finding that a2 in Eq.
(3.1a) is approximately the same in both transitions].
Then the ratio (3.4) would directly reflect the ratio of total
absorption cross sections, and be at least 3 times larger
than expected (see, for instance, Fig. 5 of Ref. 19).

80 Ground State

150

60

0
O
U

0

40 0
O
U

90

20
0 60

30

0 SO 160

+,+

240 320

PR (MeV/c)

FIG. 1. Form factor (recoil momentum distribution) for the
3.9 MeV state, calculated from the CK wave functions, as' com-
pared to the data of Ref. 8, in the units employed there. Nor-
malization fitted to the data.

0
80

I 1 I

160

PR (Mev/c)
240 320

FIG. 2. Same as Fig. 1, but transition to the ground state
shown.
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150

Ground State

c0/c2 —0.2 I

——— Incl. d pairs

B(P~ ) = —1.4 between Pz ——130 and 180 MeV/c, and is
small outside of this interval. Hence, g yields the depen-
dence

g —1+1.4(q.Pg )

[3.9 MeV state, 130 &P~ & 180 MeV/c] . (3.6)

Taking into account the fact that the experimental setup
favors in-plane geometry and angles 0, in the vicinity
of 90, this yields the L9~ dependence

g —1+1.4sin Oz —1 —0.6cos Oz, (3.7)
0
U
U

0

90
in qualitative agreement with Fig. 8 of Ref. 8. By con-
trast, the QDM predicts no Oz dependence at all for a
pure L=O transition. We shall comment on the role of
possible small L =2 admixtures below.

For the ground state, B(Pz) is 0 below 170 MeV/c,
then rises rather suddenly to —1, where it stays above 200
MeV/c. Therefore,

g —1 —(q.Pz) -cos Oz [g.s. , Pz )200 MeV/c],

(3.8)

0 80 160

PR (v vt/)
240 320

where we have again specialized to the in-plane geometry
and 0, =90. This distribution agrees roughly with Fig.
7 of Ref. 8. Let us assume that the high recoil momen-
tum data are predominantly L=2 transfer. The QDM of
Sec. II predicts, for L=2, J=1, and a pure A5 amplitude
[cf. Eq. (2.23)],

FIG. 3. Same as Fig. 2, but peak at P& ——0 fitted by adding
an extra L=0 component in the wave function (cfp ratio
cp/c2 = —0.21 ), or including absorption on pairs in relative d
states.

I(P,q, a)-1+3(q «) +3(3q Pk P —P k)

—1+3cos OR (O, =90') . (3.9)

p, PR p2 PR . (q'PR) +0
2q

2 '

(3.5)

A crude but useful approximation is to keep only the lead-
ing term on the right hand side. For the 3.9 MeV state,

We now turn to the extra dependence of
I

T
I

on the
kinematical variables contained in g ( Pz, p&, p2), Eq.
(3.1b). g has been introduced by the authors of Ref. 8 to
account for unexpected strong state- and recoil-angle
dependence of the data. The term proportional to C(Pz )

can be understood as a consequence of the energy depen-
dence of the elementary md~pp cross section. Since this
energy dependence enters only via the transformation
from the lab to md c.m. system, the effect on the O~
dependence is rather weak. In Sec. II we ignored such
nonstatic corrections for the sake of simplicity, but we
shall include them in the more detailed calculations of
Sec. IV.

The most intriguing term in g is the one proportional to
B(P~), where B(Pz) depends strongly on Pz and the
transition considered (see Fir. 6 of Ref. 8). Before com-
paring this term to the QDM, it is necessary to eliminate
the lab momenta p&, p2 in favor of natural QDM vari-
ables. Notice that

I

T
I

'-[1+3(q ~)'][1—(P~.q)'] . (3.10)

In the QDM this could only happen in the unlikely case
that A3 &&A5. However, we should bear in mind that the
parametrization (3.10) is only backed up by experimental
data in a rather sma11 interval of c.m. angles.

A disturbing feature of this comparison is the fact that
the 3.9 MeV state also displays a conspicuous Oz depen-
dence, contrary to the expectations for L=O transitions.
This raises the question whether small L=2 admixtures
(present for instance in the CK wave functions) could be
responsible for such an effect. In order to answer this
question, we have generalized the schematic model of Sec.
II for 1+ states, allowing arbitrary admixtures of L=O
and 2 pairs. As is shown in the Appendix, the effective
density matrix p'; of the deuteron in the initial state can
be evaluated along similar lines as before. The main

Near O, =90, this is remarkably similar to (3.8), a first
hint that the predicted polarization effects may indeed be
visible in the data. Inspection of Eq. (3.9) shows that if
our interpretation is correct, the strong Oz dependence ob-
served is a special feature of kinematics around 0, =90 .
Indeed, if one would integrate (3.9) over all c.m. angles,
the Oz dependence would be almost completely washed
out [see Eq. (2.28)]. The parametrization of Wharton
et al. , on the other hand, suggests a strong Oz dependence
at all c.m. angles,
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0.6

0.2
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—c p/c2 ——0.2I
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—+ 0.2I

I r I I, I 'i I a I i I
r

-0.2

—0.6

—1.0
40 80 120 160 200 240 280 320

PR (MeV/c)

FIG. 4. ((PR ) calculation for CK wave functions (solid
curve), and for a ratio of cfp's of co/c2 ———0.21 (long dashes) or
co/c2 ——+ 0.21 (short dashes).

0.028 at 100 MeV/c,
g(Pz ) = 0.080 at 150 MeV/c,

0.226 at 200 MeV/c .
(3.12)

The experimental OR distribution (3.7) corresponds to
/=0. 25. Hence, the sign of the effect (which is deter-
mined by the relative sign between co and c2, since the in-
terference term dominates) is correct, but the magnitude
too small.

As a second illustration of Eq. (3.11), we show in Fig. 4
the function g(PR ) for the ground state transition, using
either the CK wave functions or the wave function with
the strong L =0 admixture used in Fig. 3. We first notice
that, for P~ ~ 200 MeV/c, all three curves agree roughly
with the value g= ——,

' for a pure L=2 transition, so that
the prediction (3.9) is very stable in this region. Below
200 MeV one would also expect strong 0~ dependence
from Fig. 4, whereas the data require B(P~)= =0, i.e.,
isotropy. This may be taken as an indication that the
large cross section observed at small Pz cannot be inter-
preted in terms of L =0 admixtures to the wave function.

modification is the fact that the parameter g(L,J) of Eq.
(2.20) now becomes Pz dependent. We find

(czR 2 ) —W8cpR pc &R q

(c2Rp) +(cpRp)
( 1 + state) .

(3.1 1)

Here, RI =RL ' "(Pz ) is the wave function of Appendix
2 of I, and cl denotes the 2-cfp in LS coupling. If we
evaluate g(P~) for the 3.9 MeV state using CK wave
functions (cp ——0.2013, c2 ——0.0352), we find

IV. DISTORTED WA VE CALCULATIONS

Once the elementary absorption operator has been
chosen, the distortion effects of the pion in the initial state
and the two protons in the final state can be taken into ac-
count numerically, using well established techniques. The
calculational method and approximations used here are
similar to those described in I, so thus we need to discuss
only the modifications. The partial wave amplitudes a;
[which differ from the A; by not containing the bound
state wave function; cf. Eq. (2.4) of I] are assumed to have
the simple functional form

120
60 /103

3.9 MeV State
80 /100

10
60 /80

I I I I I I I

80

4J

40

b
U

60
I I

90 120 150
I I I I I I

60 90 120 150

Proton Energy (MeV)

60 90 120 150

FICx. 5. Results of the standard calculation for the transition to the 3.9 MeV state, compared to the data of Ref. 8 at three pairs of
angles (01,82) for the emitted protons.
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a;(q', q, g) =a;exp( —P q ), (4.1) stopped pions (I). The value of
~
a5

~

needed to repro-
duce the absolute normalization is

with the range parameter P= 1 fm. This yields a ratio of
1.1 for the absorption cross section on n=0 and 1 S&
pairs in ' O, as compared to —, in the zero-range limit.
Furthermore, only the dominant i=5 absorption channel
( Si-'D2) has been kept tentatively. When evaluating
the 0%'IA matrix elements, the nucleon momenta in the
transition operator (2.1) and (2.2) are replaced by the
asymptotic momenta, whereas the pion momentum is
treated rigorously as a gradient acting on the distorted
wave. This partial factorization can be justified if the k
factors from p-wave absorption are indeed the most rapid-
ly varying functions, at low energies. Besides, it is also re-
quired for consistency with the pion optical potential used
here. This latter is the MSU potential of Stricker,
McManus, and Carr. ' Proton final state interactions are
described via the Engelbrecht-Fiedeldey potential, in-
cluding the Coulomb interaction. The nuclear structure
input is taken from Cohen and Kurath' unless indicated
otherwise; harmonic oscillator bound-state wave functions
with b=1.72 fm and the usual c.m. correction have been
employed. %'e will refer to a calculation, to which the
physical input is as indicated in this paragraph, as a
"standard" calculation. All calculations are carried out in
coordinate space after a standard partial wave decornposi-
tion (for more details, see Ref. 21).

We now turn to the results of the calculations. Let us
first consider the transition to the 3.9 MeV 1+ state in
' N. Figure 5 shows the data of Wharton et al. at three
pairs of detector angles, in comparison with DWIA calcu-
lations normalized to the peak height of the 60 /103 data
(a point of practically zero recoil momentum). We disre-
gard the fourth set of angles (100'/100'), where the
kinematics is too far away from the quasi-free point
(Pz &300 MeV/c). The data are consistent with the as-
sumed L=0 dominance, confirming similar findings with

~
a5 ~2=15.6 fm (4.2)

For comparison, the limits deduced from the 62.5 MeV
He data, Eq. (2.13), correspond to values of

~
a5

~

be-
tween 7.9 and 13.3 fm. Since we have neglected s-wave
absorption altogether here, we should compare the value
(4.2) with 13.3 fm for He, indicating very good consisten-
cy between these different data. However, one must be
aware that in detail this comparison depends on the as-
sumed value of 1 fm for the range parameter P.

To illustrate the importance of distortion effects, we
note that the peak value in Fig. 5(a) is decreased by a fac-
tor of 1.9 as compared to a PWIA (partial wave impulse
approximation) calculation (15—20% increase due to pion
distortion, a factor of 2.3 decrease due to nucleon distor-
tion).

Furthermore, the relative height of the peaks at dif-
ferent detector settings is rather sensitive to the assumed
range parameter P of Eq. (4.1). Thus for instance, the
peak cross section at 80/100' (60'/80') would decrease by
40% (30%) relative to the peak at 60'/103 in the zero
range limit.

In Fig. 6 we compare the 0, dependence of the data
for the 3.9 MeV state with the DWIA prediction, using
again a pure Az amplitude. 0, characterizes the ele-
mentary nd~pp reaction in the c.m. system. The data
are presented in the form of the smooth "TRIDIF" param-
etrization of Ref. 8. The excellent agreement in shape
shows no indication for the presence of other significant
amplitudes. Hence, from now on we shall keep A5 fixed
to the value obtained from Fig. 5(a), and set A i

——A3 ——0.
As the last result for the 3.9 MeV state, Fig. 7 displays

the dependence on the recoil angle Oz for two values of
Pz and two values of 0, . The TRIDIF interpolation of

PR——0 MeV/c

3.9 MeV State
PR=75 MeV/c, q=404 MeV/c

100

120 Stand. Calc.
——— TRIDIF 80

Stand. Calc.
——— TRIDlF

80 60

40

40

20

0
60 80 l00

g, {deg}
l20

0
60 80 QO

8 (deg)
l20

FICi. 6. 8, dependence of the standard calcuIation for the 3.9 MeV state, caIculated at Pz ——0 and at 75 MeV/c, q=404 MeV/c
(solid curves), compared to the data of Ref. 8, here represented by the TRIDIF parametrization (dashed curves).
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the data is shown together with PWIA and DWIA calcu-
lations [both normalized in the same way to Fig. 5(a)].
The PWIA predicts a much weaker Oz dependence than
actually observed, in accordance with the dominant I =0
character of the transition (see Sec. III). However, distor-
tion effects induce a variation of the correct shape, reduc-
ing the discrepancies between the PWIA and experiment.
The sensitivity to distortion effects is unusually strong
here, presumably because we are in a kinematical region
away from the quasi-free kinematics, where the recoil
momentum distribution is rapidly varying. Apparently, it
is dangerous to simply identify the asymptotic momenta
with the variables governing the QDM inside the nucleus:
this may give rise to a spurious dependence on certain
variables like Oz.

The results shown in Figs. 5—7 demonstrate that the
data for the 3.9 MeV 1+ state are consistent with the
QDM, provided one takes into account finite range and
distortion effects. The absorption strength parameter that
we need, when we set the range parameter P=1 fm, is
slightly larger than the one suggested by the He data at
62 MeV.

Figure 8 is the analogue of Fig. 5, but for the transition
to the g.s. of ' N. According to our discussion in Sec. III,
the CK wave functions do not reproduce the observed
recoil momentum distribution, so we have very little
resemblance between theory and experiment, both in
shape and magnitude (the normalization is still deter-
mined by the 3.9 MeV state). To check whether the prob-
lem can be solved by modifying the nuclear structure in-

3.9 MeV State
PR=eo p. v/c), 8, ~' PR=eo t.. v/c), 8

1 I

S d. C=:=-

40 10

20

0 I[

0
I I I k

40 80 QO

8R(deg)

PR-—so p v/c), 8„„~'

p
0

I I I S

40 80 Q9

8R (deg)

PR-m p. v/c), 8„„~'

20

Stud. C~
20

Stud. C~-

5

8R (deg)
0

8R (deg)

FIG. 7. 0~ dependence of the transition to the 3.9 MeV state. Solid curves give the results of the standard calculation. Also
shown are the results of a PWIA calculation (long dashes) and the data, as represented by the TRIDIF parametrization (short dashes).
Panels (a)—(d) present results at four pairs of values for P~ and 0,
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FIG. 8. Same as Fig. 5, but results for the transition to the ground state shown.

put only, we have also performed calculations with a
strong L=O admixture, similar to that used in Fig. 3.
Figure 9 shows our results for both destructive and con-
structive interference between L=O and 2 components.
This is evidently not sufficient to resolve the discrepan-
cies. The challenge of the 60'/103' cross section for in-
stance, is not only to produce a peak at PR ——0, but also to
eliminate the double-hump structure resulting from the
L =2 component of the recoil wave function. In the TRI-
DIF parametrization of the data, this is achieved by invok-
ing strong simultaneous dependence on Pz and Oz. In the
QDM, this would require strong interference effects be-
tween different reaction contributions.

In Fig. 10 we show the Oz dependence at Pz ——225
MeV/c, for two c.m. angles. In striking contrast to the
poor cross-section results, the DWIA predicts very well
the qualitative behavior of the Oz distribution, confirming
the discussion of the preceding section. Apparently, the
polarization effects present in the QDM for transitions
with L=2 are clearly visible, provided one focuses on
events with large recoil momenta. It is worth noting that
distortion has rather little effect on the shape of the O&

distributions here, unlike in the case of the 3.9 MeV state.
This is presumably due to the fact that we are close to the
maximum of the L=2 recoil momentum distribution, as
compared to the tail of the L =0 distribution in the previ-

CV

ill)
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CV
Cl
O

2
b
U

60 /103
I I I I I I I

Pos. Interf.-- Neg. Interf.

12

Ground State
80 /100

I I I I I I I

Pos. Interf.-- Neg. Interf.

60'/80'
I I I I I 1

Pos. Interf.-- Neg. Interf.

I I I I I I

60 90 120 150
I I I I 4 I I

60 90 120 150

Proton Energy (MeV)

I I I I I I t

60 90 120 150

FIG. 9. Same as Fig. 8, but calculation performed with an enhanced L =0 component in the wave function. Results shown are for
constructive interference (cp/c2 = + 0.21, solid curves) and for destructive interference ( cp/c2 ———0.21, dashed curves) between L =0
and 2.
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Ground State
PR=225 (MeV/c), 8 MO' Pp=225 (MeV/c), 8 =70'

I—StuncL Cdc.
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- - - TRlDIF.

2

I
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0
0

I
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FIG. 10. Same as Fig. 7, but for the transition to the ground state. The results of the calculation have been divided by 2 here in or-
der to facilitate comparison to the TRIDIF results.

ous case.
In view of the qualitative failure documented in Fig. 8,

there is a definite chance that the agreement with the Oz
distributions in Fig. 10 is fortuitous. With one single
L&0 transition available, it is difficult to rule out this
possibility. However, it would be rather easy to test our
tentative explanation of the recoil angle dependence by
measuring other L&0 transitions as well, e.g., the 2+(7.0
MeV) and 3+(11.0 MeV) states in ' N. The QDM
predicts strong and characteristic 19~ dependences for
these transitions, under similar kinematics [see Eq. (2.23)].
At 8, =90', for instance, our analytical formula yields

1+3cos Oz, [1+,L =2]
g (Oz ) — 1 —cos Oz [2+ ]

1+—,'cos Oa, [3+] .

(4.3)

The behavior is so different that even a rough measure-
ment should allow testing of these predictions. In order
to give an idea of the expected cross sections, we have per-
formed DWIA calculations for the 2+ and 3+ states, for
the same kinematics as in Figs. 5 and 8. The results are
shown in Figs. 11 and 12. Notice the difference in shape
between the cross sections for the 2+ and 3+ transitions,

60 /103
I I I 1 1 I l

2 state
SO'/IOO' 6o'/so'

LJ

~U
b
U

60 90 120 150 90 120 150

Proton Energy (MeV)

60 90 120 150

FICs. 11. Results of our standard calculation for the transition to the 2+(7.0 MeV) state, at three pairs of detector angles. If we

normalize the calculation to the 1+(3.9 MeV) state, each section of the vertical axis corresponds to 1.84 pb/sr .
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FIG. 12. Same as Fig. 11, but transition to the 3+(11.0 MeV) state. The same remark about the absolute normalization applies
here.

which is exclusively due to the aforementioned polariza-
tion effects. Experimental data for transitions different
from the 1+ states studied in Ref. 8 would greatly help
disentangle nuclear structure uncertainties from reaction
mechanism uncertainties and hopefully shed some light
on the problems encountered with the g.s. transition.

V. CONCLUSION

We have recently proposed a phenomenological version
of the QDM for low energy pion absorption. The present
paper contains the first application of our model to pions
in flight. Our test case is the reaction ' O(m. +,pp)' N to
definite final states, as measured at LAMPF with 60 MeV
pions and high resolution.

Being dominated by L =0 transfer, the transition to the
3.9 MeV 1+ state is expected to have rather simple
features. This is indeed borne out by the calculations
which reproduce the main characteristics of the data with
only one adjustable parameter, the strength of the dom-
inant ~NN~NN absorption amplitude ( S~~'D2). As
compared to stopped pions, it is pleasing to see a greater
sensitivity to details of the absorption operator (e.g. , finite
size effects), owing to the increased number of kinemati-
cal variables. The recoil angle dependence at P~ ~100
MeV/c observed experimentally and essentially absent in
a PWIA can be accounted for very well by distortion ef-
fects in the initial and final states. This reminds us that
the asymptotic momenta are not identical to the variables
defining the elementary absorption process. The sensitivi-
ty to the distortion effects is enhanced here, because one is
already in the tail of the quasi-free peak.

For the ground state transition the picture is unfor-
tunately much less coherent. Because of the strong L=2
component, one certainly expects additional complica-

tions, but the data seem to indicate that some important
dynamics is still missing in our model. There is a sugges-
tion of two competing mechanisms, one at low and the
other at high recoil momenta. Attempts to attribute the
excess cross section near P~ ——0 to a significant L=O
component in the deuteron c.m. wave function failed to
reproduce the shape of the measured distributions. As is
also evident from the TRIDIF parametrization, one needs a
strong, simultaneous dependence on Pz and Oz, perhaps
as a result of some interference. In view of these difficul-
ties, it is surprising that the recoil angle dependence at
Pz & 150 MeV/c is entirely consistent with the prediction
of the QDM for an L=2, l+ state, using the dominant
amplitude A5 only. Our analytical model allows us to at-
tribute this strong OII dependence to a (tensor) polariza-
tion effect, and the DWIA calculations confirm this inter-
pretation. If our explanation is correct, one should see
dramatic and characteristic anisotropies in the recoil angle
distributions for the 2+ and 3+ states as well. Indepen-
dently of the outcome of such a comparison, it is neces-
sary to take into account these polarization effects, which
are a simple and straightforward consequence of the
QDM for SI pairs. They invalidate a factorization of the
cross section into an (unpolarized) elementary ~d~pp
cross section, times a distorted momentum distribution,
which has sometimes been used in this context. Experi-
mental data for other transitions with L&0 (e.g. , 2+, 3+)
would be extremely valuable, both to verify systematically
the presence of polarization effects and to help eliminate
nuclear structure uncertainties.
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APPENDIX: GENERALIZATION
OF THE EFFECTIVE DENSITY MATRIX

For a 1+ transition with contributions from L=0 (cp)
and L=2 (cq) transfer, Eq. (2.9) of I for the effective
density matrix of the "quasi-deuteron" has to be replaced
by

1

4m
| 2'

5

g (P
i
011M ) (011M

i
P) =

M 4~ '

g (P
~

211M)(211M
i
P)

1/2

Yp(P) rp (A2)

p,
' =N(P) g (cpRp(P

~

011M)+cpR~(P
i
211M) )

X(cpRp(011M
~

P)+cqRq(211M
~

P)) .

(Al)

The normalization factor N(P) can be determined from
Tr '; =1, but is not needed here. The RI stand for
RL

' "(P); cf. Appendix 2 of I. The M sum in (Al) can
be performed as follows:

2 Re+ (P
~

011M) (211M
i
P) = Yq(P) rq .

M 5m.

Consequently, we get

p,' = [~10(cpRp+czRz)
4m 10

+v 4rr(V 8cpcqRpRp —cpRp) Yq(P) rq] .

(A3)

Upon comparing this with the general expression (2.19),
we arrive at the desired result, Eq. (3.11).
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