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It is shown that in a reaction in which a spin j particle is produced, the tensor parameters tq are
sufficient to determine the reaction amplitudes in spin space. Choosing the initial particles in a pure
(spin) state

~

i ) and keeping the spin state
~

a) of all other coproduced particles fixed, the subset of
reaction amplitudes 2 (a, i) characterized by (a, i) is completely characterized by 2j axes and a com-
plex scalar which may be determined (except for an overall phase and the discrete ambiguities) by
measuring the tensor parameters tq with k =2j and the differential cross section. Additional mea-
surements to fix the relative phases between subsets with different (a, i) are also suggested.

I. INTRODUCTION

The density matrix p for a spin j system has the well
known expansion

2J

p =(Trp/2j +1) 1+ g ( —1)qIk]C(jkj;mqm')t"
q

. ,
k=1

where the tq are the spherical tensor parameters which
transform under rotations according to

(tq")"=g Dq q ($,0, $)( tq )',
q'

where I and II designate the coordinate systems before
and after the rotation effected through the Euler angles
($,8,$). Further, the parameters satisfy the hermiticity
constraint

=( —1)'t

The particular case of spin 1 systems has been extensively
studied' and several properties such as bounds have been
discussed both for j = 1 and —,

' in the context of spin-

parity determination of resonances. Incidentally, it may
be noted that the normalization chosen in (1) is in accor-
dance with the Madison convention, whereas different
normalizations have been used in literature with conse-
quent scaling of bounds. It has been shown (see Dalitz')
that when a spin j particle is produced in a reaction which
is parity conserving, all the parameters tq (characterizing
the particle) vanish for q odd if the z axis is chosen nor-
mal to the reaction plane, provided no polarized particle is
used initially and no other polarization measurement is
made in correlation with that of the particle produced.
The role played by polarization in the study of parity
violating weak interactions is a saga by itself. Spin corre-
lation measurements were first introduced in the context
of N-N scattering, which was followed by the analysis by
Schumacher and Bethe. Later, correlation measurements
have been discussed by Simonius and Goldstein and
Moravcsik, in some generality, with a view to obtain in-
formation on reaction amplitudes. In fact, polarization

experiments have been employed gainfully (i) to resolve
phase shift ambiguities, (ii) to determine pion photopro-
duction multipole amplitudes, and (iii) to check various
dynamical models or theories. It has been reported, '

e.g. , that the Regge pole models which enjoyed a fair
amount of success with regard to cross-section data failed
crucially to account for the polarization observables. The
recent success" of Dirac phenomenology in explaining the
analyzing power and the spin-rotation parameter in
nucleon-nucleus scattering emphasizes, once again, the
pivotal role played by polarization measurements. This
role is not confined to any energy region like low or inter-
mediate, but is well recognized to be important at high en-
ergies also. To quote Craigie et al. ,

' "The polarization
effects in hadron interactions are usually large, often of
the order of 0.1—1.0, not disappearing at large energies,
often surprising and often not understood. "Thus, while it
would be ideal to measure all the polarization observables
associated with a given reaction, it is practically (and
monetarily) a forbidding task —at least at the present level
of spin technology. In view of this and its general
theoretical interest, Simonius has obtained necessity con-
ditions for a set of polarization observables to be complete
in the spin space. Recently, Goldstein and Moravcsik'
have obtained sufficiency conditions (up to within discrete
ambiguities) as well in the special context of spin-1 parti-
cles; they have shown that in a reaction with spin-1 parti-
cles the reaction amplitudes may be determined without
resorting to measurements of vector polarization (of the
spin-1 particle). This, as they point out, ' is important
since "the techniques for vector polarization are different
from those for tensor polarization, and in some respects
the former lags behind the latter. " We quote them fur-
ther: "besides exploring what is feasible with currently
available techniques, the theorem may also give stimulus
to the future evolution of tensor polarization techniques in
view of their potential to suffice by themselves. Further-
more, it is most likely that similar theorems can also be
found for particles with spins higher than 1, an effort that
may be stimulated by the present theorem. "

The purpose of this paper is to demonstrate precisely
the existence of such a general theorem for reactions in-
volving particles with arbitrary spin j. With this end in
view we, first of all, establish in the next section, that a
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spherical tensor of arbitrary rank k, k = —,', 1, —,', . . . ,
may be parametrized in terms of 2k unit vectors and a
complex scalar. If k is an integer and further if tq" satis-
fies the hermiticity constraint (3), the number of indepen-
dent vectors reduces to k and the scalar can be chosen to
be positive real. Consequently, the density matrix p
given by (1) is specified completely and equivalently by a
set of j(2j+1) axes and 2j real scalars. ' The extension
of this geometrical representation to spin systems which
do not possess a sharp j value is given in the Appendix.
In Sec. III, we first consider the simple reaction
a+b~d+c, where a, b, and c are spinless and d has
spin j (which is necessarily an integer because of the con-
servation of angular momentum) and we show that the re-
action amplitudes that describe the process are deter-
mined, except for discrete ambiguities, if the tensor pa-
rameters tqj are measured along with the differential cross
section. For the particular case of j =1, this result has
been derived in Ref. 12 by a different argument. On the
other hand, the method employed here is not only valid
for any (integer) spin j, but may also be generalized to dis-
cuss the more complex case a+b~d+c~+c2+
where d has an arbitrary spin j = —,', 1, —,', . . . , the initial
particles have spins j, and jb, and the companions
c &,c2, . . . , of d have spins ji,j2, . . . . We show that in
order to determine similarly the reaction amplitudes, it is
sufficient to measure, apart from the differential cross
section, the highest rank tensor parameters, tq j, of d (in
correlation with each a where, a denotes, collectively, a
fixed spin configuration of companions c~,c2, . . . , when
the particles a and b are prepared in each pure state

~

i ) ).
Since each set of the amplitudes characterized by (a, i) has
an undetermined overall phase, a method of fixing these
relative phases is also given by prescribing additional mea-
surements in the spin space. This result provides a gen-
eralization of the theorem which was obtained by Gold-
stein and Moravcsik for spin-1 particles. The above con-
siderations are illustrated in Sec. IV for spin —, as well as
the spin 1 case in detail, and we establish correspondence
with the observables of optimal formalism employed in
Ref. 12 for j =1. We also consider the other interesting
cases of massless spin j particles and the anomalous case
when all the particles in the final state are spinless.

II. CEEOMETRY OF SPHERICAL TENSORS

where the c~ are arbitrary complex numbers (satisfying,
at best, a normalization condition). The quantities

=CmJ (5)

do constitute a spherical tensor of rank j since, they
transform according to (2) under rotations. Following
Schwinger (p. 261, Ref. 15), we define the Hermitian con-
jugate tensor of a given tensor o.

q by

Consider a spherical tensor oq of rank k, k = —,', 1, . . . .
A ready example of tensors of half-odd integer rank' ' is
afforded by a pure state

~

tl ) of spin j, which is, in gen-
eral, expressible as

(4)

where we have used the standard shorthand notation

(A 'B ')q ——g C(k)krak;q, q2q)A 'Bq',
q&

(9)

k k2
where Aq and Bq are any two spherical tensors. Ir-

q&

respective of the value of j and of the quantities

( = cj ), it is clear, from (9), which represents a hermi-
tized product, that tq ——tq", as it should be. If p can be
brought to the diagonal form p through a rotation, the
spin assembly is said to be oriented. ' Further, if the vec-
tor polarization' p =Tr( Jp) /j Trp is nonvanishing, the
eigenstates of p are simply the

~
jm ) states with respect

to the z axis, which may be chosen parallel or antiparallel
to p. In this coordinate system, which may be referred to
as the Lakin frame, t+& ——0 since

~+i =+[3/2J(2J+1)] (p +~By)

to ——[3/J'(2J'+ 1)]'
(10)

It may be pointed out that for tensors o q&aq', cr
~

——0 does
not imply o.

&

——0 and Uice Ue~sa. In such cases, it is still
possible to define a Cartesian vector p through (10), but
such a vector would have the form a+ib, where a and b
are real vectors. Another example of such a non-
Hermitian o.

q is provided by the spin-dependent arnpli-
tude in pion photoproduction on nucleon.

Considering pure states of the form (4), Biedenharn'
has argued that it is always possible to find a coordinate
system (by rotation) such that any chosen cJ can be made
zero. This suggests that for any arbitrary o.

q one might
seek a coordinate system where o.k ——0. Considering, in
particular, k = —,', we may express o.

q in the form

cr
~ ~2(q) = —sin(8/2)exp(ig/2),

o ~~2(q) =cos(8/2)exp( i//2), —

tk
( 1)q k (6)

In general, oq need not be equal to o.
q as may be seen intk k

the example given in (5). However, if k is an integer it is
possible to choose o.

q such that crq
——o.

q . An important
example of such Hermitian tensors is already found in the
tensor parameters tq that characterize a spin j assembly.
The definition (6) forbids such a choice if k is a half-odd
integer, since the condition oq ——oq is covariant under ro-
tations, only for k an integer. An alternative way of see-
ing this is to observe, from (6), that oq =( —1) "aq,
which forces non-hermiticity on all half-odd rank spheri-
cal tensors, except the trivial null tensors (oq =0 for all q).
We note that by visualizing a density matrix p for a spin j
assembly as "obtained" through

N

p =—g cj (i)cj (i),
N,.

where the index i runs over all the individual spin j parti-
cles constituting the assembly, the parameters tq" in (1)
may readily be seen to be given by

rk [J] g [+( ')g tJ( ')]k
q l 7 l

q
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whence

a, &2 (q) =i cos(8/2)exp(il))/2),
o'.

, &2(q) =i sin(8/2)exp( i p—/2), (12)

where q denotes the unit vector with polar angles (9,$).
Clearly, crI~z (o»z ) is zero when the z axis is chosen
parallel (antiparallel) to q.

Given, in general, a set oq, in a coordinate system la-
beled I, we seek a frame II where

q

(13)

We show that there are, in general, 2k coordinate systems
in which o.k ——0. Making use of the well-known Wigner
expression' for the Dq»($, 8,$), we recast (13) into the
polynomial form

2k

f (z) = g a„z"=0,
r=0

(14)

where the complex variable z and the coefficients a„are
given by

z =cot(9/2)exp( i/), —a„=(„)'~o„ (15)

S =[S ' (ql, . . . , q2» l)cr' (q2»)]", (16)

and observe that the analogous polynomial equation ob-
tained for Sq has the same set of roots z; and, hence, the
same set of axes ql, . . . q2» , Co.nsequently, oq can differ
from Sq by, at most, an overall complex multiplicative
factor, say ak. We may, therefore, represent an arbitrary
spherical tensor, aq, in the form

o'q ——a»Sq(ql, . . . , q2») . (17)

We note that Sq(ql, . . . , q2») as defined in (16) is com-
pletely symmetric with respect to all the vectors
q~, . . . , qzk. We observe that if o.

q is given the represen-
tation (17), we have

The definition of z given in (14) establishes a bijective
mapping between (9,P) (with the domain of definition be-
ing 0(9&m, 0&/ &2') and the entire complex plane.
Thanks to the fundamental theorem of algebra, f(z) has
2k roots z;, i =1, . . . , 2k, and every root z; corresponds
uniquely to a unit vector q;(8;,P;), so that when the z axis
is chosen parallel to q;, the parameter o.

k
——0. The re-

mark that the polynomial f(z) is completely character-
ized by its roots z; (except for an overall multiplying fac-
tor) and hence by the directions q; equips us with an
elegant geometrical representation for o.q. Indeed, given
the unit vectors q;, i =1, . . . , 2k, we construct a spheri-
cal tensor of rank A: using the recursive form

parallel to q;, i =1, . . . , 2k, o.kk vanishes when the z axis
is chosen antiparallel to q;, i =1, . . . , 2k.

Considering the particular case of spherical tensors de-
fined in (5) for a pure state

~
P), we observe that an

overall phase factor in the representation (17) is irrelevant
and that

~ a~
~

is fixed by the normalization requirement.
The pure state

~
g) may, therefore, be represented by 2j

points on a unit sphere; thereby, we recover the famous
observation of Majorana. In this context, we parentheti-
cally note that while deriving conditions on the tensor pa-
rarneters tq that represent a pure spin j state,
Biedenharn'8 has also suggested a representation (for pure
states) in terms of what he designates as Poincare vectors.
The representation (17) allows for a representation of not
only pure states, but also any (arbitrary) spherical tensor
of rank k in terms of 2k unit vectors q~, . . . , qzk and a
complex scalar ak, these may be visualized geometrically
as a set of 2k points on a sphere of radius

~
a»

~

so long
as the phase is not required to be specified. As we have
already remarked, o.

q is necessarily non-Hermitian if k is
not an integer. If k is an integer and, moreover, crq

——oq q
the tensor needs only k axes Q„.. . , Q» and a positive
real scalar for its specification. ' The connection between
(17), and this result is shown in the appendix, where an
extension of the geometrical representation of a density
matrix for spin systems with a nonsharp j value is also
outlined.

III. 2gTH RANK TENSOR POLARIZATION
IN REACTIONS WITH A SPIN j PARTICLE

?'=g( —1) A~
~

jm;00) (00
~

(20)

The basic representation (17) deduced in the preceding
section will now be used to detail a program for the deter-
mination of the reaction amplitudes in a process involving
a spin-j particle by measurements of only the tensor pa-
rameters tq and the differential cross section. In the dis-
cussion to follow, it will be understood that the measure-
ments are performed for a fixed kinematical configuration
of particles in some given channel. The arguments rely
entirely on the transformation properties of the reaction
amplitudes under rotations. The reaction may possibly be
further characterized by parity conservation, time reversal
invariance, etc. , which may reduce the number of in-
dependent reaction amplitudes. We will not, however, as-
sume any such conservation law in the proof.

Consider first a reaction a+b~d+c where all the
particles are spinless, except d, which has a spin j (in-
teger). The reaction is completely described by 2j+1
complex amplitudes A ~ and we write the transition
operator in the form

fk fk ~
aq =a»Sq (ql, ' ' q2»)

where Sq is given recursively through

]/p
q ('ql . q2» ) I ('ql q2» —I )

""(q2.)],' (19) T =(TJ A'), (21)

which ensures that 2 transform as spherical tensors of
rank j. Denoting the operator

~

jm;00)(00
~

by TJ, a
spherical tensor operator which "produces" the spin j par-
ticle, it is clear that

using the parametrization given in (12) for cr (q). It
may be noted that while o.k ——0 when the z axis is chosenk

in which the rotational invariance of the T operator is
manifest. The density matrix, p= TT~, for the spin j par-
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ticle is explicitly given by

(22)

so that

+j
Trp= g /A'

/

m= —j
and

(23)

t, '=~~,[.. . (QiQz)'. . . )' 'Q~, 1,",
where

(25)

Tr(p)tq ( —1—)J+ [J](AJA J)q (24)

where the tq denote the tensor parameters characterizing
the spin j particle. Considering k =2j, and making use of
the representations (17) and (18) for AJ and A~J, respec-
tively, we note that the t ~ is characterized by 2j axesq

Q~, . . . , QqJ, which are the same as the unit vectors
q&, . . . , qqj, as shown in the Appendix, i.e.,

with P; denoting the respective quantization axes for the
particles. It should be emphasized that if P; are all kept
fixed and only the quantization axis P associated with d is
rotated, it follows from (27) that A~ do transform as
spherical tensors of rank j for each set of indices
a=[m&, mz, . . . I and i = Im„mt, I. A well known exam-
ple in which the amplitudes are specified by using dif-
ferent quantization axes is afforded by the helicity formal-
ism, where the independent quantization axes are chosen
parallel to the respective momenta. Our choice of P; is
not necessarily tied up with momenta and, in particular,
when P (associated with d) is rotated, no change in the
kinematical configuration is envisaged. With these re-
marks, let (jm;a

~

T
~

i ) denote the amplitudes A J (a,i ),
where, as indicated above,

~

i ) denotes the pure spin state
in which the initial particles are prepared and a denotes
collectively a particular (fixed) spin state of the com-
panions c~,cq, . . . . Considering the density matrix for
the spin j particle that is diagonal in (a, i), it follows that

p~~ ( a,i ) = (jm; a
~

T
~

i ) (jm '; a
~

T
~

i ) ', (29)

Tr(p)(~2)
(26) and the associated (Hermitian) tensor parameters tq are

given by

T=g g g ( —1) A (m&, mz, . . . ,m, bm)

m m mmmm/mp. . .

Q ~jm;j, m&j qmq. )(j,m,jt,mt,
~

(27)

where, however, the states
~ j;m; ) are defined through

(J; P;)
~
j;m;) =m;

~
j;m;), i =a,b;1,2, . . . (28)

The positive real Pq~ and the differential cross section
(proportional to Trp) together readily determine

~ aJ ~

The axes Q~, . . . , Qz~ may be obtained as solutions of
polynomial equation (14) (of degree 4j), which has 4j roots
z; corresponding to +Q;, i =1, . . . , 2j. Thus the ampli-
tudes A are determined, except for the phase of aj,
which is not an observable, and the ambiguity in the sign
of q; =+Q;, i = 1, . . . , 2j. These may be identified with
the discrete ambiguities ' associated with the determina-
tion of the reaction amplitudes. We note that all the Eq

for k =1, . . . , 2j —1 are then easily determined through
(24) once q&, . . . , qzJ and

~
aJ

~

are determined from mea-
surements of t~~ and Tr(p). The measurement of tq"~ J is
thus rendered redundant as far as the continuous ambigui-
ties are concerned. One may, however, need to use some
of these parameters to resolve the discrete ambiguities or
to check for the consistency of the experimental measure-
ments or to minimize errors and uncertainties associated
with them.

Having proved the result in the simple case, we now
consider the complex reaction a+b~d+c~+cq+
where d has an arbitrary spin j = —,', 1, —,', . . . , the initial
particles a, b have spins j„jb and the companions
c &,cz, . . . of d have spins j&,jz, . . . . The transition
operator in the general case may be written, as in the form
(18), as

TrP(a, i )tq(a, i ) =(—1)J+"[j][A~(a,i )I3 A J(a,i)]q, (30)

which, except for the symbols (a, i), is precisely of the
same form as given by (24). The analysis employed earlier
in the simple case is now seen to hold here as well for
each set characterized by (a, i). Thus, measurements of
Trp(a, i) and tq (a,i ) determine the reaction amplitudes
A (a,i ), except for the discrete ambiguities and the phase
of a~(a, i ). The number of measurements, viz. , of
Trp(a, i ) and tq (a,i ) being 2(2j + 1), it is obvious that the
total number of such measurements as we cover all (a,i )

adds up to

2(2j + 1)(2j,~ 1(2j ~ 1)Q(2j„+1)=2N,

where N denotes the number of complex amplitudes in
(27) that describe the reaction. However since the relative
phases of aJ.(a,i ), which are n =N/(2j + 1)—1 in number
are left undetermined, we have to resort to measurements
of tensor parameters which are in sectors off diagonal in
(a, i) to fix the relative phases. It is interesting that the
2N measurements do not constitute a complete set in the
spin space, although the total number of complex ampli-
tudes is just N. This circumstance arises due to the
sesquilinear nature of the equations (p = Tp'T ). In fact,
the relationship among the bilinear products of ampli-
tudes (bicoms) and the observables is central to the op-
timal formalism developed by Moravcsik and co-workers.

To resolve these additional ambiguities in the general
spin j case considered here, we may arrange the
n'=N/(2j +1) sets of AJ (a, i) [each set with different
m but same (a, i)] sequentially, such that two immediate
neighbors aJ(a, i) and aJ.(a', i') differ in only one index. If
we determine the n' —1 relative phases between the im-
mediate neighbors, the additional ambiguities, which are
at most n' —1, would be then resolved. For, then, the
phase between any two I A J (a,i ) I and [A 1 (a', i) I could
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be determined by moving along the sequence connecting
(a,i) to (a', i') .The phrase "at most" has been used be-
cause the question of determining a relative phase may
not arise if a set [A (a,i ) ) vanishes for some (a,i ), or is
determined in terms of other amplitudes due to the opera-
tion of one or more symmetry principles. To determine
these n' —1 relative phases, one may, conveniently, mea-
sure some nonvanishing tq associated with the density
matrix p(a, i;a'i'), where (a, i), (a', i') are two immediate
neighbors. It is advantageous, whenever possible, to
choose q to be of the highest value since this would avoid
clumsy summations.

In summary, therefore, we have demonstrated that the
measurements of tensor parameters tq~(a, i ) of a spin j
particle and the differential cross section Trp(a, i) in a re-
action a+b~d(j)+c~+cz+. . . , for all (a,i), deter-
mine the reaction amplitudes, except for an overall phase
associated with each (a, i) and the discrete ambiguities. In
addition, the n

'
1 re—lative phases of aJ (a,i ) may be

resolved by making additional measurements, say, of
tzj(a, i;a', i') for immediate neighbors (a,i) and (a', i')
Only the overall phase associated with the transition
operator (27) remains unknown. The Goldstein-
Moravcsik theorem ensues as a special case when we con-
sider j =1. The present analysis not only generalizes the
Cxoldstein-Moravcsik theorem, but also provides an alter-
native proof of the same. Finally, we note that the proof
also satisfies the necessity conditions laid down by
Simonius. '

Their reaction amplitudes A,B,C are related to the tensor
amplitudes A ' through

A= —A ), B=—Ao, C= —A) . (33)

Considering the tq with k =2, the polynomial equation
(14) is written as

tzz +2t~z +v 6toz +2t ~z+t z
——0, (34)

and

4z=~

Pz t z (V 3/2r ——1),
(35)

(36)

which has four solutions corresponding to
+Q&(8&,P&), +Qz(8z, gz). The solution of the fourth de-
gree equation is particularly simple in the frame defined
by principal axes (PAAF) associated with the Cartesian
components p~~, of the second rank tensor tq. In this
frame, t+~ ——Im(t+z)=0. Consequently, (34) becomes a
quadratic equation in z . Depending on the respective
intervals [ —ao, —V2/3], [—v'2/3, V'2/3], and
[&2/3, oo] to which the ratio r =(to/tz)p«F belongs,
the two axes Q&, Qz lie in the z„x„, x„y„, or y„z„
planes, with one of the principal axes acting as respective
bisector. The PAAF is unique up to the cubic subgroup
of rotations and we may, without loss of generality, label
the plane containing Q~, Qz as zzxz. We look for the rep-
resentation of tq with Pz & 0 [see (26) relating

~

a
& ~

to
Tr(p)]. Hence, if tz &0, we have

IV. SPECIAL CASES

The indices (a, i) will be hereafter dropped for conveni-
ence.

A. j=2

tiz +V 2 t z+ot i=0. (31)

In this simplest case, the illustration of the theorem
proved in the preceding section is straightforward. The
relevant and the only tensor parameters are of rank 1, and
the polynomial equation (14) reads

sin' = —2t 2/P2,

awhile, for t2 &0,

8) =8, Oz ——m. —0, P( ——Pz
——0,

Pz ——tz(1 —V 3/2r),

and

sin 0=2tz/P2 .

In constructing the reaction amplitudes,

A ' =a, [o'"(q, )ma'"(qz)]',

(37)

(3&')

(36')

(37')

(38)

Since the tq is Hermitian, the two solutions of (31) are
easily seen to correspond to p and —p, where p is defined
through (10). We note that

Tr(p)t =(—1)' V2[A ' (p)A ' (p)]' (32)

where A (p)=a~~zcr' (p) and A ' (p)=a&&zcr ' (p).
The scalar

~

a
~ ~z ~

is determined from (26), i.e.,
P~ ——2'

~ a~rz ~
/Trp.

B. j =1

This is the particular case considered earlier by Gold-
stein and Moravcsik' using a different approach. The
correspondence with their notation for the observables is
established by noting that A =v 2t0, R + —R
= —V'2/3Re(t

& ); I+ I = —v'2/3Im(t f—), R
=(I/v 3)Re(tz), and I =(1/~3)lm(tz). The tensor pa-
rameters are defined following the Madison convention. Tr(p)t,'= —v 3(A 'eA")', , (39)

we see that Eqs. (33)—(37) determine Q&, Qz up to a com-
mon sign factor which, indeed, is the source of discrete
ambiguities in the determination of A . Since P2 & 0, we
are left with only two possible choices for A ' (recall that
flipping one of the axes, say, Q~, changes the sign of Pz).
If q~ ——Q&, qz ——Qz is a choice that yields positive value
for P2, obviously, the only other choice is given by

q& ———Q&, qz
———Qz. Denoting the amplitudes obtained

from these choices, respectively, A ' (+ ) and A
'

( —), it
may readily be seen that A' (+)=A '( —). In the nota-
tion of Goldstein and Moravcsik, ' this ambiguity corre-
sponds to A~ —C*, B~ B'. Both A—' (+ ) and
A '

( —) yield the same value for tq and Tr(p). However,
as may be easily seen, their predictions do differ when it
comes to vector polarization. More explicitly, writing
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it is clear that, if A
' ~+A ',

Tr(p)tq~ —v 3(A '13A ')q

= —V3(A 'A')q

= —W3(A 'A ')q ——Trptq, (40)

Under the inversion q;~( —)q;, i =1, . . . , 21, observing
again that A' (q;, q;+&)~A '(q;, q;+~), we see that (47)
goes to

Tr(P)tq ——g g g ( —1) ' 'C(jk;rI)rtI, . . . , grl')
«

YJ 1 YJ 1«p g Y/

which displays the ambiguity. However, considering

Tr(p)tq ——W3(A 'A ')q, (41)

k
&&&q(J mini' (47')

AJ =[A'(q), q2)AJ ']1

and in this form, Eq. (24) for tq assumes the form

Tr(p)tq =[j](—1V+ g C(jk;rt&rt'~)Xq(j;rt~gI ),
t

"11 11

where

(42)

it is clear that the transformation 3' ~A ' changes the
sign of tq. Thus a measurement of to (even approximately
since only the sign is crucial) would eliminate the discrete
ambiguity.

The above analysis also shows that a discrete ambiguity
does not arise only in the special situation A =a Y& (q);
in this case, tq ——0, and the particle d is then produced in
the pure state

~

10) defined with respect to q as the
quantization axis.

The manifestation of the discrete ambiguities in the pa-
rameters tq

+ when we consider a reaction with spin j
particles may also be studied. To that end, we notice that,
again, Pz~ &0 [see Eq. (26)], when, given the amplitudes
A~(q&, . . . , qzj), other amplitudes which yield the same
tq are obtained by flipping an even number of vectors in

If two of them, say q&, q2, are flipped, we con-
veniently rewrite (17) as

It is also clear that, for k =2j, q; attain their maximum
value g; =2, thereby causing no change in tq .

C. Massless spin j particles

We now proceed to discuss the interesting case when
the particle, d, is massless. It is known that a massless
spin j particle can possess only two helicities, +j. Choos-
ing the helicity axis to quantize the spin j, we obtain from
(30) that

- and

Tr(p) =
I
AJ I

'+
I
A'-J

I

'

Tr(p)t2pj ——( —1) ~[J']AJA* J,
(48)

(49)

to ——( —1) [J]C(JJ2J;J,—J', 0) . (50)

D. An anomalous case

While all other components are zero. We may determine

~

Azt ~, ~

AJ
J ~

and their relative phase from (48) and (49).
A special case arises when the parity operator connects d
to its antiparticle. In this situation only Az or 3 z

sur-
vives and it is sufficient to measure Tr(p) to determine the
reaction amplitude.

C(jk;q)g')) = J —& J

Tr(P)tq ——[j](—1)j+"g ( —1) 'C(jk;rj~, rI'~)Kq . (43')

This expression may easily be generalized when we flip I
pairs of vectors, say q],q2, q3, q4, . . . , qzI &, q2~. In this
case, we write (17) as

= [A (ql q2 ~ ~ ~ q2I —1 q21) A ]m

where A~ has the recursive form

A' =[A'(q~, q2)«3«A' ']

(45)

(46)

It is obvious that Eq. (30) may be written by repeated
recombination as

(44)
Ã"(' ')=[(A'@At') 'e(A' 'eAt' ') '], .

The change q&, qz~ —q&, —q2 transforms A
'

(q&, qz) to
A '(q&, qq), and the expression (43) is transformed into

ma mb

mb )
~

00) &j,m, ;jbmb (51)

from which it follows that, for each preparation of the in-
itial system as a pure state

~

m, ;mb ), the cross section

Tr(p) =
~

A (m, ;mb )
~

(52)

determines
~

A (m„mb)
~

. To determine the N —1 rela-
tive phases of N amplitudes A (m, ;mb), one may choose
the method outlined in preceding section.

Finally, we consider the anomalous situation in which
all the particles in the final state are spinless. Clearly, this
calls for a new analysis; no polarization parameter exists
to be measured in the final state and the information on
the reaction amplitudes has to be derived from the cross-
section and asymmetry measurements. Denote the reac-
tion, compactly, by a+b~c(k„k2, . . . ), where a and b
possess spins j, and j&, and c collectively denotes the par-
ticles in the final state, all of which are spinless and are
monitored, say, by their momenta k&, k2, . . . . The T
operator obtains the simple form

Tr(P)tq gg g C(j——k «rt&rtI i '«qi't'ai) ACKNOWLEDGMENTS
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APPENDIX [p,J ]~0 . (A9)

tq"=Pkl . (QiQ2)'Q3)' . . )" 'Qk],
where Pk is real, and

(Al)

The Hermitian tensor parameters tq" (k necessarily an
integer) have been shown in Ref. 13 to be representable by
the form

P= g Pjmj'm'
l
Jm ) '(J m

I r J~J =J]~J2t (A10)

Such a situation could arise when the particles are intrin-
sically not in an eigenstate of J, or when the system is
obtained by coupling two or more spins. In any case, if
the assembly is characterized by several j values

~ ~j&,j2, . . . , wnting

(Q)q =&4~/3I'(q(Q) . (A2)
jmj'm'

we set

M,'=[M" '"(q~, , q2k —1)g'"(q2k)lq',

with the notation

(A4)

To see the transition from the general form (17) [or (18)]
to (Al), it is convenient to consider for oq the equivalent,
mixed representation

. q2k) (A3)

where Mq intertwines cr' and cr ' recursively, as given
by its definition,

T~j = ~jm ), T~'=( —1) (j—m
~

and define the spherical tensor operators

~ q" (jj ') = ( —1 )' [j ](T' T ' )q,
which have the property

(j,m„~ Wq(jj') ~j,m, )

=[k]C(j,kj „;m,qm„)5j j5j. j

(A 1 1)

(A12)

(A13)

and

(q, ) =cr' (q„), r odd

g'~ (q„)= —icr '~ (q„), r even .

(AS)

(A6)

and are thus consistent with the Madison convention
adopted for spinj assemblies. In fact, uq(j, j)=Tq(J). In
the oPerator basis Provided by uq(jj'), we resolve P in
the standard way as

When the (Hermitian) tensor tq is represented through the
new form (A4), it is straightforward to see that (Al) fol-
lows by simply demanding that the vectors in (A4) corre-
sponding to the roots z; of f (z) in (14) be pairwise degen-
erate and that ak must be real. For, writing (A4) as

k A A A. A
q(Qi, Qi; Qk Qk»

it follows from the relation

(A7)

i [o'~'—(Q)cr ' '(Q)]q ——( I/~2)(Q)q

that tq" is indeed given by (Al). However, the representa-
tion (Al) is unique up to the choice +Q. It changes sign
upon Q;~—Q;. Consequently, Pk may be always
chosen, without any loss of generality, to be positive by
flipping one of the axes Q;, if necessary.

The representation (Al) has been employed' to obtain
a geometric representation for polarized spin j systems in
terms of gk &k =j(2j+1) axes and 2j positive scalars.
We may now invoke the general representation (17) to ex-
tend this geometric representation to spin systems which
do not possess a sharp j value, i.e., when

P=y y[t (J J )'~ (J J )]
jj' k

(A14)

where the spherical tensor parameters tq (j,j ') are given by

tq(j j')=, Q C(j kj ', mqm')P~
( —I V j [k]

J J
(A15)

It may be seen from (Al 1) that although k is an integer,
tq&tq, except in the sectors diagonal in j. In general,
they satisfy

(j j ')=( —1)qt (j'j ), (A 16)

or, more concisely, tq "(jj ') =tq (j ',j ). Consequently, in
determining the geometry of such a system, (Al) may be
employed for the sectors j =j', and for sectors off diago-
nal in j, the general representation (17) has to be used.
However, in view of (A16), it is sufficient to enumerate
and find the axes for j (j . Finally, we note that if, in
particular, the spin assembly happens to be a coupled sys-
tem of two spins j& and j2, the range of j,j is fixed by
IA j21 &j J'&Ji+J2. —
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