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On- and off-shell convergence of the time-independent mean-field theory of collisions
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The mean-field approximation to the many-body Green's function (E —H) ' is derived by the
use of products of single particle orbitals for trial functions in a variational formalism. It is shown
that the matrix elements of the Green's function behave smoothly as ImE is varied towards the on-
shell limit ImE=O.

I. INTRODUCTION

The evaluation of a many-particle Green's function
6 =(E H) ', w—here H is the many-particle Hamiltoni-
an composed of one- and two-body operators, is nontrivial
when E is real and positive. ' The evaluation of the col-
lision amplitudes (X'

~

T
~
X) where X and X' are the ini-

tial and final channel vectors and T = V'+ V'GV, where
V and V' are the prior and post interactions, respectively,
and 6 the total Green's function, requires a proper defini-
tion of G. In the case when many channels are open,
where some of the channels may be three-or-more-
fragment channels, the definition of 6 itself constitutes a
complicated problem.

In a recent paper a time-independent mean-field theory
of collisions was proposed. This theory was based on
three main ingredients, namely (i) a representation of the
channels in terms of a basis of time-independent wave
packets, (ii) a variational principle which provided the
representation of the matrix in terms of the stationary
value of a functional, and (iii) a restriction on the many
body wave function to a space of products of single parti-
cle functions or Slater determinants. The resulting
mean-field equations satisfied by the single particle orbi-
tals turned out to be generalizations of the usual Hartree
(or Hartree-Fock) equations. The left-hand sides of these
equations were determined by self-energies (ri;), one-body
kinetic energy operators, and mean-field operators. The
right-hand side of these equations were nonzero and
described the source terms provided by the channels.

An alternate means of understanding these mean field
equations is to seek the best product approximation
G= ff,.g; to the exact many-particle Careen's function,
where g; = ( s); —h; )

' are single particle propagators.
These are self-consistently deduced from the exact Hamil-
tonian H and channel vectors 7 and g'. The existence of
the source terms in the generalized Hartree (or Hartree-
Fock) equations illustrates how a many-body inversion, G,
can be approximated by single-particle inversions, g;.
Several numerical applications have proved this ap-
proximation to be extremely good.

In this paper we study the reasons why the product
form 6 provides a good approximation to the exact G.
We consider a matrix element of G between two square
integrable functions 7 and 7', where 7 and 7' are them-
selves products of single particle functions. Such a sim-
plification is merely for convenience, for the matrix ele-

ment of 6 between the physical channel vectors can al-
ways be expanded in terms of the elements (X'

~

6
~
X):

In Sec. II we state the variational principle and the mean-
field equations. Two theorems are proved in Sec. III
which prove, in turn, that the mean-field approximation
becomes exact when ImE~~ for a fixed ReE. The on-
shell limit, ImE —+0, is investigated in Sec. IV in the case
of an analytically soluble model and compared with a
truncated subspace model. The summary and conclusions
are provided in Sec. V.

II. VARIATIONAL PRINCIPLE
AND MEAN-FIELD APPROXIMATION

It is first trivial to prove that the matrix element

D=&X'~(E —H)-' ~X) (2.1)

is the stationary value of the functional of two trial func-
tions P,P',

+= &
O'

I
X &+ (X'

l 0 ) —(O'
I
« H)

I 0 ) . —
Indeed, the Euler-Lagrange equations for F read

(2.2)

0= =(X'
~

—((()'
~

(E H), — (2.3a)

0=, = ~X& (E H) ~P&—, —
5$"

and hence

(2.3b)

(P'
/

= (X'
/
G .

(2.4a)

(2.4b)

As long as ImE&0, 6 is a bounded operator and E H—
has 6 as its unique inverse. An insertion of Eqs. (2.4)
into Eq. (2.2) just provides D, Eq. (2.1).

It is also trivial to consider the variational functional

(y'~x)(x ~y)
(y ~(E H) ~y) '— (2.&)

which also yields Eqs. (2.4), except for an arbitrary nor-
malization for P, P'.

Even though X,X' are products of single particle orbi-
tals, it is clear that P,P', Eqs. (2.4), are highly correlated
states, for G is a complicated many-body operator. A
simplification ansatz,

(2.6a)
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(2.6b)

is thus a strong restriction. Conversely, F then has the
simpler form (mean-field form)

F= II «'
I
X &+ II &X'

I
v' & E—H & v'

I v; &

+ X & ml I
r

I V; & II & V,' I e, &

III. THE LARGE WIDTH LIMIT

In this section we keep ReE fixed and consider the case
where I = ImE~+ m (in the following we always retain
I & 0, for the case I (0 can be deduced trivially from the
case I &0). Since the norm of g is arbitrary, we modify
Eq. (2.4a) into

(3.1)

+ 2 &+'&i I' Iv v & II &v' Iv &

i)J k&i,j
and there is trivially a similarly simple form F' for F'.
Distinct particles have been considered in this Eq. (2.7),
but antisymmetrization would not be difficult to imple-
ment, obviously.

Elementary manipulations of F then provide the Euler-
Lagrange equations

0=, = (i), —h, )
I q; &

—A. ; I
X, & .5F

5y,"
0= = &y,' (g; —h;) —A.,'&X';

I

5F
5y;

(2.8a)

(2.8b)

where A,;,A, ,
' are unessential normalization constants and

one finds the (complex) self-energies

0'j I

r
I 0'j

}l
j~i &mj'

I
6' &

&v,'vk IU Iv, vk&

k, j &vj Ivj&&v'Ivk&
j,k&i

and single particle Hamiltonians h; = t + U; with

(2.9a)

r'I U;
I
r

j~i & pj I lf &

(2.9b)

Iv;&=g, Ix;&

& v,' I

= &x,' I g

(2.10a)

(2.10b)

to be compared with Eqs. (2.4). Here, g;=(g; —h;)
which means a linear inversion in single-particle space
only, at the cost, however, of a nonlinear self-consistency
because of the density dependences exhibited by Eqs. (2.9).

Once self-consistency for the orbitals y;, y,' is reached,
an insertion of Eqs. (2.6) into the functional F ', Eq. (2.5),
provides an approximation D to D. It can be pointed out
now, however, that our numerical studies often yielded
severo1 different self-consistent solutions of Eqs. (2.9) and
(2.10), while the original problem, Eqs. (2.4), has only one
solution. This complication is due, obviously, to the non-
linear nature of the restrictive ansatz, Eqs. (2.6). Sections
III and IV will take care of this multip1icity generated by
the approximation.

in coordinate space, for instance. The Hartree nature of
the mean field potential U; acting upon orbitals g;,y,' is
explicit from Eq. (2.9b). As discussed elsewhere, ex-
change terms do not bring essentially new features to the
theory.

The solutions of Eqs. (2.8) are then, for A,;,k,' = 1,

We then prove the following result.
Theorem 1: When ImE~+ ao,

I P& has a strong limit
equal to IX&.

Proof: Define b,P=P —X. Then,

H
(E" HH E —H l )— (3.2)

Expand IX& on the complete basis made by the eigen-
states g, of H to obtain

&bP
I bP& = J dep(e)

(ReE —e)'+r' '

where p(e) is the spectral density of X,

p«)=
I &@.Ix& I'.

(3.3)

(3.4)

When I ~+ oo, the integrand in Eq. (3.3) converges sim-
ply towards zero for all values of e and is uniformly
bounded by the integrable function

M(e)= +1 p(e)(2p(e) if I &ReE .
(ReE)

I- (3.5)

D E'&X'
I
X& =—E i&X'

I
gy&, (3.6)

and the right-hand side of Eq. (3.6) converges faster to-
wards zero than I ' since

I I
h,P I I

~0. A direct substitu-
tion of X for P and X' for P' in F', Eq. (2.5), yields the fol-
lowing correct leading term,

&X IX&'
(3.7)

E&X'IX& —&X'IH IX&
'

provided, of course, that &X'
I

H
I
X & be finite.

In short, the limit behaviors of both D and P,P' are
given by the mean field restriction. As a subsidiary result,
we have checked numerically that, when I ~+ oo, there
is at least one set of orbitals, solutions of the mean-field
equations, Eq. (2.10) for which p;~X;, V;.

It is now clear that a safe algorithm for the solution of
Eqs. (2.10) consists of setting, at first, I large and using X
(X') as a first guess for P (P'). Once self-consistency is
reached, the obtained P, P' can be used as first guesses

Hence, by Lebesgue's theorem,
I I

b,p I I
vanishes when

I ~+ a&.

Since we have chosen as a generic problem the case
when X is a factorized wave function, the limit of P is
thus factorized. An identical result holds for X' as the
limit of P'. The mean-field theory becomes exact.

This conclusion is reinforced by the following result.
Theorem 2: The leading term of the amplitude D when

r + is &X IX&XE.
Proof: One finds at once that
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with a slightly reduced value of I, and so on. The on-
shell limit of the theory (I =0) will be reached this way
as long as there is no bifurcation encountered along the
path defined by the above algorithm.

The search for singularities on this path towards the
real axis is the subject of the next section.

IV. THE ON-SHELL LIMIT

We already know from our numerical experiences
that the on-shell limit of the mean-field approximation
seems to be a very smooth function of I and remains an
excellent approximation for the exact amplitude. We have
not been able to obtain a proof of this fact as general as
the theorems of Sec. III. Instead, the following discussion
is limited to the analytical model discussed in an earlier
work.

A. The model

in a momentum representation with q the single-particle
momentum and A /2m =1. A suitable symmetry group
is imposed upon the orbitals 7; in such a way that a com-
plete degeneracy occurs between the orbitals. As a conse-
quence, all the orbitals P; have the same kinetic energy,

(4.2)

hence the self-energies g; are also degenerate,

g; =E (N —1)8 . — (4.3)

The only self-consistent unknown is thus the self-energy ri
for Eqs. (4.1) solves according to

X;(q)
y;(q) =

g —q

Here it is convenient to define the function

(4.4)

(4.5)

hence,

g 2 2 2 +I g (4.6}

and finally one obtains the unique self-consistency equa-
tion (SCE) to be solved in the model

(4.7)

The model becomes completely analytical if 7 is chosen
as a Lorentzian,

(4.8)

where y is a width and K actually carries a subscript i

This model first sets H real and J'=7' real, hence
Then P is set to vanish. This reduces Eqs. (2.8}

to the simple form

(4.1)

which denotes the rotation of a fixed length vector under
the symmetry group imposed upon the model. The choice
of X, Eq. (4.8), provides a contour integration for I, Eq.
(4.5),

I(co )=- Imco) 0 .
co(co —K+iy)(co+K+iy) ' (4.9)

With X =2 as the simplest case, the SCE then becomes

H(co) =2~ +4i yco +2(K y —E)—n) 5i y—Eco

+4@ Eco+iyE(y +K2)=0 . (4.10)

Since K, as seen from Eq. (4.8), plays the role of a boost
label for 7, the average kinetic energy carried by 7 is of
order E . It is thus convenient to set E =2E +iI and
consider cases where K) 2 or 3 times y, in order to
separate this average momentum K from the zero-point
fluctuations induced by y. [It will be noticed, for what
follows, that H(co) reduces to co (co K —i I ) —when
)' =0.]

B. Absence of bifurcation

Among the five roots of the polynomial H, Eq. (4.10),
we find a "physical" one, co&, whose real part is of order
E. Its imaginary part remains positive and small com-
pared to K. Hence the corresponding self-energy g" '=co&
has a real part of order K and a positive imaginary part.
When inserted into Eq. (4.4), this choice of r) thus de-
scribes a retarded propagation of the single particle orbi-
tals p and corresponding trial function P"'. Conversely,
there is another root co2 of H with the property co2——co~

when I =0. Hence the solution P' ' induced by
g' '=co&—g'"* may be interpreted as an advanced solu-
tion.

The solution P
" is that solution which corresponds to

theorem 1. Not only does it give an excellent approxima-
tion D to D when I ~+ ac with ReE =2K fixed, but we
also found in Ref. 3 that again D is very close to D when
I is finite and also when I ~0. This is a strong indica-
tion that the nonlinear problem, Eq. (4.10), has no bifurca
tion for the solution P'" when I decreases from + ao to-
wards 0.

This fact is illustrated by Fig. 1, which shows the tra-
jectory of co~ when I decreases from 200 to 10 MeV and
ReE =1000 MeV (with A' /2m =20 MeV fm for nuclear
physics, this corresponds to I decreasing from 10 to 0.5
fm and ReE =50 fm ). The value taken for y in this
numerical application is y=0. 5 fm ', hence a scale of 5
MeV for single-particle energy fluctuations. We disregard
in the following the fact that, in this Lorentzian model,
(X

~

u
~

X) is actually divergent, which contradicts a va-
lidity condition of Eq. (3.7).

Three main features stand out in Fig. 1. Firstly, the
figure shows as solid lines a branch ~& and a branch co3

only. The branches co2 and co4 are absent because Reco2
and Reco4 are negative. The branch co5 for the fifth root
of H is also absent because Imm5 is definitely negative,
Imco5( —y. Secondly, in the same way as co2——co&, the
fourth root of H fulfills G04——co3, and these relations be-
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FIG. 1. Trajectories of two possible square roots co&, co3 of the
mean field self-energy g when ImE decreases from 500 to 10
MeV. Associated trajectories for —co2 and —co4. The right-
hand side scale is valid for co& and —co2, the left-hand scale for
co3 and —co4 . The parameters are ReE = 1000 MeV, y =0.5
fm ', and A /2m =20 MeV fm .

FIG. 2. Same as Fig. 1, except ReE =360 MeV.

C. Comparison with a truncated
linear approximation

come exact equalities when I =0. Hence Fig. 1 shows as
dashed lines a branch —co& and a branch —co4, which
smoothly join the branches co&,~3, respectively. Thirdly,
and this is the main conclusion to be drawn from this fig-
ure, these branches do not cross There i. s no bifurcation
in the domain investigated in this way.

The same conclusion and features stand out in Fig. 2,
for which ReE is fixed at 360 MeV, corresponding to 18
fm . More generally, in the domain we have explored
(100(ReE ( 1000MeV), we have found no bifurcation of
P'" when 1 decreases from + ao to zero.

As a subsidiary result of some interest for the follow-
ing, it is seen from Figs. 1 and 2 that, in the domain of
parameters under consideration, there are at least three
roots, co&, co3, and co4, which are acceptable under the con-
dition Imago ~0. The root co2 is also acceptable as long as
I is small enough, for instance, I &100 MeV, where
ReE =1000 MeV. Even though the physical solution is
now recognized to be P'", the other solutions P' ', P' I,

and whenever acceptable, P' ', do span a subspace of wave
functions which deserve consideration for a linear expan-
sion of an improved trial function in the variational prin-
ciple, Eq. (2.2). This linear projection of the variational
principle in a truncated subspace is the subject of the fol-
lowing subsection.

As stated already, the mean-field method is a nonlinear
approximation to the linear, but untractable, problem
described by Eqs. (2.4). A restriction of this linear prob-
lem to a finite dimensional subspace of the Hilbert space,
however, obviously becomes tractable. It is trivial, then,
that the truncated Hamiltonian (projected in that sub-
space) has a discrete spectrum only. Whenever the imagi-
nary part I of the energy is larger than, or of the same or-
der of magnitude as, the average splitting hE between the
discrete eigenvalues of the projected Hamiltonian, some
matrix elements D of the propagator (E PHP) ' may-
be reasonable approximations of the corresponding matrix
elements D of the exact propagator G. Conversely, we ex-
pect D to be definitely unreliable if I « AE.

The spectrum I E„I of PHP is shown in Figs. 3 and 4
as a function of I for ReE =1000 and 360 MeV, respec-
tively. The subspace defined by the projector P not only
includes P"', P' ', P' ', and whenever acceptable, P' ', but
also their complex conjugates. In short, there are states

This inclusion of complex
conjugates is designed to preserve time reversal invariance
of the subspace, an important precaution in a theory of
collisions. This is why Fig. 3 shows, e.g., eight eigen-
values when I & 100 MeV and six eigenvalues when
I ~ 100 MeV. An inspection of Fig. 3 shows that in the
energy range E„=1000MeV the level splitting is b,E=50
MeV. Very similar properties are shown by Fig. 4 with
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FIG. 3. Spectrum of the projected Hamiltonian in the sub-
space spanned by P"', . . . , P'4'*. When ImE & 100 MeV the
subspace has dimension 6 only.

ReE =360 MeV. It thus makes sense to compare the
mean-field amplitude D with the truncated amplitude

D = (g i
P (E PHP) '

i
X )—, (4.1 1)

as long as I ) 50 MeV. The latter amplitude, D, can be
calculated, obviously, by a numerical inversion of the six-
or eight-dimensional matrix EP —PHP.

The results are shown in Figs. 5 and 6 for the compar-
ison of the imaginary parts of D and D against each other
and with, again, ReE=1000 and 360 MeV, respectively.
As soon as D ceases to be reliable (at low values of I ), it
deviates from D. For higher values of I, D and D are
essentially equal (whether one considers their real or their
imaginary parts).

Agreement of D and D when I )hE and contradiction
of D and D when I & hE, added to the knowledge that D
is wrong when I (b,E, does not comprise sufficient evi-

FIG. 5. Comparison of the mean-field amplitude D with the

amplitude D provided by linear truncation. Notice the abrupt
deviation of the latter when ImE becomes smaller than the level
splitting in the truncated spectrum (DE=50 MeV).

dence that D is reliable when I (hE. The smooth
behavior of D, however, for all values of I, does give an
increased confidence in the reliability of the on-shell limit
of D. Last but not least, a numerical calculation of the
exact D by brute force integration of (E —u )

' in a
momentum representation does show that D and D
remain very close to each other when I ~0.

The conclusion to be drawn from this analysis is that
the nonlinear approximation D is usually better than, or
at least as good as, the truncated linear approximation D.
As a matter of curiosity we show in Table I the com-
ponents of the truncated trial state

~@ =E PHP'
when expanded in the basis P' ", . . . , P' ". For large
values of I, P is just dominated by P'", as expected. For

ImE (MeV)
I

Im E (MeV)

5 QQ
— oo ~ ~

35P — a ~ ~

20Q — a ~ ~

150—
120—

80—
60—

$0 — e oo

20 — a~

Behavior of the discretized
spectrum as a function of

ImE for ReE = 360

500—

350—

250—
200—

150—
120—
100—
80

I,Q—

30—

Ima
a

Mea

10
0

I a w m n I

250

E„(Mev)
I

750 1000
10
-1 xl0 - 0.8 - 0.2

MeV )

FIG. 4. Same as Fig. 1 for ReE =360 MeV. FIG. 6. Same as Fig. 5 for ReE =360 MeV.
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TABLE I. Dominant components of the truncated linear trial state P. The top half of the table corresponds to ReE =1000 MeV
and the bottom half to ReE =360 MeV. The states P"' and P' ' are not accepted in the subspace when ImE & 100 MeV in the form-

er case and IrnE & 60 MeV in the latter. Effects of deviation of D, because of the level density, occur when ImE & 60 and 40 MeV,
respectively. Only the main components are shown, in arbitrary units.

ImE
(MeV)

150
120
100
80
60
40

120
100
80
60
40
30

Si
6i
6i
6i
4i
—1 —2i

1+6i
1+7i
2+8i
2+ 10i
8i
—3+3i

2l
1+5i
2+11i

3+6i
5+ 12i

3l

ReE =1000 MeV

—4i

ReE =360 MeV

2+5i

—1 —2i

2+3l

—2 —5i

—3 —3l

—2 —37 3+3i

low values of I, P becomes much more collective, but it is
still dominated by P"' and/or P' '*. As seen in Figs. I

and 2, q'" and g' " are very similar when I is small,
anyhow, and hence a dominance of P"' is still present.
The other components on P' ', P' ', . . . are not negligible
when I is small, however. It will be noticed again that
P' ' and P' '* are then quite similar, and the same holds
for P'"* and P' '. Hence the opposite components shown

by Table I induce a large amount of compensation. Even
though P is not really reliable, this configuration mixing
at low I is likely to show subtle and intriguing properties.

To summarize this long section, we have identified a
well defined mean-field solution P=P'" which does not
bifurcate when I ~0 and which provides a much smooth-
er (and more accurate) on-shell limit than the most natur-

al linear approximations, P, available. This is strong evi-
dence that the mean-field amplitude D is a reliable ap-
proximation, whether I is large or small.

co=Vtl. As seen from Eqs. (4.9) and (4.6), an analytic
continuation of our functional

F'= I2 d
dI

is trivial away from the critical values cubi, . . . , ~5 of the
trial function parameter co. The flat nature of the physi-
cal saddle point ~i is illustrated in Fig. 7, which maps out

~

F'
~

for ReE=360 MeV, strictly on-shell (I =0). For
the sake of completeness, we show in Fig. 8 the more con-

V. DISCUSSION AND CONCLUSION

The mean-field approximation of the Green's function
appears to be a precise and practical tool for the theory of
collisions. As it is nonlinear and generates, at first,
several possible answers for a unique (linear) problem, it
raises a difficult problem of spuriosity elimination. We
have definitely identified the unique, physical solution,
which is well behaved both when ImE is large and ImE is
small. Subsidiary conditions such as ReE » y or
ImE & y, which take into account energy fluctuations in
wave packets, may be necessary to ensure better validity
of our method in practical cases, but there is no doubt
that the mean-field method has a smooth on-shell limit,
because the single-particle energies g'" remain complex
while E becomes real.

This remarkably smooth on-shell limit is best illustrat-
ed by Figs. 7 and 8, which are contour plots of the
modulus of the mean-field functional F' as a function of

FICx. 7. Contour plot of the variational functional ~F'
~

around the physical saddle point co&
——3.10+0.49i fm ' for

E =360 MeV. From the low equipotentials to the high equipo-
tentials the functional varies by less than 10%. From top to
bottom Imago runs from 0.7 to 0.3 fm ' and from left to right
Reer runs from 2.9 to 3.3 frn
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FICx. 8. Contour plot of
~

F'
~

for E =360+60i MeV. From
top to bottom Redo runs from 1.8 to —0.2 fm ' and from left to
right Imm runs from 0.7 to —2.3 fm '. The saddle point at the
top left is co3 ——1.31+0.09i fm '. That at the bottom right is
coq ———(0.09+2.22i) fm '. An additional saddle point at co=0
is found as an artifact because we use the "m" complex plane
rather than the "co " complex plane. The functional varies by
10 orders of magnitude in this domain.

trasted behavior of
~

F'
~

in the neighborhood of "spuri-
ous" saddle points ai3 (top left) and co5 (bottom right).
Sharp peaks of

~

F '
~

in the vicinity of co3,coq denote poles,
and likely "resonances'* or "bound states" associated with

them, while the vicinity of cot shows no such singularity.
We have a whole atlas of such plots with various values of
ReE and I (actually, Fig. 8 corresponds to I =60 MeV)
with the same general conclusion; namely the contour
plots of F ' evolve smoothly into one another as ReE and
I span the physical region of interest, and the saddle
points co~ and ~2 are flatter than the saddle points co3 Qp4,

and cog.
In particular, the on-shell plots show no special proper-

ty, except for the exact symmetry relating co& to co&, for in-
stance, as discussed in Sec. IVB and Ref. 3. It can be
concluded that not only the mean-field amplitude D, cal-
culated as the stationary value F '(co&(I ), I ) at the saddle
point co~, has a smooth limit, but also that the doubly ana-
lytic function F'(co, l ) of two independent variables co

and I has only isolated singularities when I ~0.
In a future paper we intend to verify the validity of the

on-shell limit of our mean-field method for more general
models, including interactions. It may be stressed already
here that the validity of theorems I and 2 (the large I
limit) is already established for nonsingular potentials.
This general result is readily seen from the argument of
Sec. III.
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