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Coulomb effects on the electron scattering radiation tail
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We carry out a distorted wave calculation of the radiation tail accompanying relativistic elastic
electron scattering from the atomic nucleus using recently developed techniques for evaluating the
radial matrix elements entering the calculation. The difficulty of calculating the high multipole
components of the bremsstrahlung cross section is avoided by introducing a distortion factor that
can be evaluated within the required accuracy with about 20 photon multipoles. The calculation still
requires extensive computational time, so we compare our distorted wave results to an ad hoc tech-
nique of including distortion in the Bethe-Heitler result that is widely used. Surprisingly, we find
that the ad hoc technique is very good for energy losses less than about 70%%uo of the incident electron
energy.

I. INTRODUCTION

A problem of long standing in the analysis of inelastic
electron scattering from medium and heavy nuclei has
been the evaluation of the radiation tail which accom-
panies elastic electron scattering. In single arm electron
scattering experiments, only the scattered electron is
detected at some scattering angle 0, and some energy loss
4E. However, electrons which scatter elastically from the
nucleus and also emit a real photon of energy co=DE
(bremsstrahlung with neglect of the recoil kinetic energy
of the nucleus) cannot be distinguished from electrons
which transfer energy m to the nucleus. Although the
bremsstrahlung accompanying an electron scattered
through a large angle 0, is a very small fraction of the to-
tal bremsstrahlung, the elastic scattering cross section is
so much larger than inelastic scattering cross sections
that, apart from special cases, the radiation tail is compar-
able to or larger than inelastic scattering cross sections.

The radiation tail along with a number of radiative ef-
fects accompanying electron scattering from the atomic
nucleus can be calculated in a rather straightforward
manner in the plane wave approximation where the in-
coming and outgoing electron wave functions are taken to
be Dirac plane waves. In the plane wave approximation,
the radiation tail accompanying elastic electron scattering
is a two photon process and can be evaluated by integrat-
ing the Bethe-Heitler formula' over emitted photon an-
gles. The finite size of the nucleus is included by intro-
ducing a charge form factor at the nuclear vertex. The
details of this integration are given in Maximon and Isa-
belle and in the work of Mo and Tsal. ' The latter au-
thors also discuss in some detail and give explicit
prescriptions for calculating other radiative effects such
as atomic screening, Schwinger corrections, and the radia-
tion tail accompanying inelastic peaks. Their work seems
to be used by almost all electrons scattering experimental
groups to extract their inelastic electron scattering cross
sections arising from nuclear processes. For medium and
heavy nuclei ( Z )20), however, the plane wave results for
the radiation tail accompanying elastic scattering should

only be of qualitative assistance in extracting the inelastic
cross sections from the measured data, and even the quali-
tative assistance is not very helpful when the nuclear ex-
cited states or the inelastic process under investigation is
broad such as in the cases of giant resonances or quasi-
elastic scattering.

The correct way of including the Coulomb effects in
the radiation tail is well known. One need only do a dis-
torted wave calculation where the large static Coulomb
field of the nucleus is included in the Dirac equation for
the incoming and outgoing electrons. The emission of a
real photon is then treated in Born approximation. That
is, one does a distorted wave Born approximation
(DWBA) calculation of the radiation tail. However, use
of Dirac-Coulomb wave functions seems to require partial
wave expansions of the wave functions, and thus a mul-
tipole expansion of the photon field in order to evaluate
the angular matrix elements. This generates large num-
bers of radial matrix elements since the partial wave series
and multipole sums are slowly converging, and these radi-
al matrix elements are difficult to evaluate. Recent work
on the mathematics of the Dirac-Coulomb functions and
integrals over them has provided the necessary tools
for evaluating these radial integrals. The cross section
formulas for the DWBA radiation tail along with a brief
summary of the techniques for evaluating the radial in-
tegrals is given in Sec. II and the Appendix. In Sec. III, a
distortion factor which requires a multipole decomposi-
tion of the Bethe-Heitler formula is introduced to aid in
summing the multipole series.

The difficulty of subtracting the radiation tail accom-
panying inelastic electron scattering from medium and
heavy nuclei has existed for many years, and an ad hoc
method of including the Coulomb distortion was
developed quite early. While the ad hoc method of in-
cluding the effects of Coulomb distortion is intuitively ap-
pealing and takes far less computer time than a full
DWBA calculation, there does not exist much theoretical
justification for the procedure. In Sec. IV, we discuss the
ad hoc procedure and compare it to our distorted wave
results, and examine its use in a recent experiment which
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measured the radiation tail. In Sec. V, we summarize our
findings and make recommendations on how to best treat
the Coulomb effects on the radiation tail accompanying
elastic electron scattering.

II. THE RADIATION TAIL IN DWBA

The Hamiltonian density for electrons in a static elec-
tromagnetic field and photons is ag; =2mi5(E2+co Ei—)uI;, (9)

where the current operator J=ea. By using eigenstates of
H„d+HDc as basis functions and treating H;„, by first
order perturbation theory (i.e., one photon exchange), the
scattering amplitude for an electron with energy E1 and
spin mi to emit a photon with energy (momentum) co(k)
and polarization A, leaving an electron with energy E2 and
spin rn2 is given by

~ =Hrad+~DC+~lnt (1) where

where the Hamiltonian for the electromagnetic field in
free space in second quantized form can be written as

H„d ——g(akiaki, + —, ) . (2)
k, A,

In the radiation gauge this corresponds to the potentials

@(r,t) =0,

2'
uI; ——e

co V

1 /2
m~ . m2 +e ik—rq . &d 3r (10)

The triple differential cross section for bremsstrahlung
is given in terms of the scattering amplitude by

A(r, t)=g
1/2 —icokt y y Itokt

[a k, k.uk, i.( r )e +a k, i.uk, i.e

(3)

where the initial electron flux I,=p1/E1 V and the densi-
ty of state factors are

where

1
Uk A,

1/2

elk'f

and A, denotes the polarization state of photons propaga-
ting with momentum k and V is the normalization
volume. The spherically symmetric static Coulomb po-
tential of the nucleus, V(r), is included in the Dirac-
Coulomb Hamiltonian

d n, Vp2E2 d n&

dE2dA, (2m)3 dcodQ~ (2~)
(12)

In order to perform the angular integral in Eq. (10) we
expand the photon field into multipoles by writing

Ai(r, t)=sic' '
=k(2m. )'~ g Li 'DMi, (k)

LM

HDC —— ia V+ V(r—)+mP, (4)
x [At™M'(r)+i AAL~(r }]. , (13)

where a and P are the standard Dirac matrices. The
Dirac-Coulomb wave functions are solutions to the equa-
tion

HDc@(r) =Eg(r)

where ei is in a spherical basis, L =(2L+1)', and
A.

D~ &(k) are the rotation matrices which describe the an-
gular distribution of photons. The magnetic and electric
multipole fields are given by

and their expansions into partial waves for spin projection
m; of the electron is

Ag~(r)=ji(kr)Yt L(r), (14)

g '(r)=4m.
1/2

'~K. l l 1/2 jpe i C&—m;m;p
K,P,

x It ' (p)Q"„(r),

AIM(r) =
' 1/2L+1

2L +1 jt. i(kr)YL I, i(i')

' 1/2
L Mj L, + i(«)Yt., L, + i(r) .2L+1

where the spinor is

g„(r) X"„(r)
(r) =

if (r) X"„(r)

These expansions permit us to carry out the angular in-
tegral in Eq. (10), but for subsequent calculation of the
remaining radial integral it is convenient to switch to the
least singular gauge. That is, we choose

and ~ is the Dirac quantum number which determines I
and j in the usual way.

The interaction Hamiltonian between the electromag-
netic field and the electron is

and

Ai (r}= Ai„(r)+ VSi (r)

4i(r) =i~S„(r),

(16)

(17)

H;„,=pP(r, t) —J A(r, t), where the time independent part of the gauge function is
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' 1/2

DM, 2 (k)

Xjl.(~0«)YL (r) .

1/2
S ( )

(2n) g 'L'+'L L
LM L+1

(18)

Since we now have a scalar potential we also need the
charge operator for the electrons in Eq. (8).

Substituting the partial wave expansion of Eq. (6) for
the initial and final electron states and the photon mul-
tipole expansion in the least singular gauge in Eq. (10) and
carrying out the angular integral and the requisite Dirac
algebra we obtain

(E 1+m)(E 2+m)
uf; ——A,4m.

E,E2~ V'

1/2 i(5 +6 )
M 1 &2 .ll —l~ —L —1 jI+1/2

( —1) e i ( —1)
K1&K2,L,M

l 1/2 j I 1/2 j
XD M 2 (k) l )L J)C0'm m 'Cm, +M' m m m +M

J) J~L j) LJ m —m~+M
1/21/20Cm, M m, +MR (&1~+2 Li~) Yi, (p2) ~ (19)

where the initial electron momentum p1 has been chosen to define the z axis. The radial integrals in Eq. (19) are given
by

R (~»x.2,L, A. ) =
)+ 2+

2

l)+1~+L
I( ) .~ 1+(—1)

2
(20)

where l =I ( —z) and the magnetic and electric radial integrals in the least singular gauge are given by

( )
K1+K2 oo

2Im
fL (L + 1)]'/2 jr (cor)(f„g„+g f„)r drKI Kp KI Kp

and
1/2

(21)

L+1
OO K1 —K2

)(~r) (f.,g., g.,f., )+ —(f.,g., +g.,f., ) +Ji(~r)(f.,f. +g. g. ) «'d» (22)

Additional details of this derivation may be found in Refs. 5, and 9—11.
To obtain the DWBA radiation tail, we integrate the triply differential cross section of Eq. (11) over photon angles us-

ing the orthogonality properties of the rotation matrices to obtain

d2~ oo

= g aL(T),co, B„'Z),
dco dQc

where the contribution of photons of multipolarity L for electrons with initial kinetic energy T1 is given by

4aCO(E)+ m)(E2+m)P2
aI (T„co,B„.Z) =

(23)

i(5 +5 )
I 2 . ll —12 Jl+ ~ ~ II 1/2J)

X e ( —1) l 1J)C01/21/2
M, my K), Kp

l2 1/2 j2 jl j2 L jl LJ2 1/2 —M —m
&X C1/2 —M —m& m& 1/2 M C 1/21/20C)/2 M 1/2 MR (v»v2, L, A ) Y& (p2) (24)

and the sums over initial electron spin and photon polari-
zation have been performed. Note that due to the selec-
tion rules implicit in Eq. (20), the electric and magnetic
integrals in R enter incoherently and hence are indepen-
dent of the photon polarization.

Two difficulties arise in evaluating the cross section
given in Eqs. (23) and (24). They are the evaluation of the

radial integrals given in Eqs. (21) and (22) and performing
the sum over photon multipoles L. We will discuss the
evaluation of the radial integrals before turning to per-
forming the multipole sum.

The Dirac-Coulomb wave functions in the integrand of
Eqs. (21) and (22) satisfy the first order coupled differen-
tial equation
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gx

dr f.
note that when Z~O, m ~0, and p ~~, the solutions in
Eq. (28) reduce to

—K —1 0
x —1 f„

rj z(co, r )

rj' )(cur )
(30)

0
—[E—m —V(r)]

+[E+m —V(r)]
0 f„

(25)

—L 0 0 —co
A= 0 L, B= (31)

for L =1~&0, and furthermore uL satisfies Eq. (26) with
the following A and B matrices:

~ (S)
dT

(S)
B(S) ~ (S) (26)

where u' ' and the matrices A' ' and B' ' are given by
the following:

u(S) =
Pgx

where V(r) is the static Coulomb field of the nucleus.
For values of r inside the nuclear interior, Eq. (25) cannot
be solved analytically for a general charge distribution and
we generate the electron wave functions by numerical in-
tegration. However, for values of the radial coordinate
outside some cutoff radius R, the potential V (r) reduces
to aZ/r, an—d we can rewrite Eq. (25) in the following
matrix form:

The wave functions in the external region are a linear
combination of the regular and irregular Dirac-Coulomb
solutions given above,

R I
g~ g]c gx A~

for r) R,
x' I x'

(32)

where the constants A, and B can be extracted at any
point r outside the nuclear charge distribution. They are
given by

I I R Rf.gK fKgK fKglC gKfK
(33)

Expressing the scattering phase shift 5„needed in Eq. (24)
in terms of a point phase A„and a phase due to the finite
nuclear size 8„, by writing 5 =b.„+5„—(1+1)m./2, we
find that

—K cxZ
—cxZ K

(27)
sinO

tan6 =
A /B„+cosO

(34)

0
B(S)

E —m

—(E +m)
0

where we have introduced O„=6 —A„which is given ex-I R

plicitly by

The Dirac-Coulomb wave functions have been extensively
investigated and we only quote the solutions in order to
clarify the notation. The regular Dirac-Coulomb func-
tions can be expressed in terms of the Whittaker function
by

T

PgN 1

rR 1/2
rJ~

(2pre " )'/
~

I (y+i2i)
~

pl (2y+1)E —m

E+m

R,
X (y+i~)e i(y 1+2)—/m' 2/

X e "M;„r,/2(2ipr), (28)

where the parameters are y=(~ —a Z )'
=aZE/p, p =(E —m )'/, and the phase g„ is given by

1+SOS„
g„(y)= 1 y+ ~g——arctan

2 ~y —7)p
(29)

with Sr ——y/
~ y ~

and S„=~/
~

i~
~

. We choose to define
our irregular solutions, labeled by I, such that they are ob-
tained from the regular solutions by adopting the negative
sign for y everywhere in Eqs. (28) and (29). For later use,

8„= n(v y) —a—rctan(—tanm (v —y )cothmg)

+—+—S. .
2 2

The regular point phase shift 6 is defined as

(35)

h„=g„(y)— —argl (y+i Ti)+g ln2prR (36)

and the irregular point phase 6 is obtained by changing
the sign of y everywhere in Eq. (36).

The above results imply that for nonpenetrating orbits
and for the external region of penetrating orbits the in-
tegrands of the required radial integrals are simply in-
tegrals over Whittaker functions and, therefore, can be in-
tegrated analytically. The evaluation of such integrals by
means of matrix series and the analytic continuation of
the resulting generalized hypergeornetric functions has
been investigated extensively. ' ' The general strategy is
to make use of the fact that the Dirac-Coulomb wave
functions satisfy a first order matrix differential equation
whose structure is similar to the scalar first order dif-
ferential equation satisfied by the integrand of the I func-
tion. This permits the definition of a matrix I func-
tion ' with many recursive and differential properties '"
which allow new analytic continuation techniques to be
applied to the resulting matrix series and the evaluation
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of integrals. It is useful to note that the Dirac-Coulomb
functions in the standard representation are real, and thus
the integrals over spherical Bessel functions in Eqs. (21)
and (22) can be obtained by taking the real part of the in-
tegrals over spherical Hankel functions which, apart from
an exponential, have a finite series expansion in inverse
powers of r. In the Appendix we give the necessary de-
tails and the explicit formulas for the radial integrals that
occur in bremsstrahlung.

The expression for aL given in Eq. (24) contains a
coherent sum over K2, the Dirac quantum number of the
outgoing electron, and K1 which ranges in magnitude from

~
K2

~

—L to
~

K2
~

+L for fixed L. The series reduction
technique of Yennie and Ravenhall' works very well in
speeding the convergence of this coherent sum over spher-
ical harmonics for electron scattering angles away from
O'. We find that the maximum value of K2 needed is the
greater of E&/5 (MeV) or 2L, while the number of a,
terms for a given Icz is proportional to (2L +1). Thus, for
large L values the number of radial integrals is propor-
tional to L and requires proportionately more computer
time. To reduce the time spent in calculating radial in-
tegrals we make use of a recursion relation on L (Ref. 10)
given in the Appendix.

The radial integrals with either
~

Ic& or
~

vq
~

less than
or equal to some K d contain electron waves which
penetrate the nucleus appreciably and require numerical
integration over the nuclear interior in addition to asyrnp-
totic expansions for the integral from R to infinity as dis-
cussed in the Appendix. When

~

Ic&
~

and
~

ic2
~

are both
greater than K,d, we use the point radial integrals. For
incident electron energy of 100 MeV, K,d

——7 is suffi-
cient.

III. DISTORTION FACTORS

Using the radial integrals given in the Appendix along
with the series reduction technique of Yennie and
Ravenhall, we can calculate a(LT, , co, gZ) for any elec-
tron scattering angle 0,)20 and all values of T1, m, and
Z. However, for large L values, the number of radial in-
tegrals increases rapidly and the incoherent L sum in Eq.
(23) is usually slowly convergent. Without unlimited
computer time, this series cannot be summed directly. In
a previous investigation of virtual photon spectra, " we
found that comparing distorted wave contributions to
plane wave contributions (designated by Z =0) was useful

in summing slowly converging series. While the radiation
tail is quite different from the virtual photon spectrum,
we consider the use of some sort of distortion factor.

Defining a multipole distortion factor

aI (T&,co, g„'Z)
d, (T, ,~,g„.Z) =

aL T~, Q7, ge,'0
(37)

d'cT

dco d8

PW

(38)

where only the Z dependence is shown in aL and PW
designates the plane wave. We also consider a distortion
factor defined by

max

g aL(T),co, g, ;Z)

Dl (Ti,co, g„Z)=

g ai (T, ,~, g„0)
L=1

(39)

where again Z =0 corresponds to plane waves. While we
could obtain the plane wave result by running our general
code for very small Z, it is more accurate and consider-
ably faster to carry out a multipole decomposition of the
Bethe-Heitler result which we give in the Appendix. To
our knowledge this result has not been given before. If for
some finite L~,„, DL approaches a constant, say D
the distorted wave cross section is given by

2
DDw

dc' dQe

pw
d2~

dc(7 d Ae
(40)

The value of the plane wave result is given by Mo and
Tsai ' and by Maximon and Isabelle. In Maximon and
Isabelle's notation

and assuming that, for some L )L,„, dz approaches a
constant, the distorted wave radiation tail can be written
as

d 2~ maxL

= g [al (Z) di—,„al.(0)]
dc' d6e

0
dc' dAe

pw 2

F (q)
Z a Pz &Md(q )

P1 qm q

2

(2/+ k ~) ~ ~2

1 1

D 1/2 D 1/2
1 2

q +4k, 4q (E, +E, —m—') —16E,E,
2A, —g

2(4E, —q )
[2A(A, —kE2) —(A, +kE))q ]

1

2(4Ei —q )
[2X(A, +kE)) —(A, —kE2)q ]

2

(41)
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2
A, =E&E2 —p~p2cosO, —m

D& ——[p (q —qz)+2p2kpcosOe] +4k p2sin 6, ~

D2 ——[p2(q —
q& )+2p&Aocos8, ] +4k pepsin 8, ,

2~o=EiE2 —p&p2 —m

q = rp, —p2r —k=(2A, +k )'~ —k,
qM ——

r p&
—p2 r

+k (2~+k ) +k,
0,

q2 ——2p2sin
2

(42)

2l

l9—

l7—

l3—
C5

II—
I-

9—

l +-+~—+—"+~+~ ~~g—+~+ + + +—+

0,
q&

——2p &
sin

2

and F(q) is the plane wave form factor of the spherically
symmetric ground state charge distribution and is given
by

A

2

I45 ~k—X~X~X X

I I I I

6 8 IO I2

MULT IPOLE ORDER

40
A j A—X—X—X—X—)I

%I'

I 4 16 I8 20

F(q)= f p(rj)o(qr)r dr . (43)

The form factor is normalized such that F(0)= 1.
We investigate the behavior of these two distortion fac-

tors for 100 MeV electrons scattering from uranium. We
take the ground state charge distribution to be given by a
two parameter Fermi distribution

FIG. 2. Distortion factor DL as a function of L,„ for
max

Z =92, incident electron kinetic energy Tl ——100 MeV, photon
0energy co =20 MeV, and scattering angles 40, 100', and 145 .

p( r) =pal [ 1+exp[(r —c)Iz& ]], (44)

where the radius and skin-thickness parameters are
c =6.84 fm and z& ——0.545 fm. In Fig. 1 we show the ra-
t d s a function of L for an energy loss co=20 MeVlos L a

145'.and electron scattering angles of 40', 100', and 1

Clearly dL is either approximately constant or oscillates
about an approximately constant value for large L values.
In Fig. 2 we show the ratio DL for the same cases which

31

clearly tends toward a constant value. For this case, using
either Eq. (38) or Eq. (40) where dr is taken to be the
average over the last five individual values lead to the
same distorted wave cross section.

In Figs. 3 and 4 we show dL and DL for the same elec-
tron angles, but for energy loss co=40 MeV and obtain
similar results as for co=20 MeV. In Figs. 5 and 6 we
give the results for co=60 MeV. For this case the results
are not so favorable, particularly for the scattering angle

2t
28-

25

22—
l7-

l5-

x

/' i45 /5

r
~ 'il ilhl )/ x x

r
x x

l3-

IO-

QO

I

4 5 8 I 0 12 I 4 I6

MULTIPOLE ORDER L

g P

I8 20 4oo +40
I t t

0 2 3 6 8 IO
I I I

I 2 I4 I 5 l8 20

FIG. 1. Distortion factor dL as a function of photon mul-
tipole L for Z =92, incident electron kinetic energy T& ——100
MeV, photon energy co=20 MeV, and scattering angles of 40
100, and 145 .

MULTIPOLE ORDER L

FIG. 3. Same as Fig. 1 except that the photon energy co=40
MeV.
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2 6 8 10 12 14 16 18 20

MULT I POLE 0RD ER L

1.2—

1.0
0 2 8 10 12

MULTIPOLE ORDER L

I I

14 16
l

18 20

FIG. 4. Same as
MeV.

s Fig. 2 except that the photon energ =40s y co=
MeV

FIG. 6. Same as Fi . 2 exce tg. except that the photon energy co=60

of 40'. As the energy of the photon emitted increases, the
number of photon multipoles needed for the sum to con-
verge increases. This behavior can be seen q 't l len quie ceary
or e p ane wave case where we can calculate the indivi-

cornpare with the com-ua multipole contributions and corn h
piete result. For 8=40', for example, the percentage of
the total plane wave sum for I „=20 is S7% for m=20
e, S%%uo for co =40 MeV, and 49% for co =60 MeV.

The same percentages at 145' are 67%, 59%, and 53%.
The more ra idapid convergence at larger scattering angles is
a general result.

In Figs. 7 and 8 we show dL and DI for 50 MeV elec-
trons emitting 35 MeV photons f f d

les with
ns or orward scattering an-

g es with multipole contributions up to L =30 A
scatt

s the

abou
ering angle increases the ratios d begin to oscillate

va ues. e percen-a out a constant value at smaller L 1 . Th
tages of the plane wave result obtained b L =30 f'

e y = orthe
g es 30, 40, SO, and 60 are 65.7%, 67.7%, 68.9%, and

2. 1

2.0

1.9

3.0

2.8—

2 6

1.8

1.6

2.4 1.5

2.2—
1.4

2.0—

1.8—
1.3

1.6— I ~ 2

1.2—

I.O
0

I

'I

8 10 12 14 16

MULTIPOLE ORDER L

18 20

FIG. 5. Same as Fi . 1

MeV.
g. except that the photon energy co=60

0 1 I 1 I 1

0 3
1

6 9 I 2 15 18 21 24 27 30
MULTIPOLE ORDER L

FIG. 7. Dis tortion factor dL as a function of photon mul-

ti ole L for Z='p Z =92, incident electron kinetic energy T& ——50
MeV hot, p oton energy co=35 MeV, and scattering an les 30 40
50, and 60

ang es
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V. RESULTS AND CONCLUSIONS

ze

(b)

ze

FIG. 10. Two possible Feynrnan diagrams for plane wave
bremsstrahlung.

Since the DWBA calculation of the radiation tail is so
time consuming, we decided to compare our results on a
heavy nucleus (uranium) to the ad hoc procedure
described in Sec. IV which has been used extensively by
experimentalists. Any deviation between the DWBA re-
sults and the ad hoc procedure we find for uranium
should be smaller for lighter nuclei.

In Fig. 11 we show the ratio [D (8,)] of the Coulomb
distorted cross section [Eq. (38)] to the plane wave result
[Eq. (41)] for the full DWBA and the same ratio
[D' ""(0,)] using the ad hoc procedure instead of
DWBA. One sees that the agreement between the two
calculations is excellent, even within the diffraction
minimum (or inflection) in the cross section around 100'
where the distortion effects are quite large. We made
such comparisons for a range of initial electron energies
up to 160 MeV, energy losses and scattering angles. %'e
find for low electron energies (either TI or T2 less than
10—15 MeV) that the ad hoc procedure does not work
very well. For lower electron energies the radiation is not
so sharply peaked about the electron direction, and the as-
sumption that almost all of the change in direction of the
electron occurs at the nuclear vertex relies on the validity
of the peaking approximation.

Apart from the low electron energies, we find that the
agreement of the ad hoc procedure with our full DWBA
result at a particular scattering angle depends only on the
ratio of the energy loss to the incident electron energy
cu/T1, ' and for a given percentage of energy loss there is a
weak dependence on electron scattering angle. To display

0,
2 sin

2

(46) 2I

l9—

When using the ad hoc procedure, the q integration in
Eq. (41) is done numerically and for each value of q (and
the observed electron scattering angle 8,) a value of the
electron momentum p is calculated. A phase shift pro-
gram is run for p and 0, to calculate the distorted form
factor which replaces the plane wave form factor in the
integrand of Eq. (41). In practice, the elastic scattering
program is run for a range of p values and the distorted
form factors are stored in a large array and the value for
any particular value of p is obtained by interpolation.

We have referred to this procedure by the term ad hoc
since, apart from intuitively appealing considerations, we
know of no good theoretical basis for the procedure.
Bremsstrahlung has been calculated' by treating the radi-
ation vertex to first order and the nuclear interaction to
second order with plane waves. It was found that the ra-
tio of the radiative cross section with the additional in-
teraction at the nuclear vertex to the Bethe-Heitler result
was approximately the same as the ratio of elastic scatter-
ing calculated with second order plane wave Born approx-
imation to the first order plane wave Born approximation
result. This result certainly is suggestive but including the
second order plane wave Born approximation still fur-
nishes a rather poor description of elastic electron scatter-
ing.

l5—

{I——
T I I I I I I I I

+0 50 60 70 80 90 IOO IlO l20 I30 l40

~e (deq)

FIG. 11. Distortion factor D(0, ) as a function of scattering
angle 0, for Z =92, Tl ——100 MeV, and co =20 MeV for the dis-
torted wave (DW) and the ad hoc procedure shown by the solid
and dashed lines, respectively.
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TABLE II. Values of R =D /D' "~ for Z =92 as a function of scattering angle 9, and percentage of energy loss with different
values of L and T~ )50 MeV.

L,„30' 40' 50 60' 70' 80 90' 110 120' 130 140'

20% 15
20

1.00
0.99

0.99
1.00

1.00
0.99

1.00
1.00

1.00
1.00

1.00
1.00

0.99
0.98

0.95
0.99

0.95
0.97

0.99
0.97

1.00
1.01

0.99
1.04

30%%uo 15
20

1.01
0.99

0.99
1.00

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.98
0.98

0.96
1.00

1.00
0.95

0.92
0.95

0.92
0.91

0.94
0.94

40% 15
20

1.01
0.97

0.98
0.99

0.99
0.98

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.98

0.97
0.98

0.97
0.96

0.95
0.96

0.95
0.95

0.94
0.94

60% 15
20

0.88
0.94

0.92
1.00

0.98
0.97

0.99
0.98

0.99
0.98

0.99
0.98

0.99
0.99

0.99
0.98

0.98
0.98

0.96
0.96

0.94
0.93

0.90
0.90

70% 20
25
30

0.70
0.91
0.92

0.89
0.92
0.95

0.90
0.94
0.93

0.93
0.93
0.92

0.92
0.92
0.92

0.92
0.92
0.92

0.92
0.92
0.92

0.91
0.91
0.91

0.90
0.90
0.90

0.88
0.88
0.88

0.85
0.85
0.85

0.80
0.80
0.81

these results we calculate a ratio R of the Coulomb distor-
tion factors for the DWBA analysis and for the ad hoc
procedure. In Table II we show this ratio for a range of
scattering angles and percentages of energy loss. Since for
higher energy losses the convergence of the multipole sum
in the DWBA analysis is somewhat uncertain, particular-
ly for the smaller electron scattering angles, we show the
number of multipoles included in the DWBA result for
the case Tj ——100 MeV.

Upon examining the results of Table II, it is clear that
the use of the ad hoc procedure for including the
Coulomb distortion effects is, in general, very well justi-
fied. For energy losses less than 60% of the incident ener-
gy, the ad hoc distortion ratio is within 5% of the
DWBA distortion ratio except for electron scattering an-
gles larger than 120 even within diffraction minima. The
6% deviation at 8,=30 is probably due to incomplete
convergence of the multipole sum in the DWBA result.
The agreement for scattering angles between 40 and 100'
for energy losses up to 40% is essentially perfect.

However, for larger energy losses and for larger scatter-
ing angles, the ad hoc procedure clearly overestimates the
Coulomb distortion. For example, for co/T& of 70% at
0,=140, the ad hoc procedure overestimates the distor-
tion by about 20%. At more forward scattering angles
(40 —110 ) this overestimate is less than 10%. Note that
apart from 30' and 40, the multipole sum for this case
seems to have converged very well.

A direct measurement of the radiation tail from
tungsten at 0,=30' with incident electron energies of 300
MeV was performed at Mainz by LeRose et al. By
measuring the radiation tail as a function of target thick-
ness, they extracted the contribution arising from radia-
tion in the field of the nucleus which we have calculated.
The so-called internal bremsstrahlung tail was measured
for energy losses up to about 70% of the incident energy,
and apart from the lower energy loss regions where nu-
clear excitations were present, the experimental radiation
tail agreed with the tail calculated with the ad hoc pro-

cedure quite well. We have not had enough computer
time to repeat our entire calculation for tungsten at
E,=300 MeV but our table of results for uranium suggest
that near the maximum energy loss measured in the ex-
periment, deviations on the order of 8% should have be-
gun to show up. However, at 30' our multipole sum has
not completely converged for the larger energy losses so
our predicted deviation of about 8% may be too large and
the deviation for tungsten should be smaller than that for
uranium. In any case, the errors quoted for the Mainz
data are of order +10% in this energy loss region. Thus,
our results are in complete agreement with the experimen-
tal data for energy losses up to 60%, and are not in
disagreement at 70%. However, if such a measurement is
made at 8,=120 or larger for 70% energy loss, we
predict that the radiation tail calculated with the ad hoc
procedure would rise about 12% above the experimentally
extracted radiation tail.

In conclusion, we have successfully calculated the
Coulomb distortion to the radiation tail accompanying
elastic electron scattering. The variation in R with L
shown in Table II is a rough measure of the uncertainty in
our DWBA results. Apart from forward angles with
large energy losses, our DWBA results are good to a few
percent and the results given can be improved by using
more computer time since we have not yet discovered any
numerical difficulties with our calculational procedure.
Upon comparing the DWBA results with an ad hoc pro-
cedure of including the Coulomb distortion effects in a
plane wave formalism, we find that the ad hoc procedure
works very well for energy losses less than 60% and
reasonably well for energy losses up to 70%. We per-
formed some calculations at energy losses of 80% of the
incident electron energy and estimate that the ad hoc pro-
cedure overestimates the radiation tail by up to 25% at
forward and backward angles, and by about 10—15% for
mid-range angles. Apart from the large energy loss re-
gions, the ad hoc procedure for evaluating the radiation
tail accompanying elastic electron scattering can be used
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with confidence that errors of only a few percent are being
made. Even in the large energy loss region the errors are
only on the order of 20%%uo and the results given in Table II
can be used to correct for this discrepancy.

This work was supported in part by DOE Grant No.
DE-AC02-79ER 10397-07.

Ina matrix, to be denoted as I, which contains the regular
Dirac-Coulomb functions.

The matrix array of functions uj. , j =1,2, satisfies Eq.
(26) with 3 and 8 matrices given in Eq. (27). The column
vector of functions u3 also satisfies Eq. (26) with the ma-
trices A3 —1 and 83 given by Eq. (31). The 8X8 ma-
trices M and A are given in terms of the 2&2 A; and B;,
i =1,2, 3, by

APPENDIX

1. Dirac-Coulomb radial integrals

M —
A 3I4 +Ip A pIp +I4 A j

N =B3I4+IP@BPIP+I4B ), (A4)

To evaluate the radial integrals in Eqs. (21) and (22), we
define the 8)& 4 incomplete matrix gamma function

I (M+1,&;R)=f u3(d'or)@u2(p2r)@u)(p)r)dr,

where I„ is the n & n unit matrix.
All of these matrices can be transformed to either an

A-diagonal or B-diagonal form. We can diagonalize the
A matrices by using the transformation matrix

where

(Al)
CSA

(Ea my)v—'x. y—p (21+i y)v'a+ y
(Emmy)V. —lr+y p(ri+iy)v'v y— (A5)

and

JL, (Q)r)
u3(cor)=

( )~
cur

rg„" (p, r) rg„(p, r)

rf"„(pj.r) rf„(p~r)

(A2)

(A3)

The transformed A and B matrices are

(A)
0

A 0 r.
—(')1 y —( 7/

(A6)

(A7)

For nonpenetrating orbits, x& and ~&~~ ~, we take the
limit R ~0, and only require the first column of the gam-

and the solution to Eq. (27) in the /I-diagonal representa-
tion is

M;z & )/2(2ipr)
(2 1 )

')' "+M . 2ir
(A8)—(y+ig)

2y(2y+1) M;z r+)(/22ipr) M;z r )/2(2ipr)

where Mk „(x) is the Whittaker function. The solution given in Eq. (28) in the standard representation can be obtained
from u'"' by the transformation

(S) gSA( (A)N(S) )

where the normalization constant N' ' is a 2 & 2 matrix given by

(A9)

N(y)
N( —y)

(A10)

where

(A)
Q3 jI (cur)

and the normalization constant and transformation matrix are

(2) )
—L —) —3/2

L (2L —1)!!

and

i [q„(y)+r—m/2]
~
r(y+in) I

2pVE+m I (2 y1+)( yi+g)

The corresponding solutions for the spherical Bessel functions in A-diagonal form are

ij I )(d'or)

(A 1 1)

(A12)

(A13)
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0 i
sA (2 2L 3)!/2

CO
1 0 (A14)

7l y

(2,p„) M)/z;„y(2ipr)

and can be obtained from the 2-diagonal solution by the transformation

In a similar manner we can obtain a B-diagonal solution to Eq. (26) which is given by

(y —i')M )/q; (2ipr ) — M (/2 q y (2ipr )

M)/2;z y(2ipr)
(A15)

CBA

1
(y —

iyi )

P +l'g
1

(A16)

The 2 and B matrices in B-diagonal form are given by

y —iq —ip 0
B(B)—I 'g 0 lp

(A17)

The Whittaker functions in Eq. (A15) can be expressed as a combination of Whittaker functions Wk„of the second
kind which leads to u o

' ——u' 'T where

—(y iy)) W —)/2;„y(2ipr)
W, /2;„y(2ipr)

(B) 1 Wl/2+i', y( —2(pr)e

(2ip„) i (y+i—yl)W' )/2+, z y( 2iPr)e— (A18)

and

I (2y+1)
I (y+1+iyi)

e' ye " I (2y+ 1)
I (y+1 —ig)

(y i y)) —I ( —2y+ 1)
y+iyi I ( —y+1+iq)

e ' ye " I ( —2y+1)
I ( —y+1 iyi)—

(A19)
and u' ' is also a solution to Eq. (26). The subscripts 0
and oo denote power series and asymptotic series solu-
tions, respectively.

For completeness we give the transformation from the
B-diagonal solution to the standard representation by
writing u' '=C u' 'X' ' where 1V' ' is given in Eq.
(Al 1) and

( x i p) v'E +m ——( y i yi) &E +m—
C = —(y+iy)) i ()~ iP)(/E —m—i (y iy))VE —m—

'

I

where

r(s) CsBS (Qo Qo)( BAr(~(A)+ 1 ~(A)+ Q )

XN3N(yp)N(y() . (A23)

r(W(A)+I u(A)+a )=
m=0 +m +1(A)

~o

where the vectors V are defined by the initial value
(A24)

The various matrices Cf' in Eq. (A23) are 8X8 matrices
where i represents the initial representation and f the
desired representation. They are formed from the corre-
sponding 2X2 matrices using Eq. (A4). The eight ele-
ment vector gamma function in the 2-diagonal represen-
tation represents the value of the radial integrals "off the
mass shell" by the amount Ao, and is given explicitly by
the matrix series

(A20) (V()); =6; )(2ico) '(2ip2) '(2ip() ' (A25)
where P=aZm /p.

Wright and Talwar give a general method of evaluat-
ing integrals from 0 to infinity of products of Whittaker
functions of these forms which permits the calculation of
I . The electric and magnetic radial integrals of Eqs. (21)
and (22) are given in terms of the elements of I in the
standard representation by

I(m) ) 2 (r(s)+r(s)) (A21)
[L (L +1)]'/'

1/2
p(S) p(S) + p(S) + p(S)

6 7 1 4

and the recursion relation

(Vm) +~ (A26)

To achieve rapid convergence of the matrix series in Eq.
(A24), the parameter 60 is chosen to be 7E, . The 8X8
matrix series S(ho, bo) operates on the radial integral off
the mass shell and returns it to the physical value. While
this can be done formally in one step, numerical difficul-
ties require that this return to the physical value be done
in a series of Zeno-like steps. That is, we write

& (I (s)+I (s))
6 7 (A22)

S ( bo, bo) =S (5, |l)S( bo/2", 60/2 ' ). . .

XS(6,/4, &,/2)S (&,/2, &,), (A27)



522 TALWAR, WRIGHT, ONLEY, AND VARGAS 35

where the last step has 6=ho/2" and returns the matrix
of radial integrals to their physical argument. The indivi-
dual S matrices are given by

S(x,h)= g TH',
1=0

where To ——I8 and

by expanding the spherical Hankel function
L+1

h~
' ——g a (L)e' "ir

m=1

where

a (L)= 2I (L +m)i +

I (m)l (2+L —m)(2co)

(A31)

CL —DL u 3 (cor) (A29)

Since the elements of A'' ' are pure imaginary, for real x
and b, , the series for S(x,h) converges for all

~

x
~

(
~

b,
~

although the convergence may be quite slow. Choosing
x =6/2, the series for the various S matrices converge
quite rapidly. In practice we perform between 15 and 20
Zeno-like steps before making the final step to the physi-
cal value. This procedure is necessary since two of the
elements of the A matrix are very small due to the ex-
treme relativistic nature of the electrons in the brems-
strahlung process. The parameter 5 in the last step has
become comparable to the size of these elements, and thus
the series for the last S matrix also converges quite rapid-
ly.

The matrix gamma function I (W+ 1, %' ) for R ~0 in
Eq. (Al) has a useful recursion relation on the label L of
the spherical Bessel function u 3 '(cor) defined in Eq. (A2).
The recursion relations for the spherical Bessel function
can be written as

and defining a 4&(4 incomplete matrix gamma function

IP+IP A1

M =BPIq+IgB1 .
(A33)

It is convenient to work in the B-diagonal representa-
tion of the Dirac-Coulomb functions so that the asymp-
totic expansions can be used. If we choose

hL( )

hL" i(cor)

we find that the upper 4)&4 elements of Eq. (Al) are
given by

f hr'"(cor)u' 'u', 'dr

L+1
= g a (LII O(W' '+1 m, (A— ' ' ico);R—) (A34)

m=1

EMP

I'(M+1 —m, (A ic—o);R)=f u, Xu, dr, (A32)
~m

where

where

CL ——+

2L +1

0

0

0

and the lower 4 X4 elements are given by the same expres-
sion with L =L —1. To evaluate these integrals from R
to infinity in Eq. (A34), we use Onley s asymptotic matrix
series' for u' ' as discussed in Wright and Talwar to ob-
tain

CL ——

0
2L —1 I o

' ——I'„'(Tp T ( ),
where

(A35)

0 +1
Dg—

Substituting this relation in Eq. (Al) (with R =0) and us-

ing the general recursion relation for the matrix gamma
function' '' MI (W, A)=&~I (M+1,%), one immedi-
ately obtains'

I „(M' '+1 A' ';R)

D„l (~ +1 n ~ ~~&~R)~ —~~+& —~~

n=0

(A36)

I (M(L+1)+1,%') =[(C I )M(L)—
(D~ eI„)]f'(M(L)+—1,&-),

(A30)

The D matrices are defined by Do ——(2ipz) ' (2ip, )

and the recursion relation

where the M matrix dependence on L arises from 3 3
—1

as shown in Eq. (A4).
For the case of penetrating orbits when either K1 or

Kp (K d, the integrals from 0 to R are performed numeri-

cally and the integral from R to infinity is performed by
using asymptotic expansions of the Whittaker functions.
It is convenient to reduce the size of the matrices involved

[(W+n —1)D„));,+(~;;—~))[D,
ji JJ

(A37)
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where W is the diagonal part of the M matrix and
The T matrices which transform the

asymptotic series form of the gamma matrix to the power
series form are given in Eq. (A19).

To extract the integrals over the spherical Bessel func-

tion of order L, we form the appropriate linear combina-
tion of regular and irregular solutions by multiplying the
right hand side of Eq. (A34) by a matrix P, transform it
to the standard representation, multiply by the normaliza-
tion constant, and take the real part. That is,

L+1
jI (cur)u2 'uI 'dr=Re N' 'C g a (L)I o(M' '+1 m—, A' ic—o;R)P

m=1
(A38)

where P is a 4&(1 matrix given by

A2 A1
P= B2 1

where A; and B; are the coefficients defined in Eq. (33)
for the initial and final electron waves. The 4)&4 matrix
C transforms the wave functions from the B-diagonal
to the standard representation and is given by
C =Cz Cf where C; is given in Eq. (A20). Finally,
N' '=N'2 'NP' where N' ' is defined in Eq. (A10).

2. Multipole decomposition of the Bethe-Heitler formula

In the plane wave second order calculation of brems-
strahlung first analyzed by Bethe and Heitler, the electron
is elastically scattered by the nuclear Coulomb field and
then emits a photon while interacting with the radiation
field plus the opposite time sequence [see Figs. 10(a) and
10(b)]. Each of these two interactions of the electron is
mediated by one photon, and the electrons are represented
by Dirac plane waves. Using the standard Feynman rules
and the notation of Bjorken and Drell' the transition ma-
trix elements for this second order process is given by

X [AL~(r)+ip ALM(r)], (A43)

where D M „are the rotation matrices and A™and A
are the transverse magnetic (TM) and electric (TE) Han-
sen solutions as given by Greiner and Eisenberg. ' The la-
bel p denotes different polarization states of the photon.
If we also use the Rayleigh expansion

e'" "=4m+i jl(k'r) Yi™(k')Yi (r)
lm

(A44)

for k'=pf —p in T1 and k'=P —p; in T2, we can per-
form the space integrals in Eqs. (A41) and (A42). For ex-
ample, the TM contribution to Sf; for photon polarization
p is given by

(Sj"")™=Cg u(Pf, Sf)[Bx„(F'i+Fan )Yo

nuclear charge form factor introduced at the nuclear ver-
tex to take into account the finite size of the nucleus.

To obtain the multipole decomposition of the plane
wave result, we expand the photon field in multipoles by
writing

ee '"'=~2rrg(2L +1)' i ( —1) +'D (k)P l M p
LM

Sp. —Cu (pft, Sf ) ( T
& + T2 )u (p;,S;), (A39) L, M, A.

C =ie Z5(Ef+co E;)(m /2E;Ef—coV )' (A40)

where the constant C contains the energy conserving delta
function and is given by

+Yo(F2+Fp )Bg „]
Xu (p, ,S,. ), (A45)

)c', e e '"'d r d p, (A41)

The operators T1 and T2, corresponding to the two dif-
ferent second order diagrams, between the initial and final
electron spinors with four momenta p;=(E;,p;) and

pf (Ef,pf) can be——written in terms of an integral over
the intermediate three momentum p as

(YQE 3'P+m)YD
T,=, ', , F(lp —p I)

(p,' —p')
I p —p; I

'

where

Bx„=[8~(2L +1)]' ( —1)™~ID~„(k)g' x (A46)

and gx are the spherical basis vectors for A. =O, +1. The
integrals over d p are written as a scalar integral

LAP. L 1 L LMXI1 ——CM ~~MG &
where

'(kf)~(k kf)G]'
(p —p)lp p I

k2 2 2 2
d'P

(A47)

Yo(Yo f Y'P+m)&'F(
I P —Pf I

)
T2= 2 2 2(Pf P )

I P Pf I'

"e —ck (A42)

with Fi ——mI1 and F& ——E;I1 and as a vector in-

pF(p —p;)Yl (k j)5(k —kf)
61 ™ 2 2(p; —p ) Ip —p; I

k

where e„*=(O,e') is the photon polarization and F is the (A48)
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The integrals with the subscript 2 are obtained by inter-
changing the labels i and f for E;, ;, and kf.

The integrals Gf.™~ and Cx~' can most easily be
evaluated by choosing the vector p; —pf to define the z
axis and for p; and pf to lie in the x-z plane with polar
angles 0; and Of, respectively. It is convenient to take kf
as the integration variable rather than p. The integration
over dkf is straightforwardly done by using the delta
function in Eqs. (A47) and (A48). The P integration can
be performed analytically by use of contour integration
while the remaining integration over 0 is done numerical-
ly.

In terms of the matrix element Sf;, the second differen-
tial cross section in electron solid angle dA, and photon
energy der for bremsstrahlung is given by

k EEV f —, g i Sf, i
dflkdEf, (A49)

d Q,d co (2~)6p,. T

where dQk is the solid angle into which the photon
emerges and the summation is over spin and polarization
directions. Using the standard techniques and substitut-
ing the expression for Sf; from Eq. (A45) into (A49) and
integrating over photon angles d Qk we obtain the dif-
ferential cross section for TM photons of multipolarity L,

- TM

(A52)

where

Similarly, the cross section for TE photons of multipo-
lariJt L can be obtained with the integrals I~ and
F1 defined by

1/2

r' '=c"' ' L+ 6' '
1 M —ARM 21 1

1

CL L L+1+ M —RAM (A53)

FLM~=CLLL ' I +1
1

= M ~~M 21. +1

1/2
~L —1,M —A,

The spin sums can be reduced to traces by introducing the
energy projection operators and Eq. (A50) can be written

- TM
0

d Beddy

Z Q kpf g Tr[I"x (p;+m)I ~ (pf+m)],

d cT

d Qedco CLLL++ M —A, A, M

1/2
L +1,M —A. (A54)

where

Z2 3 2kpfPf y yu(p, ,S,)r,u(p„s, )

(2~) p~ s, sf

(A50)
d2C

d Bede

d20-

d Bedco

d20-
+

d Bede
(A55)

where G~ and Cr~ are defined in Eqs. (A47) and (A48).
Finally, the bremsstrahlung cross section in Eq. (A49) can
be written as the multipole sum

- TM

x=4(~i+Fi )ra+i'0(~2+ 2 (A51) Further details may be found in Ref. 18.
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San Jose, Costa Rica.
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