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The forward-to-backward asymmetry of neutrons emitted in the (y,n) reactions on "Pb and "'Cd
targets was measured for photons in the range of 20—30 MeV, where the isovector quadrupole giant
resonance is expected to lie. The asymmetry was observed to increase from small values (=0.2) to
large ones (~0.6 and 0.8) for "™Cd and "'Pb, respectively. This phenomenon is interpreted as the
interference between E1 and E2 amplitudes. From an analysis of the asymmetry the excitation en-
ergies of the E2 isovector resonances were estimated to be 23.5+1.5 MeV and 26.5+1.5 MeV for
the Pb and Cd nuclei, respectively. The E2 isovector resonances are found to be considerably wider

than the E1 resonances.

I. INTRODUCTION

Compared with our knowledge of the isovector dipole
resonance (IVD), i.e., the well known E1 giant resonance,
our knowledge of the isovector E2 resonance (IVQ) is very
limited. Most of the information about the IVQ has been
obtained from inelastic electron scattering.! The shapes
of (e,e’) inelastic spectra and their dependence on scatter-
ing angle show evidence for a concentration of E2
strength at approximately 1304 ~!/> MeV for heavier nu-
clei.? For light nuclei the location tends to be somewhat
lower. Upon dissecting these spectra into component
multipoles, the authors concluded that the width of the
IVQ resonance increases from ~5 to ~ 10 MeV as the nu-
clear mass decreases and that the E2 strength concentra-
tion corresponds to 70—100 % of the T =1, E2 energy-
weighted sum rule (EWSR) using the Goldhaber-Teller
model.? Because of the uncertain backgrounds and the
strengths due to other multipoles in the (e,e’) spectra, it is
important to study the IVQ and its parameters using an
independent method.

Evidence for the IVQ resonance has also been sought
using the (p,p’) reaction,® the (r*,7°) reaction,* the (y,7)
reaction,’ and the (p,y) reaction.® None of these has
managed to provide very definite information. In inelas-
tic proton scattering, the dominance of the isoscalar term
of the nuclear force obscures the excitation of the isovec-
tor giant resonance even at high incident energies.’ No
evidence for IVQ strength was uncovered in a recent
study of the (m—,7°) reaction on *°Ca, ®Ni, and *°Zr tar-
gets, although this reaction clearly excited the isovector
monopole and dipole resonances.* According to a recent
(y,y) reaction measurement no compact E2 strength is
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observed in calcium between 19 and 51 MeV, nor in car-
bon between 25 and 45 MeV.> The sensitivities of the
(r—,7°) and the (y,7) reactions to the strength of the IVQ
are, however, so small that a substantial fraction of the
IVQ sum rule would have to be concentrated within a nar-
row energy interval for the IVQ to be seen.*>

Angular asymmetry studies using the (p,y) and (n,y) re-
actions have the advantage over other reactions that the
asymmetry depends on the amplitude of the E2 resonance
(including its phase) rather than just on the intensity. It is
difficult to peel apart resonances on the basis of observed
intensities whenever the resonances are wide. Because the
phase of an amplitude changes most rapidly at resonance,
it can provide valuable information to help pin down the
resonance location and its other parameters. When the
(p,y) reaction was used to study the IVQ, a large back-
ground coming from direct E2 capture made identifica-
tion of resonant E2 capture difficult.® On the other hand,
as has been pointed out earlier,’ There is essentially no
direct E2 amplitude in the (y,n) and (n,y) reactions, since
the effective charge of a neutron undergoing a direct E2
transition in a large nucleus is negligible. Thus, the (y,n)
and (n,y) reactions are virtually background-free when
used to locate the IVQ through interference with the tail
of the IVD.

Recently, Drake et al. have found striking evidence for
the existence and location of the IVQ in 2%*Pb, namely a
sharp rise at about 23 MeV in the (n,y,) forward-to-
backward asymmetry.? Subsequently, Bergqvist et al.
have studied the IVQ in *°Ca using the same technique.’
The use of the (n,y) reaction for targets lighter than Pb is
difficult because the available fluxes of higher energy
monoenergetic neutrons are small. We therefore decided
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to use the inverse (y,n) reaction. In this paper we report
the initial results of a survey of photoneutron asymmetries
at energies appropriate to the IVQ. In the next section we
present the experimental details of the measurements, and
in Sec. III we summarize the experimental results. A dis-
cussion of these results in terms of both a simple schemat-
ic model and the direct-semidirect (DSD) model appears
in Sec. IV.

II. EXPERIMENTAL PROCEDURE
AND DATA REDUCTION

The experiment was performed using the continuous
electron beam from the University of Illinois MUSL-2
electron microtron and its tagged photon facility. A 39.4
MeV electron beam was focused onto a 1 cm? aluminum
converter foil 0.13 mm thick to produce bremsstrahlung.
To determine the energies of the photons produced, the
post-bremsstrahlung electrons were momentum-analyzed
and detected in the focal plane of the analyzing magnet by
an array of 32 plastic scintillators. The tagged brems-
strahlung photons, after passing through a brass collima-
tor, struck the photonuclear target located about 1.8 m
downstream from the converter. Fast neutrons ejected
from this target were detected by an NE-213 liquid scin-
tillator, 30 cm in diameter and 5.1 cm thick. This scintil-
lator was viewed by three photomultiplier tubes 12.7 cm
in diameter. It was surrounded by borated paraffin and
lead shielding to reduce the number of events coming
from room background. To suppress the large photon
yield from the targets, 5 cm of lead was placed just in
front of the neutron detector. Neutron events were dis-
tinguished from photon events by pulse-shape discrimina-
tion. The neutron energies were determined by measuring
the time interval between the signals from the electron
counters and the neutron detector. The time resolution of
the system was estimated to be about 2 ns. The usable
current of the primary electron beam was limited to a few
nA by the counting rate in the post-bremsstrahlung elec-
tron counters. The allowable rate was typically ~2X 10
s~ !counter—!. In order to maintain a sufficiently high
counting rate for true events, it was necessary to use a
short flight path (1.5 m) to the neutron detector. Conse-
quently, the neutron energy resolution was poor (1.6 MeV
at E,=13 MeV and 3.6 MeV at E, =23 MeV). This
resolution was not sufficient to distinguish neutron yields
to different final states in the residual nucleus.

The main photonuclear targets and their thicknesses
were 11.1+0.2 g/cm® natural lead and 32.8+0.4 g/cm?
natural cadmium. To investigate a possible isotopic
dependence of the reaction, a 5.4+0.1 g/cm? enriched
(88%) 2°°Pb target was also used. The target areas were
about 15X 15 cm?, large enough to intercept the whole
photon beam since the beam spot size was estimated to be
less than 7 cm in diameter.

The cross sections of the (y,n) reaction on these targets
were measured for photon energies between 20 and 30
MeV at 55° and 125°. From these cross sections the
front-to-back asymmetry, defined as

a=[Y(55)—Y(125°)]/[Y(55°)+ Y (125°)] ,

was determined. The cross section at 90° was also mea-

sured for the natural lead target in the photon energy
range between 20 and 26 MeV. The attenuation of the in-
cident photons in the target and of the photoneutrons in
the target and in the lead blocks just in front of the neu-
tron detector were evaluated using the known photon ab-
sorption cross sections!® and the total cross sections of
neutrons predicted by a global optical potential.'! Al-
though the total attenuation was large (80—92 %), the
differences in attenuation at 55° and 125° were, in general,
quite small. For example, for the natural lead runs this
difference was calculated to be less than 4.5%, with the
125° target having the smaller overall attenuation.

Tagging efficiencies were measured periodically by
placing a 25X 30 cm? Nal detector directly in the photon
beam and counting the number of photons in coincidence
with the post-bremsstrahlung electrons. In order to make
this measurement, it was necessary to reduce the intensity
of the electron beam by about 4 orders of magnitude.
Since the tagging efficiencies were quite sensitive to the
position of the electron beam spot on the aluminum con-
verter, the beam position was monitored by a pair of pro-
file monitors every half-hour, and sidewise beam displace-
ment was kept to less than +1 mm. This procedure en-
sured that any variations of the tagging efficiencies during
a single measurement were less than 2%.

The pulse-height calibration for the neutron detector
was obtained from the Compton edges of monenergetic ¥
rays. These appear at 0.5 MeV (*’Cs), 1.06 MeV (¥Na),
and 4.20 MeV (!2C*). The threshold for the neutron
detector was set at 3.0 MeV (equivalent electron energy) to
avoid a high accidental counting rate from low energy
neutrons produced in the target by the great number of
untagged photons. This threshold roughly corresponds to
6.5 MeV in terms of neutron energy. The counting rate
for the remaining accidental coincidence events was es-
timated from the number of the kinematically forbidden
events in the time-of-flight spectra and was corrected for.
A typical time-of-flight spectrum is shown in Fig. 1.
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FIG. 1. A typical time-of-flight spectrum for "*'Pb(y,n) at
0.,=>55°. The mean incident photon energy is 23.46 MeV. The
time scale in this figure is about 0.5 ns/channel. The arrows
denote typical energies relating to the neutron spectrum.
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The efficiency of the neutron detector as a function of
neutron energy was calculated for various thresholds by a
modified version of the Monte Carlo code developed by
Stanton.!? The performance of the program was checked
by comparing the calculated efficiencies with those re-
ported in Ref. 13 for an NE-213 liquid scintillator, 12 cm
in diameter and 5.7 cm thick. The code reproduced the
experimental efficiencies within a few percent.

Overall uncertainties in the absolute cross section were
estimated to be +40%, and were mainly due to uncertain-
ties in the neutron counter efficiency and in the attenua-
tion of the ¥ and neutron flux. The uncertainties in the
measured asymmetries (typically 109%) were much smaller
than those for the absolute cross sections because of the
cancellations which occur between forward and backward

1.0 T
(Q ) nath (_y‘n)

Ey < 2 MeV
05 $

measurements.

Possible spurious asymmetries of the system and sys-
tematic errors in the data reduction procedure were inves-
tigated by measuring the known asymmetries of the
180(y,np)*O reaction'* in the gamma energy range of
20—26 MeV. For this measurement it was necessary to
lower the threshold for the neutron counter to 1.0 MeV in
terms of the effective electron energy. Our results turned
out to be in excellent agreement with those of Jury et al.'*
Therefore the occurrence of any spurious asymmetries
would appear to be negligible. This reaction also gave us
good calibrations of the time-of-flight spectra, since for
180 the (y,ny) peak is well separated from the (y,n;) peak.
The uncertainty in the time calibration of the time-of-
flight spectra was estimated to be less than +0.1 ns.
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FIG. 2. Asymmetry curves of the (y,n) reactions for "'Pb, 2°Pb, and "*Cd targets for residual excitations indicated in the figures.

The error bars in the figures reflect only the statistical uncertainties.
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III. EXPERIMENTAL RESULTS

The measured asymmetries integrated over an interval
of emitted neutron energies are shown in Fig. 2 as a func-
tion of photon energy. The neutron energy interval in
terms of the excitation energy of the residual nucleus for
the most abundant isotope is indicated in the figures. In
the case of ™'Pb the isotope 2°*Pb has a 52% abundance
and the isotopes 2°°Pb and 2°’Pb each have abundances of
about one-quarter. In the case of "™'Cd the isotope ''*Cd
is the most abundant (29%), but the other isotopes
HO,ULU2 311804 also have fairly large abundances.
Since 2%°Pb and ''*Cd do not have the lowest neutron
binding energies among the Pb and Cd isotopes, the low-
excitation-energy end of the acceptance gate was set so
that the yields from the ground states of all isotopes were
included.

The asymmetries seem to have a slight dependence on
the energy range over which the neutron spectra were in-
tegrated, but the statistical errors obscure this dependence.
The data for the enriched 2°°Pb target agree within the
statistics with those for natural lead. This fact is con-
sistent with the view that the asymmetry relates to collec-
tive modes of nuclear excitation in which finer details of
nuclear structure are unimportant.

The asymmetry for "'Pb(y,n) changes more slowly with
photon energy than that observed earlier in the 2°°Pb(n,y,)
reaction.! However, the two asymmetry curves are simi-
lar in that the asymmetry changes from a small value to a
large one near the energy where the isovector E2 giant
resonance is expected to lie. The asymmetry pattern for
"tCd is similar to that for "™'Pb, but the transition region
is about 4 MeV higher, consistent with the expected
A~'/3 dependence for the location of giant resonances in
heavy nuclei.

The cross section ratios between the 90° measurement
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FIG. 3. Ratios between the cross sections at 90° and the aver-

age of those at 55° and 125° for the "*'Pb(y,n) reaction. The resi-
dual excitations are indicated in the figures.

and the average of the 55° and 125° measurements for the
"2'Pb(y,n) reaction are shown in Fig. 3. Even though the
data do not have good statistical accuracy, these ratios
show a definite dip in their values around E, =23 MeV.
This suggests that the ratio of even to odd parity absorp-
tion is increasing at that energy. This is consistent with
ascribing the observed asymmetry to the onset of the IVQ.
The excitation functions of the cross section to the low ly-
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FIG. 4. Cross sections of the (y,n) reactions for "Pb and
"Cd targets at the angles indicated in the figures. The residual
excitations are between O and 4 MeV for the "™Pb target and be-
tween O and 3 MeV for the "™Cd target. The dotted lines in
panel (a) are the expected direct process contributions calculated
using the DSD model (see Sec. IV C).



35 FORWARD-TO-BACKWARD ASYMMETRY OF THE (y,n) . .. 483

ing residual states do not, however, show a noticeable in-
crease in the energy region where the asymmetry changes
and where we expect the IVQ to lie. (See Fig. 4.)

IV. DISCUSSION OF RESULTS

This discussion is divided into four parts. It begins
with a general treatment of the relation between the mea-
sured quantities (cross sections and asymmetries) and the
odd and even parity amplitudes upon which these quanti-
ties depend. The second part of the discussion is a semi-
classical treatment of the asymmetry in which it is as-
sumed, for simplicity, that the dependence of the asym-
metry on photon energy is much the same for all residual
states. By expressing the odd and even amplitudes in
terms of the strength functions for nuclear excitations of
different multipolarities, it becomes straightforward, us-
ing this model, to estimate the sensitivities of the observed
asymmetries and cross sections to the parameters which
characterize the relevant giant resonances. In the third
part of the discussion we go through the details of a cal-
culation of the expected results using the so-called direct-
semidirect (DSD) model for radiative capture reactions!’
along with the principle of detailed balance. The fourth
and final part of the discussion compares the DSD
analysis of the results with that of the semiclassical
description.

A. The asymmetry and the cross section
expressed in terms of amplitudes

The data from our measurements provide three in-
dependent pieces of information at each excitation energy:
(1) a measured fore-aft asymmetry for neutrons which
leave the residual nucleus in its lowest few MeV of excita-
tion, (2) some values for the ratio of the 90° yield for these
neutrons to their average yield at 55° and 125°, and (3) a
measured total cross section for this group of neutrons.
We consider emissions to a band of residual excitations
because the experimental neutron energy resolution was
insufficient to distinguish between individual final states
and because it then makes more sense to average over a
broad band of final states than to run a risk of biased
sampling over only a few final states in a narrow band.

We begin by deriving general expressions for the asym-
metry and cross section for a typical residual neutron-hole
state for which parity, spin and spin orientation are speci-
fied. Let us assume, for the moment, that this state has
even parity. Since the target is an even-even nucleus, the
intermediate state from which the neutron to this state is
emitted is a superposition of both odd-parity (due mainly
to E1 excitation) and even-parity (due to E2 excitation)
states. The amplitude for this neutron emission can there-
fore be expressed as the sum for the emissions from the
odd and even parity excitations, A exp(i¢;")
+ Aj expl(id; ). These two terms refer to a specific resi-
dual state j, a specific incident photon energy, and the
neutron-emission angle 55°, our forward angle. The corre-
sponding amplitude at 125°, our backward angle, is there-
fore 4 j+exp(i ¢ 17*)— Aj exp(i$;") since the odd parity neu-
tron wave function changes sign (but not magnitude) be-

tween 55° and 125°, whereas the even parity function does
not change at all. )
The quantities (A4;~ )? and (4 j+ ) at these angles provide
a measure of the contribution of state j to the angle-
integrated odd and even parity cross sections, respectively,
if the coefficients of P4(cosf) and higher terms in the
Legendre-function expansion of the overall angular distri-
bution are negligible. [We are using the fact that
P,(cos55°)~0.] Under this assumption the contribution
to the angle-integrated cross section is therefore
o;=(A4; ) +(4;")1. (1)
The front-to-back asymmetry a@; can be expressed in
terms of the A’s and ¢’s for the residual state j as
24,745 + 4
U= g ) @
An important feature of this expression is that a; is sym-
metric with respect to an interchange of + and —.
Thus, a; has the same value for Aj+ /A =X as for
Aj+/ 47 =X —1, It depends on the ratio of odd to even
amplitudes, but not on which is the larger. This feature
of Eq. (2) means that we are free to associate 4;% with E2
excitation and 4;” with E1 excitation in estimating o > al-
though (depending on the parity of the residual one-hole
state) the correct association may actually be reversed.
The asymmetry, oy, observed in this experiment is
that for the sum of final states,

[0;(55°)—0;(125%)]
L9 J

a = -
AT S [0;(55°) 4+0;(1259]
J

2&1[01(550)—*‘0']( 125°)]
J

= N 3
3 [0;(55°)+0,(125)] )
J

i.e,, @iy is the average a;, where each state is weighted
by the cross section to that state. As a result of the
aforementioned symmetry of Eq. (2), with respect to the
interchange of + and —, one may associate the even par-
ity emission amplitudes 4;" exp(i¢;") with the even (E2)
excitations, although, for an odd parity j, the correspond-
ing emission would actually be odd parity. Thus if the ex-
citation amplitudes happen to be independent of j, the a;
of (3) will be also, even though the emission amplitudes
will differ for j’s of opposite parity.
In terms of the A’s the observed cross section is
Ooa=71 2 [0;(55")+0,(1257]

J
>[4 +(4;7)7] . 4)
j

B. A semiclassical approach

The relations of the cross sections and asymmetries to
the underlying odd and even parity amplitudes for indi-
vidual residual states, as they have been described in Egs.
(1)—(4), are quite general. In this section we will take up a
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semiclassical approximation to these relations. The
essence of the approximation will be the assumption that
the A;exp(i¢;) are sufficiently the same for different j,
but the same parity, to allow us to substitute for them a
single “typical” amplitude, 4 ~“exp(i¢~) for the odd pari-
ty excitations and A texp(i¢™t) for the even ones. This
assumption is suggested by the well-established similarity
of giant resonances built upon different states. Thus in
what follows the measured asymmetry will be expressed in
terms of A=, AT, ¢, and ¢ according to Eq. (2) rather
than as a sum over the asymmetries for each of the final
single-hole states [Eq. (3)]. We must, however, alert the
reader at this point that the DSD calculations (subsection
C) will suggest that the asymmetries @; are actually j
dependent. Under these circumstances the energy depen-
dence of a, can differ from that of the “typical” a;, as
we shall see in more detail below.

Our object here will be to deduce from the data what
we can about the values of the A’s and ¢’s. In order to
extract a value for the amplitude ratio 4+ /A4~ (or its re-
ciprocal) from the measured asymmetry, it is seen from
Eq. (2) that one must provide an estimate for the phase
difference A¢ between the odd and even parity excitations.
For Pb such an estimate can be made with the least ambi-
guity in the excitation energy range from 27 to 30 MeV.
It is seen from Fig. 2(a) that the measured asymmetry in
this region has an average value of about 0.8, which is
fairly close to-the maximum possible value for an asym-
metry, namely unity. It follows that cosA¢ must lie be-
tween 0.8 and 1. This, in turn, implies that the amplitude
ratio 4 /A~ lies between + and 2. The high value of
cosA¢, i.e., the small difference between odd and even
parity phases, suggests that the region E,=27-30 MeV
lies above the even parity resonance since (1) this excita-
tion region is definitely above the E1 resonance in Pb, and
(2) the phase difference between two resonances tends to
be large in the energy range between the resonant energies
and small outside of it.

It is not as easy to deduce the amplitude ratios from the
asymmetry data in Pb at the lower energies of Fig. 2(a) as
it is at the higher energies, because there is then no way to
determine the value of cosA¢ directly from our experi-
ment. The reasonable requirement that cosA¢ should
change smoothly with energy does not provide enough of
a constraint to be very helpful.

In order to extract more information from the measure-
ments, it therefore becomes necessary to introduce some
preconceptions, some model-dependent assumptions
whether one uses the simple semiclassical model, the DSD
model (Sec. IV C), or any other model. In the semiclassi-
cal model, the odd and even amplitudes for the “typical”
final state will be assigned on the basis of known or as-
sumed properties of the nuclear giant resonances. The
essential elements in this picture are illustrated by the
idealized excitation curves of Fig. 5. It is assumed here
that the photoemission proceeds through three resonances,
the odd-parity E1 resonance and the even-parity E2 iso-
scalar and isovector resonances. We will write the ampli-
tudes for each resonance in Breit-Wigner (BW) form. Al-
though the actual energy dependences are undoubtedly
more complicated than the BW dependences, this form
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FIG. 5. (a) Idealized giant resonance amplitudes for photon
absorption in Pb. (b) Idealized phases for the main odd and
even parity amplitudes for the (y,n) reaction.

has the advantage of being simple while still qualitatively
reproducing the main features of the amplitudes. Its use
will allow us to make some approximate deductions of
values of the E2 isovector resonance parameters that
match our observations and, perhaps more importantly,
will allow us to examine the interplay between the various
amplitudes in a convenient and transparent way. The BW
amplitudes can be written

ap

=R, ir,2 FU ®
as .

AS:m (EZ, lsoscalar) N (6)
ay .

Ayzm (E2, ISOVeCtOr) N (7)

where Ap=E,—Ef, Ag=E,—E§, and Ay=E, —Ey,
and the energies EX locate the centers of the respective
resonances. The numerators, a, are taken to be positive
constants. For a semiclassical model, this corresponds to
the correct relative phasing among the three multipoles
for the emission of neutrons. (For proton emission, the
sign of the E2 isoscalar numerator would be reversed.) In
the DSD calculations the numerators will be complex.
The imaginary parts are generally introduced to reflect
couplings to other modes. They will be found to effect
the values of the “best fit” resonance parameters.

It is important to appreciate that although each of these
resonances is characterized by three parameters (resonance
energy, resonance strength, resonance width) the problem
of explaining the observed asymmetry as a function of
photon energy is not really a nine-parameter problem. It
is more nearly a four parameter problem. We are most in-
terested in determining the relatively unknown parameters
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ER, Ty and the ratio ay/ap which characterize the E2
isovector resonance. The fourth somewhat uncertain pa-
rameter is ag/ap, the ratio of the E2 isoscalar to the E1l
amplitude. For the latter ratio it is the mean magnitude
of two amplitudes, (5) and (6), in the energy region of in-
terest (E, =20—30 MeV) that mainly matters. This is be-
cause the resonance energies for these excitations lie far
below the region of interest.!®!” Their phases are there-
fore relatively unambiguous and their amplitudes must be
changing relatively slowly with energy.

It is reasonable to wonder whether any model restricted
to the resonance amplitudes (5)—(7) is general enough.
There are other possible amplitudes which are not includ-
ed in these expressions:

1. Direct amplitudes

It should be recalled that any direct EA amplitude
(A>1) is negligible for (y,n) reactions’ because the neu-
tron is uncharged. Any direct E1 amplitude would be
close in phase to the resonant E1 amplitude, and because
the DSD calculations show that the direct E1 amplitude
is small and changing slowly with energy, we consider
that (5) can reasonably be considered to represent the sum
of the direct and resonant E1 amplitudes.

2. Other multipole modes

In the same spirit one should probably think of the E1
isovector and E2 isoscalar amplitudes as standing in for
all odd- and even-parity excitations, respectively, which
are nonresonant in the 20—30 MeV range. There may be,
for example, a small contribution from E3 (Ref. 15) as
well as some M1 contribution. The only amplitude which
we assume to be resonant, between 20 and 30 MeV, and
therefore rapidly changing in phase and in magnitude in
that energy span, is the E2 isovector amplitude. The ob-
served drop, in this energy interval, of the ratio of the 90°
cross section to the average of those at 55° and 125° (Fig.
3) shows that it is even rather than odd parity that is
growing in, in support of this assumption.

3. Statistical emission

Any statistical decay would reduce the observed asym-
metry. Indeed, no asymmetry at all is seen in 2%Pb up to
16 MeV.!'® The contribution of statistical neutron emis-
sion was estimated using the evaporation code PACE (Ref.
17) with standard parameters. At 20 MeV the cross sec-
tion for such emission to the lowest 4 MeV of excitation is
calculated to be less than 1% of the observed cross sec-
tion. Beyond this energy it falls off with increasing E, as
exp (—E, /T), where T is the nuclear temperature (about
1 MeV in our energy range). The contribution of statisti-
cal neutron emission should therefore be negligible at all
energies of this experiment, even considering the uncer-
tainty in the evaporation calculation.

Our first application of the semi-classical model was to
see whether the amplitudes of the form in Egs. (5)—(7),
when used in Eq. (2), would give asymmetries close to
those observed when the resonance strengths were chosen
to be in accord with the energy-weighted sum rules.!® The

1.0 T T ]
nlle(‘y‘n)

Asymmetry
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0.0 ’ L
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FIG. 6. The asymmetry curve for the "Pb(y,n) fitted by the

semiclassical model (see text) together with the experimental
data. The residual excitations are between O and 4 MeV.

30

numerators in the resonant amplitudes are actually pro-
portional to the product of two factors. One factor is pro-
portional to the square root of the sum-rule strength for
photoabsorption for the particular multipole. The second
factor is the square root of the average branching ratio for
neutron emission to one of the final states of this experi-
ment. At the high energies involved, it is reasonable to
assume that this average branching ratio is much the same
for all of the multipoles in Egs. (5)—(7). This second fac-
tor was consequently ignored in estimating the asym-
metries since the asymmetries depend only upon ampli-
tude ratios.

Thus the three parameters for the odd-parity amplitude
were assigned to be in accord with the accepted values for
the giant dipole resonance.!® Corresponding values for
the E2 isoscalar resonance?® were used for one of the two
even-parity amplitudes. The parameters for the E2 iso-
vector amplitude, the remaining contributor to even pari-
ty, were chosen to be consistent with the E2 sum rule and
to make the computed asymmetry curve match the ob-
served one (Fig. 6). All of these parameters are listed in
Table 1.

It was found in this way that a rather good match to
the asymmetry curve could be obtained for values of the
E2 isovector resonance energy and strength which were
close to those expected and for a width that was a lot wid-
er than expected. Although it was gratifying to find pa-
rameters that gave a good fit to the asymmetry data, we
must not accept the implied E2 isovector parameters
without further scrutiny, as we shall see below.

A number of additional exercises were carried out to ex-
plore the sensitivity of the calculated asymmetry to the

TABLE 1. Giant resonance parameters used in the semiclas-
sical model.

E1® E2 isoscalar® E2 isovector®
Width (MeV) 4.0 3.0 16.0
Energy (MeV) 13.5 10.5 215
Strength a° (1.0) 0.08 0.53

2From Ref. 19.

YFrom Ref. 20.

‘From fit to asymmetry curve.
Numerator in Egs. (5)—(7).
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various resonance parameters. The results are shown in
Fig. 7.

It is seen that either an increase or a decrease in the E2
isovector cross section (or amplitude) reduces the predict-
ed asymmetry at the higher energies. The fact that the
asymmetry is near its maximum possible value implies, as
we have already noted, that 4+ must, for these energies,
be comparable to A4~ since the asymmetry peaks when
A*/A~=1 [Eq. (2)]. Near this maximum, the asym-
metry becomes relatively insensitive to the assumed mag-

1.0 T T
Sensitivity to IVQ amplitude

Asymmetry

Asymmetry

0.0 £ '

20 30

25
E.’ (MeV)
FIG. 7. Sensitivity of the asymmetry to the values of the four
critical resonance parameters defined in the text. The solid
curve in each figure is the fitted curve of Fig. 6. [Both curves in
panel (d) are for the same integrated strength for the IVQ reso-
nance.]

nitude of the E2 isovector cross section. The dashed and
dotted-dashed solid curves in Fig. 7(a) correspond to E2
cross sections which are four times higher and 4 times
lower than the best-fit curve.

The E2 isoscalar amplitude in the region of 20—30
MeV is rather weak since the resonance lies near 10 MeV
and is quite narrow.?° Nonetheless, because it is its ampli-
tude rather than its intensity which matters, the isoscalar
resonance plays a role. It slightly increases ¢, the posi-
tive parity phase. This tends to close the gap between ¢
and ¢~ and therefore to increase the asymmetry, as the
curve in Fig. 7(b) shows.

It is also seen from Figs. 7(b) and 7(c) that an increase
in the assumed amount of E2 isoscalar resonance can be
offset by a shift of the E2 isovector resonance to a higher
energy. In particular a factor of 2 increase in the isoscalar
amplitude from the originally assumed value can be com-
pensated for by an upward shift in the isovector resonance
energy of about an MeV.

There is a warning in the foregoing result. Any effect
which introduces an appreciable phase shift between nega-
tive and positive parity amplitudes will shift the asym-
metry curve. To provide a scale for these effects we note
that the doubling of the isoscalar amplitude in Fig. 7(b)
changes ¢ by values of only 3°—10° (between 20 and 30
MeV). There can be sources of phase shift at least as
large as this from effects which have been completely ig-
nored in the semiclassical model. These are discussed in
Sec. IV D, where the results deduced using this model are
compared with those using the DSD model.

The width of the E2 isovector resonance which was
needed to obtain the fit in Fig. 6 is enormously large com-
pared to that of the dipole isovector resonance (Table I).
Even though the E2 isovector width is certainly expected
to be larger than the E1 width since both the escape and
spreading widths increase with the energy of a giant reso-
nance, an increase as large as that in Table I is unexpect-
ed. Figure 7(d) shows that a significantly narrower as-
sumed width will not fit the data.

One might wonder whether the difficulty here stems
from having assumed a wrong energy dependence for 4 *
or A~, but it is easy to demonstrate that even large
changes in the relative sizes of the A4’s lead to only small
effects on the asymmetry curve. For example, if the even
parity cross section is held fixed and the odd parity cross
section is doubled at 20 MeV and then allowed to change
gradually until it is only half of the best-fit cross section
at 30 MeV, the asymmetries remain within 0.03 of those
in the “best-fit” curve throughout the energy range. The
effect is only slightly larger if it is the odd parity ampli-
tude that is kept fixed and the even parity cross section is
changed by the factor of 4 between 20 and 30 MeV. The
reason for this remarkable insensitivity of the asymmetry
to the cross sections is that at the higher energies where
X=A% /A~ approaches unity, the asymmetry becomes
stationary as a function of X. At lower energies where X
and the asymmetry are both small, even large percentage
changes in the asymmetry correspond to small absolute
changes. As a result, the overall shape of the curve is
hardly affected.

A comparison of Figs. 7(a) and 7(d) suggests that if one



combines a narrow IVQ width with a reduction of the
IVQ strength from the sum-rule value, the resulting asym-
metry would possibly give as good a fit to the data as that
obtained with the full sum-rule strength and the 16 MeV
width (the IVQ parameters in Fig. 6). This is indeed the
case, as the asymmetry curve for half the sum rule
strength and a width of 12 MeV is virtually indistinguish-
able from the curve in Fig. 6. It becomes difficult, how-
ever, to fit the data for widths smaller than 12 MeV.
Thus the analysis of the data using the semiclassical
model suggests that the IVQ resonance is substantially
wider than the IVD resonance. A possible reason that
this model gives so large a width is discussed in Sec. IVD
below (after we have had a chance to examine the corre-
sponding analysis using the DSD model).

We now turn briefly to the second major quantity mea-
sured in this experiment, the cross section for the (¥,n) re-
action (to the particular residual-energy interval) as a
function of photon energy. In contrast to the fore-aft
asymmetry, the cross section depends on the A4’s and not
at all on the ¢’s. Thus the fitting of the asymmetries and
of the cross section data are essentially decoupled.

The cross section calculated from the amplitudes in
Table I [see Eq. (1)] is found to decrease by a factor of 3
between 21 and 29 MeV, whereas the experimental cross
section falls by more nearly a factor of 6 in the same ener-
gy interval. This sort of discrepancy is not altogether
surprising since the branching ratios for neutron decay to
the low lying levels in Pb have not been included in the
semiclassical calculation. Although, as we have noted,
these ratios should play only a minor role in the asym-
metries, they enter directly in the estimates of the cross
sections. Since they necessarily fall off as the energy goes
up and new emission channels open, one must expect the
actual cross section to fall off faster than that of a calcu-
lation where the effect of branching was neglected.

No attempt has been made to use the semiclassical
model to fit the asymmetries or cross sections for our oth-
er target, "'Cd. The observed cross section in "'Cd falls
off at about the same rate between 21 and 29 MeV as it
does in "'Pb. The asymmetry curve in Cd is shifted to
higher photon energy by an amount consistent with an
A 173 dependence for the location of the isovector reso-
nance and it seems to level off at a somewhat lower value
for the maximum asymmetry. This should be checked by
extending the measurements for both Pb and Cd to higher
energies.

il
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C. The DSD model

The semiclassical model which we have used up to this
point to discuss the data does not include a number of
considerations which affect the magnitudes and phases of
the interfering amplitudes in the (y,n) reaction. These are
presumably included in the so-called direct-semidirect
(DSD) model,?! which, as its name implies, includes direct
amplitudes as well as the resonant (semidirect) ampli-
tudes, (5)—(7), of the semiclassical model. The DSD
model also treats individual final states one at a time. To
compare the results of DSD calculations with our data,
we must sum the calculations over the final states which
lie in the residual energy interval.

The differential cross sections for the (y,n) reaction
were obtained using detailed balance from calculations
made in the inverse direction; i.e., we calculated the ma-
trix elements for neutron capture by a target which is in
an excited single-hole state. In order to apply the DSD
model to the case of targets with spin, e.g., to targets in an
excited state, we followed the prescription of Snover?? in
assuming that the semidirect process depends only on the
final state parentage to the target ground state plus a sin-
gle nucleon. The details of this treatment can be found in
Ref. 23. Beside this assumption, it was supposed that the
optical potential which is used for the ground state calcu-
lation also describes the scattering of neutrons by the ex-
cited nucleus, and that this optical potential is indepen-
dent of the spin of the target nucleus. The bound state
neutron wave function was calculated using the same
geometrical parameters as those for the real part of the
optical potential. The depth of the real part of this poten-
tial was adjusted to reproduce the binding energy of the
neutron. The strength of the spin-orbit force in the bound
state problem was the same as in the optical potential. In
carrying out our numerical calculations, we used two sets
of global optical potentials, one due to Rosen et al.?* and
the other due to Becchetti and Greenlees.!! Our purpose
was to see the sensitivity of the calculations to optical
model prescriptions. The explicit values of the optical po-
tential parameters which we used are given in Refs. 24
and 11.

According to the DSD model, the transition amplitude
for the neutron capture reaction on spin-zero targets for
electric radiation of multipolarity L, circular polarization
p (==1), and spin projection s (with the quantization
axis in the projectile direction) can be written as

TEm=(C2 ) Y @i | |dpp(r,, 0+ 3

=0 E—ELr+ilir/2

Here, X, ,,; is the neutron scattering wave function ob-
tained from the optical model, and ®@,;;m is the single par-
ticle state wave function with quantum numbers n, I, j,
and m into which the neutron is captured.?>?® The vec-
tors r and r, denote coordinates for the neutron and pho-
ton, respectively. The spectroscopic factor for the final
state is denoted CZSIJ-. E is the total energy of the system,

(X125 - (8)

while E;r and I';r are the position and width of the gi-
ant resonance. The subscript T represents the isospin
state. For the quadrupole excitations, the isoscalar (ISQ)
resonance must be included as well as the isovector (IVQ)
resonance, since the isoscalar quadrupole resonance was
found to affect the fore-aft asymmetry.?’” The term
d,(r,,1) is the single-particle multipole operator for mul-
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tipolarity L. The factor v ,7(r,,1) is the incident neutron
target-nucleus vibration coupling interaction, i.e., the
form factor for the inelastic excitation of the collective
electric multipole state by the incident neutron. It should
be noted that, in order to obtain the correct resonance
shape for heavy nuclei in capture reactions, it is usually
necessary to introduce a complex form factor for the
particle-vibration coupling, with a relatively large imagi-
nary strength.?’

In the conventional long wavelength approximation the
quantities dj,(r,,r) and vy,r(r,,r) can be written as

dp(r,1)=3 Cpr,(k)errDjf (®,) Y1 (%) 9)
and
Vpr (T, r)= Cy k)eLhLT(r) (T )YLM( T), (10)
P Y P
with
ik 172
Crp)=p | =555 | (—ik)E~!
172
2m(2L +1)(L +1) 1 an
L (2L + 1!
and
L
_mn
ey = m Ze . (12)
n t

Here, k is the photon wave number and V is the volume
enclosed by the surface on which periodic boundary con-
ditions are imposed. The mass of the neutron and target,
and the charge of the target, are denoted by m,, m,, and
Z,, respectively. We chose the following radial forms for

hpr(r):
_3N# Pu 1 ﬂ ., 98(r)
hy(r)= A m, Ey (r2) f(r)—iW,a dr »
(13)
oy B P | Vo df(r)
hzo(r)—2Zmn Ezor - R (14)
# Py (r> dg(r)
har(r)= — 10N = 2 f( r—iw,a®

(15)

These radial forms are essentially the same as those of
Ref. 28, but we explicitly include the possibility that only
a fraction P;; of the EWSR is exhausted. Here, N, Z,

and A denote the neutron, charge, and mass numbers of
the target, respectively, and {r*) is the mean of the radial
coordinate of a nucleon raised to the A power. The func-
tions f(r) and g(r) are the Woods-Saxon form factors for
the real and imaginary parts of the optical potential,
respectively, and a is the diffuseness in the function g (7).

Since the photon energies involved in this experiment
were quite high, we were concerned that the long wave-
length approximation might not be applicable. We there-
fore made some calculations replacing the e, r* factor in
the form factors dy,(r,,r) and v;,r(r,,1) With

7 QLD 3
‘(L +1)kt 3R

where R = —mr/(m,+m,). This factor is a more accu-
rate expression for the electric multipole moment. Those
calculations showed that this modification only changed
the cross section by 7% or less around E,=30 MeV.
There were no noticeable changes in the asymmetry
curves. Nevertheless, we use the full form rather than the
long wavelength form throughout this paper.

Before applying this formalism to the present (y,n) ex-
periment, we calculated the asymmetry for the capture re-
action 2°8Pb(n,y,) in order to compare it with the available
data.® The spectroscopic factor of the 2*Pb ground state
was set equal to 1, and the (72?) and (r*) values, 30.5 fm?
and 1161 fm* for the 2°®Pb, were taken from electron
scattering data.?® For the coupling strength parameters
Vi and W, we used the values suggested by Potokar
et al.? for the IVD, namely V=75 MeV and W, =125
MeV for the Rosen potential, and V=60 MeV and
W, =120 MeV for the Becchetti-Greenlees potential. The
isoscalar coupling constant V,; was assumed to be —50
MeV. The resonance parameters used for the calculation
are given in Table II. They are essentially empirical
values,'>?° except for the parameters for the IVQ, which
we adjusted to give the best simultaneous reproduction of
the asymmetry curves for both the 2%®Pb(n,y,) and
"atph(y,n) reactions. The cross sections of the 2°®Pb(n,y,)
reaction in the energy range E,=6—15 MeV (Ref. 30) are
well reproduced by a DSD calculation, as Potokar et al.?
have already reported. The asymmetry curve measured by
Drake et al.?® is also reasonably well explained (Fig. 8),
but it is seen that at the high energy end of the calculation
the two optical potentials predict quite different results.
The rapid rise of the asymmetry clearly comes from the
interference between the IVD and the IVQ. Without the
IVQ, we can get only a slow and small increase in the
asymmetry. The inclusion of the ISQ seems to be essen-
tial to explain the absence of a negative asymmetry below
the IVQ resonance, as has been already pointed out by
Longo et al.’!

Rj.(kR)], (16)

TABLE II. Giant resonance parameters used in the DSD calculation.?

Py Py, Py

Target Ep I'p (%) Ey 'y (%) Eg s (%)
Pb 13.42 4.05 117 23.50 6.00 40 10.50 2.80 95
Cd 15.8 6.3 106 26.50 7.00 50 13.20 3.30 84

2Energies in MeV.
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FIG. 8. Comparison of the DSD model prediction for the
208Pb(n,y) reaction to the experimental data (from Ref. 8). (a)
The solid and dashed curves are predictions of the DSD model
including the ISQ, IVD, and IVQ, and using the optical poten-
tials from Refs. 24 and 11, respectively. In panel (b) the solid
and dashed curves are the DSD model prediction including only
the IVD and IVQ, and the dotted and dotted-dashed curves are
the predictions including only the ISQ and IVD. The resonance
parameters are listed in Table II.

Although the (y,n) target in the experiment was "'Pb,
the calculations were carried out for only 2*®Pb since the
isotope dependence of the (y,n) reaction at these energies
is small. Candidates for the final states of the 2°Pb(y,n)
reaction are the single-hole states, which are listed in
Table III. The spectroscopic factors for these states are
taken from Ref. 32. They are all reasonably close to max-
imum possible values. The (r2) and (r*) values for
207pp were 30.4 fm? and 1155 fm*, respectively, again ob-
tained from electron scattering data.?’ All other parame-
ters were taken to be the same as in the calculation of
298Pb(n, y).

In Fig. 4(a) we compare the calculated cross section for
only a direct (nonresonant) process (dotted line) with the
measured one for "™Pb. It is clear that the direct process
alone gives a serious underestimate of the observed cross

TABLE III. Neutron hole states in 2’Pb.2
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FIG. 9. Asymmetry curves for the "'Pb(y,n) reaction predict-
ed by the DSD model with the resonance parameters (Table II)
based on available data and the assumption Ejyq=23.5 MeV
and I'yo=6 MeV shown together with the experimental data.

Solid and dashed curves are the results with the optical poten-
tials from Refs. 24 and 11, respectively.

section. To account for the latter it is necessary to involve
a semidirect, i.e., a resonant process.

The results of the full DSD calculation summed over
several final states are shown along with the data in Figs.
9—11. For reference the asymmetry curves and the exci-
tation functions of the cross sections for each of these fi-
nal states are shown in Figs. 12(a) and 12(b). It is seen
that there is an appreciable final state dependence espe-
cially for final states which have angular momenta close
to the grazing angular momentum (~7#). The general
behavior of the calculated averaged asymmetries (weight-
ed by the cross section to each individual state) and cross
section ratios seem to reproduce the trend of the data
reasonably well. Above E, =26 MeV there are, however,
rather large discrepancies between the DSD prediction
and the data for the asymmetry; i.e., the measured asym-
metry keeps increasing, while the calculated asymmetry
begins to decrease as E, increases. The inclusion of an

T
**'Pb(7.n)

gl

E, (MeV) Spin C*sy
0.0 3pin2 2.3
0.572 2fsn 6.2
0.899 3psn 7.0
1.629 liyz, 12.0
2.334 2f1,2 7.3
3.415 lhos 6.9

From Ref. 32.
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FIG. 10. Measured and predicted cross section ratios between
90° and the average of those at 55° and 125° for the "Pb(y,n) re-
action. Solid and dashed curves are the results with parameters
referred to in Fig. 9.
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FIG. 11. Predicted cross section for the "'Pb(y,n) reaction at
55°, 90°, and 125° together with the data. Solid and dashed
curves are the results with the parameters referred to in Fig. 9.
The residual excitations are between 0 and 4 MeV.

isovector E3 giant resonance which is predicted around
E, =33 MeV with a strength of the 58% of the energy-
weighted sum rule®® does not improve this discrepancy at
all. Perhaps the easiest way to obtain better agreement
would be to introduce extra even-parity strength above
E, =26 MeV or to widen the isovector E2 resonance in
order to give larger even-parity strength on the high ener-
gy tail of the IVQ.

The energy dependence of the cross section for
208Pb(y,n) presented another problem. The parameters
(Table II) for the best overall fit to (y,n) and to (n,y,) on
208pb put the IVQ width at 6 MeV and the fraction of the
sum rule strength in the resonance at 40%. Any increase
in strength or decrease in width enlarges the bump (seen
at 55° in the calculated cross section) which appears
around the center of the IVQ resonance (Fig. 11). Since
no such bump is observed in the experimental data, these
data require an IVQ strength distribution that is more
spread out than that deduced from an analysis of inelastic
electron scattering.?’

For the "™'Cd(y,n) reaction the DSD calculation of the
asymmetry is more complicated than for Pb. The distri-
bution of single particle strength among the low-lying
states in Cd is less obvious since Cd is far from a closed
shell. According to the quasiparticle model, for an even-
even parent nucleus in its J =0 ground state, the popula-
tion of single-hole states with angular momentum j is
given by the spectroscopic factor

C%S,;=V}2j+1), (17)

where ij is the occupation number. Again, we treat only
the most abundant isotope, i.e., ''*Cd, in the model calcu-
lation. The ij values and the relative single quasiparticle
energies E; for the %Cd nucleus were obtained from Ref.
34. The absolute locations of the neutron single quasipar-
ticle states were determined by assuming that the 3s,,,
state is at E,(!13Cd)=214 keV, which is close to the
center of gravity excitation energy for j= 5 states excited
by the ''*Cd(d,t)!'*Cd reaction.’* The unknown ij value
for the 1g;,, state in '*Cd was assumed to be the same as
in '"2Cd. These values are summarized in Table IV. The
resonance parameters’>>¢ used for the calculation are
given in Table II. Since the ISQ in the !'*Cd is not well
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FIG. 12. Final state dependence (a) of the asymmetry and (b)
of the cross section at 90° for the 2®Pb(y,n;) reaction calculated
with the DSD model. Top and bottom parts correspond to the
results with the optical potentials from Refs. 24 and 11, respec-
tively, and the resonance parameters referred to in Fig. 9. Solid,
dashed, dotted, long dashed, fine dotted, and dotted-dashed
curves correspond to the 3pi,, 2fs,, 3P3s2, litzn, 2f7,2, and
1hy,, states, respectively.
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TABLE IV. Occupation number V]-2 and single quasiparticle
energy E; for ''*Cd.

State E; (keV) vi
3s 1/2 214 0.27
2dy,; 445 0.25
2ds,, 700 0.78
1g7,2 480 0.84
lh1y,2 180 0.35

known, we adopted the empirical resonance parameters
for ''®Sn.*¢ For (r2?) and (r*) values for ''3Cd we used
21.4 fm? and 577.8 fm*, respectively.?® Since the coupling
strengths ¥ and W, for ™'Cd have not been investigated
previously, we treat them the free parameters adjusted to
fit the measured absolute crosses sections while keeping
the ratio between them the same as for the "'Pb(y,n) reac-
tion. The final values for "™'Cd are then V|, =54 MeV and
W,=91 MeV for the Rosen potential, and V;=41 MeV
and W, =82 MeV for the Becchetti-Greenlees potential.
In Fig. 13 the result for the asymmetry is compared with
the experimental data integrated over the range of residual
excitation energies up to 3 MeV. This range is probably
large enough to include all fragmented quasiparticle
states. The position and the width of the IVQ were
roughly adjusted to get fair agreement with the data.
Despite the crudeness of the DSD calculations, we find,
as we did for Pb, that the calculation can qualitatively ac-
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FIG. 13. Asymmetry curves for the "™'Cd(y,n) reaction
predicted by the DSD model together with the experimental
data. The residual excitations are between O and 3 MeV. Solid
and dashed curves are the results with the optical potentials
from Refs. 24 and 11, respectively. Resonance parameters are
listed in Table II.

count for the observed Cd asymmetry curve. The
strength of the IVQ resonance required for a best fit in Cd
is again about half the sum-rule strength (see Figs. 13 and
14). The IVQ strength appears to be more widely distri-
buted than the analysis of the (e,e’) data suggests.

D. Comparison of the two models

In the earlier parts of this section we have examined
our experimental results (especially those for "™'Pb) using
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FIG. 14. Cross section for the "Cd(y,n) reaction predicted
by the DSD model together with the experimental data. The
residual excitations are between 0 and 3 MeV. (a) and (b) are the
results with the optical potentials from Refs. 24 and 11, respec-
tively. Solid, dashed, and dotted-dashed curves correspond to
85%, 50%, and 25% of the EWSR strength, respectively. The
other resonance parameters are listed in Table II. Dotted curves
are the calculated direct process contributions.
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two theoretical models to determine the values of the pa-
rameters which characterize the IVQ resonance.

1. Asymmetry curves

It was found that although the measured asymmetries
could be qualitatively reproduced with either a very
schematic semiclassical model or with the direct-
semidirect model, the sets of resonance parameters de-
duced from the two models disagreed. The semiclassical
model gave a lower energy and a much wider resonance.
Some of this disagreement can be accounted for by a close
examination of the two models.

a. The location of the IVQ resonance. The DSD model
places the IVQ resonance at 23.5 MeV, whereas the semi-
classical fit puts it at 21.5 MeV. In both models it is the
shape and location of the asymmetry curve that is used to
assign the IVQ resonance energy. We have seen that the
asymmetry depends mainly on the phase difference be-
tween interfering positive and negative parity amplitudes
rather than on the magnitudes of these amplitudes. The
DSD calculation includes three contributions to the phase
of these amplitudes which do not appear in our semiclas-
sical calculation.

(i) First, the optical potential introduces a phase into
the (y,n) matrix element through the distortions of the
outgoing neutron wave function. The phase difference
¢ —@~ due to the real part of the attractive nuclear po-
tential is negative and it increases with / (see the Appen-
dix). Since ¢ —¢ is already negative (without the opti-
cal model correction) because the E1 resonance lies below
the E2 resonance, the correction adds to the phase differ-
ence (see Fig. 5). This additional phase difference has the
effect of moving the asymmetry curve to higher energy.
The magnitude of this shift, due to real part of the poten-
tial, increases with / and can be observed in the DSD cal-
culations to states of different angular momentum (Fig.
12). The phase difference due to the imaginary part of the
potential is found to be relatively small. The mean shift
of the asymmetry curves due to the optical potential
(averaged over ) is upward in photon energy. To fit the
data would therefore require a lower rather than a higher
resonance energy in the DSD calculation than in the semi-
classical calculation. This shift is therefore in the wrong
direction to explain the discrepancy between the resonance
energy assignments in the two treatments. There must
therefore be additional differences between these treat-
ments which move the DSD asymmetry curves down in
energy.

(ii) The second effect in the DSD calculation which is
not present in the semiclassical formulation is the in-
clusion of a direct component as well as the resonant com-
ponent for the odd parity excitation. The addition of a
nonresonant component makes ¢~ less negative and in-
creases the magnitude of the phase difference ¢+ —¢~.
This is in the same direction as the preceding effect but is
much smaller.

(iii) The third phase-dependent difference between the
DSD and semiclassical treatments is that the numerator
of the resonant term is taken to be complex rather than

real in the former in order to represent coupling to other
modes. The resulting phase shift of the amplitude comes
from the surface region of the nucleus because of the
character of the form factor [Egs. (13) and (15)] and is
larger for E2 than E1 excitation because of the difference
in weightings (72 vs 7) for these excitations. The effect is
to reduce the magnitude of ¢+ —¢~. This effect results
in a downward energy shift of the calculated asymmetry
curves and is in the right direction to explain why the Ey
value deduced from the DSD calculation lies higher than
that from the Breit-Wigner semiclassical treatment. A
DSD calculation using a reduced value for the imaginary
coupling shows that the use of a complex numerator does
indeed move the asymmetry curves down by a few MeV
and that this shift is rather independent of the [ value.

It is unfortunate that the assignment of the IVQ reso-
nance energy Ex depends as sensitively as it appears to on
higher order effects in the excitation of the collective
mode. This is particularly so with regard to the effect of
the assumed imaginary part of the resonant form factor
since there is not yet available a convincing derivation of
its form or magnitude.

b. The width of the IVQ resonance. The semiclassical
treatment clearly overestimates the width of the IVQ reso-
nance because it tacitly assumes that the energy depen-
dence of the asymmetry curves is independent of /. We
have seen that due to the attractive potential for neutrons,
the DSD-calculated asymmetry curves for final single
hole states of different / are displaced from one another.
Our own DSD calculations (Fig. 12) and those of Longo
et al.>! show an appreciable difference in the computed
asymmetry curves for different final hole states. Since the
measured asymmetry is actually an average over such
asymmetry curves [Eq. (3)], it is clear that if these curves
happen to be displaced from one another in excitation en-
ergy, their sum will give rise to an asymmetry curve with
smaller slope than that of any of the individual curves.
This would then be taken to correspond to a larger E2 iso-
vector width than would match any of the individual
curves of Fig. 12.

It would be useful to confirm the strong / dependence
of the calculated curves by measuring the asymmetries to
individual final states rather than to a superposition of
states as we have had to do in this experiment. The
sharper rise that was observed in the asymmetry of the
earlier 2%®Pb(n,y) study® (compared with that of the
present data) might be accounted for by the fact that a
single final state was involved in that experiment.

In any event, one must assume at this point that the
IVQ resonance width is closer to that deduced through
the DSD calculation than it is to that from the semiclassi-
cal model.

¢. The strength of the IVQ resonance. Neither model
can be trusted for a reliable estimate of the observed
strength of the IVQ resonance. There is no way to judge
from the excitation functions how much of the cross sec-
tion is due to the IVQ and how much to other excitations.
The asymmetry curves are not much more helpful than
the cross-section curves. The observed asymmetry is only
weakly dependent on the ratio 4%¥/A4~ and there is,
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moreover, considerable uncertainty about the contribu-
tions to these amplitudes from the various excitation
modes. There is also uncertainty in the relative amounts
of direct and collective E1 amplitudes.

2. The energy dependence of the (y,n) cross section

We close this section with a comment on the calculated
and observed (¥,n) cross sections as a function of photon
energy. It has already been remarked that this cross sec-
tion in the semiclassical calculation is expected to fall off
more slowly with energy than the actual cross section
since the (energy-dependent) neutron branching ratio was
omitted in that calculation. Figures 11 and 14 show that
we have a similar discrepancy between the DSD calcula-
tion and experiment, although here the branching ratio is
presumably being taken into account.

We have already remarked about the uncertainties in
the magnitudes of 4% and A4 ~. These uncertainties are
even more serious for estimates of the cross sections than
they are for estimates of the asymmetries.

V. SUMMARY

The forward-to-backward asymmetry of the (y,n) reac-
tion to a band of low-lying states has been measured for
"2Pb and "'Cd in the photon energy range from 20 to 30
MeV. The asymmetries were found to increase from
small values (=0.2) to large ones (~0.6—0.8) for the two
targets. This asymmetry is attributed to an interference
between an isovector quadrupole collective resonance and
an odd parity background which is due mainly to the tail
of the isovector dipole resonance. Direct-semidirect cal-
culations were carried out for Pb and Cd to determine a
best set of parameters for the IVQ resonance by fitting to
the observed asymmetries and cross sections. Moderately
good fits were obtained for assumed resonances at
23.5+1.5 MeV (with width 6 MeV) for Pb, and at
26.5+1.5 MeV (width 7 MeV) for Cd. The strengths of
these resonances were however only 40% and 50% of the
respective sum rule strengths suggesting that the E2 iso-
vector strength is more broadly distributed than the as-
signed widths would indicate. It should be emphasized
that the present evaluations of the resonance width reflect
the large dependence of the asymmetry upon the / of the
residual state which the DSD calculation predicts. It
would be most useful to confirm this prediction by inves-
tigating the / dependence experimentally.

The main advantage of the present method for studying
the IVQ resonance arises from the fact that in the IVQ
resonance region the odd and even parity amplitudes hap-
pen, by chance, to be nearly equal. This near equality
makes the fore-aft asymmetry insensitive to the precise ra-
tio of the amplitude magnitudes. The asymmetry then de-
pends mainly on the phase difference between the ampli-
tudes and since one of the amplitudes is going through
resonance, this phase difference is changing rapidly. One
would think that it would therefore be fairly easy to ex-
tract the location and the width of the resonance from the
asymmetry data. Although this is to a large extent a

reasonable assessment, we have seen that in dealing with
reaction amplitudes rather than just with the intensities
one can be very sensitive to the phases of these ampli-
tudes. Unfortunately, some of the important phase fac-
tors in the present experiment are relatively uncertain.
Although they may not be directly related to the giant res-
onances, they nevertheless limit the certainty with which
the resonance parameters can be extracted from the data
despite the unambiguous and even dramatic asymmetries
that one observes.

This work was supported in part by the U.S. Depart-
ment of Energy and the National Science Foundation
(under Grant No. NSFPHYS 83-11717).

APPENDIX: THE DEPENDENCE
OF THE ASYMMETRY ON ANGULAR MOMENTUM

The DSD calculations of Longo and Saporetti,31 as well
as our own (see Fig. 12), suggest a definite dependence of
the asymmetry on the angular momentum of the residual
single-hole state. The larger this angular momentum, the
smaller the asymmetry. The main source of this depen-
dence appears to be the phase-shift difference between the
even- and odd-parity emissions arising from the attraction
between the emitted neutron and the residual nucleus.

When the DSD calculation for the (y,n) reaction is car-
ried out in terms of the inverse reaction (see Sec. IV) the
incoming neutron wave is distorted by the attractive po-
tential. The distortion introduces a phase factor exp(i§;)
into each partial wave, where §; is the asymptotic phase
shift due to the nuclear potential for the /th radial wave.
If the residual hole state in the (y,n) reaction is labeled
[ —1, then the main odd and even parity scattering states
for the neutron correspond to angular momenta / and
I+1, respectively. A phase-shift difference, A;_,
=98;,,—06;, occurs between scattering waves of neighbor-
ing I To the extent that the main contributions to the
matrix elements for the two interfering amplitudes come
from the nuclear surface region where the neutron wave
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FIG. 15. A diagram to show how one can estimate the differ-
ence in phase shifts for neutrons of consecutive / values and the
same energy, E, in a square well of radius R and depth V,. The
curves show the centrifugal potentials up to the classical turning
points when the well is present (unprimed r’s) and before it is
turned on (primed r’s).
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functions have already accumulated almost their full
asymptotic phase shift, it is seen that A;_; should give a
reasonable approximation to the phase difference between
even and odd amplitudes which arises from the nuclear
attraction.

It has been emphasized in this paper that the asym-
metries are particularly sensitive to the phase difference
between interfering odd and even amplitudes and much
less sensitive to the magnitude ratio of these amplitudes.
We have therefore carried out a very simple exercise to
obtain an approximate estimate for A;_; as a function of
angular momentum /.

The phase shift for a given partial wave due an attrac-
tive potential can be approximated by the difference be-
tween the integrals | dr /X over the classically allowed re-
gion when the potential is present and when it is absent.
For a neutron of orbital momentum / (we are ignoring the
spin), in a three-dimensional square well of radius R this
difference is easily shown to be

R

r

2 1/2
1 dl
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] R

2

R—l
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r

1

172 rl,
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where r; and r/ are the classical distances of closest ap-
proach with and without the well (Fig. 15) for the Ith par-
tial wave of the neutron.

With reasonable square-well parameters for Pb and
with a neutron energy appropriate to this experiment, we
find that A;_; is negative and that its magnitude becomes
rapidly larger as [ increases. For impact parameters
which correspond to the edge of the Pb nucleus, this
phase difference reaches about —30°. The magnitude of
the / dependence found in the DSD calculations is quali-
tatively in accord with that suggested by the square-well
exercise.
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