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At real energies E, the derivation of the Lippmann-Schwinger integral equation from the

Schrodinger equation involves various surface integrals at infinity in configuration space. Plausible

assumptions about the values of these surface integrals made originally by Gerjuoy imply that the

many-particle (n & 2) Lippmann-Schwinger equation generally has nonunique solutions. This paper
evaluates these surface integrals in the same one-dimensional three-body model (of McGuire) em-

ployed recently to demonstrate the nonuniqueness explicitly. The computed values of the surface in-

tegrals agree precisely with Gerjuoy's hypotheses. These results further confirm the conclusion that
the many-particle Lippmann-Schwinger equation has nonunique solutions in actual three-

dimensional collisions, and support the belief that the aforesaid derivation of the real energy
Lippmann-Schwinger equation is mathematically sound.

I. INTRODUCTION

Recently, ' we have established the equivalence of
several alternative interpretations of the Lippmann-
Schwinger (LS) equation. In so doing, we have deduced a
number of relations between (a) the values of certain
volume integrals involving Green's functions at complex
energies E+iE in the limit e~O, and (b) the values of
various surface integrals at infinity in configuration space,
involving the corresponding Green's functions at purely
real energies E. The values of the aforesaid volume in-
tegral limits as e~0, known in the literature as
Lippmann s identities, were derived originally by
Lippmann using operator algebra techniques. The values
of the aforesaid surface integrals at real energies were in-
ferred originally by Gerjuoy from plausible assumptions
about the behavior at infinity of real energy Green's func-
tions and relevant scattering solutions of the Schrodinger
equation; granting that these surface integrals have the
values Gerjuoy inferred, it is quite trivial to show —via
conventional mathematical operations, without operator
algebra manipulations —that at real energies the many-
particle (n &2) LS equation has nonunique solutions, as
originally deduced by Foldy and Tobocman, also via
operator algebra techniques.

Also recently, we have examined the LS equation in a
one-dimensional model first studied by McGuire, involv-
ing three equal-mass particles 1,2,3 which move on the
same straight line and interact via pairwise attractive 6-
function potentials of equal strength. In this model, the
scattering solutions to the Schrodinger equation can be
written exactly, in closed form. Thereby in paper II we
were able to demonstrate explicitly, without any approxi-
mations, that in the McGuire model the scattering solu-
tions to the Schrodinger equation do satisfy the LS equa-
tion. We additionally were able to show, however, that
the McGuire model real energy LS equation correspond-

qt= —G '(E) V;4' (1.2)

is satisfied by solutions of the inhomogeneous LS equa-
tion for f&i channels. More specifically, it is shown in
paper II that Eq. (1.2) is satisfied by the particular solu-
tion %'=%'f of

—l/Jf (E) Gf '(E) Vf4 (1.3)

which is "everywhere outgoing" except for its incident
part t/jf(E); with the incident f channel specified as above,
%f is given by Eq. (2.13) of paper II.

As we have discussed in paper I, the real energy LS
equation (1.1) is not the only possible interpretation of the
implied limit e~O in the usual operator form of the LS
equation,

ing to an incident wave P;(E) in the i channel was satis-
fied not only by scattering solutions of the Schrodinger
equation with incident part t/t;(E), but also by scattering
solutions of the Schrodinger equation with incident part
l//f (E) corresponding to an incident wave in the f&i chan-
nel. Here, and elsewhere in this paper unless otherwise
stated, we employ the notation used in papers I and II. In
particular, g;(E) is given (in the center of mass system) by
Eqs. (2.8) of paper II, and represents beams of particles 3
incident on beams of bound particle pairs 1,2. The final f
channel may have particles 1 incident on bound pairs 2,3
or may have particles 2 incident on bound pairs 3,1; for
f= 1 incident on bound 2,3 the definition of the f channel
we will employ henceforth, Pf(E) is given by Eq. (2.12) of
paper II. The results of paper II also make it manifest (in
the McGuire model, of course) that the i channel real en-

ergy "inhomogeneous" LS equation

4=/;(E) G+'(E) V;qt—
has nonunique solutions because the corresponding i
channel "homogeneous" LS equation
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V~V .
1

H; —E—ie
(1.4)

It is consistently possible to define the i channel "physi-
cal" scattering solution 4(E)=4;(E) of the Schrodinger
equation,

(H E)%—(E)=0,
corresponding to incident wave P; (E) as

0';(E)=lim+(E+ie),

(1.5)

(1.6)

where W(E+ie) solves Eq. (1.4) written in the form

V(E+ is) =P; (E) G; (E—+is) V P(E+ie) . (1.7)

It is easily seen' that Eq. (1.7) has a unique solution
4(E+ie) Mo. reover, under very reasonable assumptions
(fully detailed in paper I) concerning the uniform conver-
gence of the integrals which form the last terms on the
right-hand sides of Eqs. (1.1) and (1.7), the limit +;(E) de-
fined by Eq. (1.6) exists, satisfies Eq. (1.1), and is "every-
where outgoing" except for an incident part lt;(E). In this
sense, solutions to the LS equation (1.4) can be said to be
unique, even in multiparticle systems. However, this re-
sult in no way contradicts the previously stated result that
in multiparticle systems the real energy LS equation (1.1)
has solutions other than the solution O=%; specified by
Eq. (1.6).

The immediately preceding assertion seemingly has
been rejected by Mukherjee, who insists that solutions to
the multiparticle real energy LS equation (1.1) are unique;
in so insisting, Mukherjee has criticized as erroneous the
results of both Gerjuoy and Lippmann. Mukherjee has
especially criticized Lippmann's identities and Gerjuoy's
inferred values of the aforementioned surface integrals at
infinity in configuration space. In large part, our study
reported in paper II was undertaken to refute Mukherjee's
criticisms and concomitant predictions of uniqueness. As
we have explained, the results of paper II are completely
consistent with the nonuniqueness predictions of Ref. 4
and 5, and are correspondingly inconsistent with
Mukherjee's claims. Simultaneously, the results of paper
II certainly strongly support —though they obviously do
not prove —the correctness of Gerjuoy's postulated values
for his surface integrals at infinity, and therefore the va-
lidity of his assumptions about the behavior at infinity of
Green's functions and scattering solutions. Nevertheless,
Benoist-Gueutal, though fully aware of the results of pa-
per II, has criticized the mathematics employed in Ref. 4
as lacking in rigor, indeed as crucially based on multiple
integrals which are not well defined; accordingly,
Benoist-Gueutal questions the aforementioned surface in-
tegral values, as well as the implications thereof (e.g. ,
nonuniqueness of solutions) for the theory of the mul-
tiparticle real energy LS equation (1.1).

Although we do not believe Benoist-Gueutal's criti-
cisms are consequential, for reasons which have been
given in a response' to her paper, those criticisms now
have led us to examine Gerjuoy's surface integrals in the
McGuire three-particle model; in this model these sur-
face integrals —like the volume integrals studied in paper

II — =an be evaluated in closed analytic form, without ap-
proximation and without the need to make assumptions
about the asymptotic behavior of Green's functions and
solutions of the real energy LS equation (1.1). The new
results of this present paper completely confirm (i) the
postulated values of the aforesaid surface integrals, and
(ii) the assumptions about the behavior at infinity of
Green's functions and scattering solutions from which the
aforesaid surface integral values originally were inferred.
Concomitantly, the McGuire model results of the present
paper once again strongly support, although they cannot
prove, (a) the validity of the conclusions drawn in paper I
and Ref. 4 [e.g., about the equivalence of alternative inter-
pretations of Eq. (1.4) and the nonuniqueness of solutions
to its real energy interpretation (1.1)], and (b) the validity
of the mathematics employed in paper I and in Ref. 4, in-
cluding the validity of the assumptions (concerning, e.g. ,
the behavior of Green's functions and scattering solutions)
on which those papers depend. Our present exact
McGuire model calculations of surface integrals, per-
formed without assumptions about asymptotic behavior at
infinity but restricted to a system of three one-
dimensional particles, also supplement and reinforce the
surface integral evaluations for a system of three three-
dimensional particles carried out by one of the present au-
thors and Glockle, " who, however, had to rely on much
the same assumptions about asymptotic behavior at infini-
ty as were employed by Gerjuoy.

The organization of this paper is as follows In Se.c. II,
for the reader's convenience, we briefly recapitulate the
main McGuire model results we require from paper II; for
full details about the model and the derivations of these
results, the reader should consult paper II. In Sec. III we
derive the asymptotic form of the "incident" i channel
Green's function G +'(E) appearing in the real energy LS
equation (1.1), via the method of steepest descents applied
to the exact integral representation of G +'(E). Using
this asymptotic form, together with the exact formulas
from paper II for various solutions of Eq. (1.1), the sur-
face integrals discussed in Ref. 4 and paper I are calculat-
ed exactly in Sec. IV, and are seen to have their predicted
values.

II. McGUIRE MODEL: PREVIOUS RESULTS

Y„=(—, )' [x„——,(x„+x )],
(2.1)

where p, v, and o are any cyclic permutation of (1,2,3).
We concentrate on laboratory system collisions wherein
the incident i channel contains beams of particles 3 im-
pinging on beams of bound particle pairs 1,2. For such
collisions the incident wave is expressed most simply in
terms of X3, P3. Therefore, in order to conveniently visu-
alize the collisions in the two-dimensional center of mass

In the McGuire model three equal mass (mass m) parti-
cles 1,2,3 move along the x axis; their coordinates are
x J x 2 x 3 and they interact via equal strength attractive 6
function interactions. Convenient relative coordinates are

X„= (x —x ),1

2
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system, we introduce (x,y) =(X3,Y3 ); also ( u, U)

=(X~, &i ), (r,s)=—(X2, Y'2). The relations between the
coordinate pairs (x,y), (u, u), and (r,s) are given by Eqs.
(2.5) of paper II. In terms of these coordinates the Hamil-
tonian in the center of mass system (with which we hence-
forth shall be solely concerned) takes the form

The incident wave g; of Eq. (2.3a) satisfies

(H; —E)P; =0, (2.5a)

where E is given by Eq. (2.4b) and the "initial" i-channel
Hamiltonian H; is

(j2K=- —g5(x) —g5(u) —g5(r), (2.2)
2m Bx Bp

g2 Q2 Q2H;=— + —g5(x) .
2m Q& Qy

(2.5b)

where g &0. The three lines x =0, u =0, r =0 on which
various 5 functions in H are nonvanishing divide the
whole x,y plane into six 60' sectors, labeled I—VI in Fig. 1

(reproduced here from the correspondingly numbered fig-
ure in our former paper II). The incident wave in the i (3
incident on bound 1,2) channel is

(H E)4—=0,
whose incident part is f; and whose scattered part

(2.6)

(2.7)

For the same E the "scattering solution" +:—4; to the
Schrodinger equation

1t; =e'"~w( x),

where we take k & 0 and

(2.3a)

(2.3b)

is everywhere outgoing, can be written as

O';I ——Ae'" e

Aeikye —ax

The corresponding bound state energy of the pair 1,2 is

Eb ———fi o, /2m, (2.4a)

where a=mg/A &0; the total energy of the three parti-
cles in the center of mass system is

i ax C ks

+;Iv ——Beikye +Ce'k"e "

Vraeikyeax+ C ieks aer+D iek ue—au

~aeik&e —ax+De tVe ar+ Ceikue —au
gvl

(2.8)

E=R (k —a )/2m .

j4
x=o

y&0

x

(2.4b)

r= 0

where the subscripts I—VI denote the form of 4; in the
corresponding sectors of Fig. 1. In Eq. (2.7), A,B,C,D are
constants, given by Eqs. (2.11) of paper II; the exact
values of A,B,C,D are not required in this paper, as will
be seen.

In the f channel (wherein particles 2 and 3 are bound to
each other, but neither is bound to particle 1; recall Sec.
I), for collisions wherein beams of particle 1 impinge on
bound particle pairs 2,3, the incident wave analogous to f;
of Eq. (2.3a) is

SCO eikuw(u) Vraeikue —al u
I (2.9)

s&0

x=0

X
v&0

The scattering solution 4I solving Eq. (2.6) for this in-
cident wave is given by

qr~t ——vae ikueau+Ce'" e~+De'iae ar

Beikue au+ Ceikye —axfII

+ n vaeik"e——au+ Deik e~+ Cei+e ——a"
(2.10)

+fIv —Ae e

Beikve —au+ Ceikse arfv
Aeikve —au

fVI

FICx. 1. Diagram showing the six 60' sectors I—VI into
which the x,y plane is divided by the lines on which the 5-
function interactions need not vanish; namely, the lines on
which the original locations x~,x&,x3 of the three particles are
not all different. The arrows show the directions of positive
x, r, u and y, s, u, at these lines: x =0, r =0, u =0, respectively.
The signs of y, s, U at the opposing ends of these respective lines
are also indicated.

with A, B, C, and D the same constants as in Eqs. (2.8).
In terms of H; from Eq. (2.5b), the outgoing Green's

function in the i channel is defined by

G +'(E)=lim(H; —E ie) ', e—&0.
e~O

(2.1 1)

The explicit coordinate space representation of G ' is
given by
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ik (y —y')

G +'(x,y;x', y';E) = J dk
2~ g2 r y p

iP I~ —~
i

+ eIP ~~+~
~

a+ip x,x'&0 or &0 (2.12a)

I

1 m ik (y-y') e'
dk er x &0&x' or x'&0&x

a+ip (2.12b)

where III. ASYMPTOTIC FORM OF GREEN'S FUNCTION

(k2 2 k2)1/2—A' —
y (2.13a) A. Method of steepest descents

The contour of integration I is as shown in Fig. 2 (repro-
duced here from Fig. 3 of paper II). We assume, as in pa-
per II and as is sufficient for our purposes, that k &a,
i.e., recalling Eq. (2.4b), that the total energy in the center
of mass system is positive. Correspondingly, the phase of
p from Eq. (2.13a) is specified everywhere in the k» plane
by the directions in which the cuts are drawn and by the
understanding that near ky =0

arg[(k —a )'i —k»]=arg[k»+(k —a )'i ]—:0 .

(2.13b)

I

1 m k (y y')e
dk er a+ip

(3.1)

Equation (3.1) holds for arbitrary y,y', for the present,
however, suppose y &y'. We introduce the new quantities
a =x ' —x, b =y —y', a & 0, and b & 0, and recalling Eq.
(2.13c) define the new integration variable u =k» /K
[which, of course, is wholly unrelated to u in Eq. (2.2)].
Then Eq. (3.1) becomes

We proceed to derive the asymptotic behavior of G +'.
Consider first the case x & 0 &x', where, from Eq. (2.12b),

G +'(E)=G +'(x,y;x', y', E)

In what follows we frequently find it convenient to write

iKf (u)
G + (E)=— du2' R —" a+iK(1 —u )'

where

(3.2a)

K=(k —a )', K&0. (2.13c)
f(u)=bu+a(1 —u )' (3.2b)

We are not able to perform the integrals over ky in Eqs.
(2.12). However, from (2.12) we are able to deduce the
asymptotic behavior of G +' on the circle at infinity in
r'=(x', y') space for fixed x,y; this asymptotic behavior
is all we require in order to evaluate the surface integrals
at infinity discussed in Sec. I.

The integration contour, shown in Fig. 3, now runs along
the real u axis, except near the branch points now at
u =+1 and near the poles now at +k/I(. The phases of
1 —u and 1+u are determined by Eq. (2.13) and the
directions of the branch cuts. In what follows, it fre-
quently will be more convenient to work with u —1 rather
than 1 —u; we will specify that u —1=e ' (1—u). Thus,
on the real u axis, when u & 1,

r r

k
y P IPne

arg(1 —u) =rr, arg(1+u) =0,
arg(u —l)=0, arg(1 —u )'i =rr/2;

when —1&u &1,

(3.3a)

A

P~
~oi

r r u plane

-k/K

4/K
1

bl

FIG. 2. The contour of integration I for the integrals of Eq.
(2.12). The termini Qi and gq of the branch cuts are at
k~=+(k —a )' . The poles PI and P2 lie at k =+k. The
figure is drawn on the assumption that k )a; by definition,
k) 0.

FICx. 3. The contour of integration for the integral of Eqs.
(3.2).
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arg(1 —u) =arg(1+u) =0,
arg(u —1)= —m, arg(1 —u )'/ =0;

when u & —1,

arg(1 —u) =0, arg(1+u) =sr,
arg(u —1)= ~,—arg(1 —u )

'/ =~/2 .

(3.3b)

(3.3c)

As r'=(x', y') approaches infinity within the fourth
quadrant of the x',y' plane for fixed x,y the quantities
a, b each become infinite in magnitude and retain positive
sign. Therefore the integrand in Eq. (3.2a) is in a suitable
form for evaluating the asymptotic behavior of G '(E)
by the method of steepest descents. ' The saddle points of
f(u) are at f'(u) =0, i.e., at the roots of

au
2 j //'2(1—u )

Eq. (3.4a) is solved by

bu=+
(a 2+ b 2) 1/2

(3.4a)

(3.4b)

From Eq. (3.3b), however, we see that whenever
—1 & u & 1, (1—u )'/ is real and positive. Consequently,
the only saddle point of f(u) in the u plane of Fig. 3 is
u, =b(a +b ) '/; the root u = b(a +b )—'/ of
(3.4a) lies on Riemann sheets beneath the u plane of Fig.
3.

In the method of steepest descents, one determines the
contours through u, along which exp[iKf(u)] in Eq.
(3.2a) has constant phase along any such contour

~
exp[iKf(u)]

~

necessarily varies monotonically in each
direction away from u„since there is only one saddle
point. The desired "steepest descents" contour is the one
along which

~

exp[ iKf ( u ) ] ~

decreases in each direction
away from the saddle point; for f(u) of form (3.2b), the
decrease obviously will be exponential. For the method of
steepest descents to be applicable to Eq. (3.2a), it is neces-
sary that the contour of Fig. 3 be deformable to the
steepest descents contour without crossing branch cuts
and without traversing regions at infinity in the u plane
where the integrand diverges. As we shall see, the method
of steepest descents indeed is applicable to Eq. (3.2a), but
the necessary contour deformation can cross a pole in the
u plane, whose residue then must be taken into account.

The phase of exp[iKf (u)] remains constant along any
contour through u =u, for which

(3.6b), (u —u, ) must be negative imaginary near u =u, .
In other words, we have determined that the desired
steepest descents contour makes an angle of 45 with the
real axis at u =u„ in a direction such that on this contour
near u =u,

arg(u —u, ) = —m. /4, Reu & u, ,

arg(u —u, ) = 3m. /4, Reu & u, .
(3.6c)

At infinity in the u plane, as we have defined the rela-
tive phases of u —1 and 1 —u,

f(u) =bu+ia(u —1)'/ (3.7)

Thus at infinity in the u plane we have the following,
from Eq. (3.7): For the first and fourth quadrants,

f(u)=(b+ia)u =i(a ib)u =ip—Re 're'

for the second and third quadrants,

f(u) =(b —ia)u = —i(a +ib)u = ipRe're'e-,

where we have written (remembering a & 0, b & 0)

a+1b=pe+ r, p. =(a2+b2)1/2

y=tan '(b/a), 0&y &vr/2 .

(3.8a)

(3.8b)

(3.8c)

Let u =Re' . Then, by analytic continuation of the
phases for u —1 and u+1 in Eqs. (3.3), taking into ac-
count the directions of the cuts in Fig. 3, we see that, at
large R, for the first quadrant, where 0&8&m./2,

arg(u —1)=arg(u + 1)=8,
(u —1)' =Re' =u;

for the second quadrant where m/2 & 0 & m,

arg(u —1)= 2vr+8, —arg(u + 1)=8,
(u —1)'/ = —Re' = —u;

for the third quadrant where n. & 8 & 3m/2,

arg(u —1)= 2n. +8, a—rg(u + 1)=8,
(u —1)'/ = —Re' = —u;

for the fourth quadrant where 3n/2 & 8 &.2n. ,

arg(u —1)=arg(u + 1)= —2m+8,

(u —1)'/ =Re' =u .

Ref(u)=Ref(u, )=(a +b )'/—:f(u, ) .

In the neighborhood of u =u„
f( u) =f(u, )+ —,

'
(u —u, ) f"(u, )+

(3.5)

(3.6a)

Equation (3.8a) implies that if the steepest descents con-
tour approaches infinity in either the first or fourth
quadrant, then the phase angle 0 on the contour must
asymptotically approach values obeying either

f"(u, )=—
( 1 2)3/2

(a 2+ b 2)3/2

a
(3.6b)

In the vicinity of u =u„ therefore, to keep Ref (u) con-
sistent with Eq. (3.5), the second term in Eq. (3.6a) must
be pure imaginary; to ensure that

~ exp[iKf(u)]
~

de-
creases in each direction away from u =u„ the sign of
this now purely imaginary second term must be positive.
Hence, since f"(u, ) is real and negative according to Eq.

0—y =0 or 0—y =2~ . (3.9a)

Only when the relations (3.9a) hold as R ~ oo can Ref (u)
have the finite value prescribed by Eq. (3.5), while simul-
taneously keeping Imf(u) &0, as is necessary for

~
exp[iKf (u)]

~

to approach zero as u ~ oo along the con-
tour. Neither of the relations (3.9a) can be satisfied in the
fourth quadrant, but 0—y =0 can be satisfied in the first
quadrant. Similarly, Eq. (3.8b) requires that the phase an-
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gle 0 on the contour must asymptotically approach

0+y=m or 0+@=—m; (3.9b)

Eq. (3.9b) cannot be satisfied in the third quadrant, but
8+y=a. can be satisfied in the second quadrant. There-
fore the steepest descents contour u —=Re' starting at
u =u, as prescribed by Eq. (3.6c) reaches infinity
(R~co ) along the line O=y in the first quadrant, and
along the line 0=~—y in the second quadrant. In fact,
because Ref(u, ) from Eq. (3.5) is & 0, one sees that at
infinity the steepest descents contour approaches 9=)
from below in the first quadrant (i.e., 8&y) and ap-
proaches 0=m- —y from above in the second quadrant
(i.e., 8&ny)..—

Using Eq. (3.3c), it is obvious that for real u & —1,
Ref(u) from Eq. (3.2b) cannot equal the positive f(u, )

from Eq. (3.5); in other words, the steepest descents con-
tour cannot cross the real u axis to the left of the cut at
u = —l. Using Eq. (3.3a), it is equally obvious that, for
real u & 1, Eq. (3.5) is satisfied only at

1/2

u=uc — 1+ a (3.10)
b2

uc=(1+a /b )'/ &k/K=(1 —a /k ) '/ (3.11a)

i.e., [recalling Eq. (3.8c) and the definitions of a, b], when
(but only when)

b y —y' k
tany = —=

a x' —x a2

1/2

(3.11b)

3 can be deformed to the steepest descents contour of Fig.
4 without crossing branch cuts and without traversing re-
gions at infinity where the integrand of Eq. (3.2a)
diverges. The sole remaining question is whether this de-
formation crosses the pole at u =k/I(, in which event the
residue at that pole will have to be included in the steepest
descents estimate of the integral (3.2a); because the
steepest descents contour never crosses into the third
quadrant, the contour deformation from Fig. 3 to Fig. 4
cannot cross the pole at u = —k/K.

Since the contour of Fig. 3 runs below the pole at
u =k/K, the deformation to C will not cross the u =k/K
pole if the deformed contour C also runs below u =k/K.
Consequently, the deformation crosses the pole at
u =k/K when (but only when)

It also is easy to see that on the real axis in the interval
—1 & u & 1 the here purely real f(u) from Eq. (3.2b) satis-
fies Eq. (3.5) at u =u, only. Thus in going from u =u, to
its first quadrant O=y asymptote at infinity, the steepest
descents contour first moves into the fourth quadrant [re-
call Eq. (3.6c)] and then crosses the real u axis into the
first quadrant at u =u|- to the right of the cut at u =1.
In going from u =u, to its second quadrant 0=~—y
asymptote at infinity, the steepest descents contour never
crosses into the third quadrant.

From the preceding two paragraphs, the steepest de-
scents contour C through u =u,—a contour which is
completely specified by Eqs. (3.5) and (3.6c)—must have
the form sketched in Fig. 4. Equation (3.8a) shows that

~

exp[iKf (u)]
~

vanishes exponentially at infinity for all 8
in the first quadrant; Eq. (3.8b) shows that

~
exp[iKf (u))

~

vanishes exponentially at infinity for all 8
in the second quadrant. Consequently, the contour of Fig.

u pl a ne

As will be seen, we will require the asymptotic behavior of
G +'(x,y;x', y', E) as r':—(x',y') approaches infinity for
fixed x,y. Since a &O, b &0 by definition, Eq. (3.11b) is
pertinent only to the behavior of G +' as r'~oo in the
fourth quadrant of the x',y' plane. In this quadrant,
however, Eq. (3.lib) evidently is always satisfied for
r'~ op along directions parallel or nearly parallel to the y'
axis, no matter how large k/a is. For such directions
y~~/2 and the contour C of Fig. 4 begins and ends on
asymptotes which are almost parallel to the imaginary u
axis. Figure 4 happens to be drawn for a smaller y (i.e.,
for r'~m in the fourth x',y' quadrant along a direction
more inclined toward the x' axis) which does not satisfy
the inequality (3.11b).

When the deformation from Fig. 3 to C of Fig. 4
crosses the pole at u =k/K, it does so in a direction such
that the residue contribution must be added to the steepest
descents contribution in order to obtain the correct esti-
mate of G ' from Eq. (3.2a). Let us first calculate the
residue contribution (when applicable). We note that at
u =up ——k/E,

(1 2)1/2 .(k2/K2 1)1/2
P E (3.12a)

—k/K

4/Kr "c = 'vi
I + a 2/ b2

using Eq. (2.13c) and the specification (3.3a) for the phase
of (1 —u )' when u & 1. Also, still for u & 1,

1 a iK(1 —u )'—
a+iK(1 —u )' a +K (1—u )

—K(u —1)'/ —a
X

FICs. 4. Sketch of steepest descents contour C for the case
that the deformation from Fig. 3 to C does not cross the pole at
u =k/K.

1
X (u+k/K)(u —k/K)

Hence the residue contribution to (3.2a) is
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98=2 i
mK kb ,——2a 1

2M K2 2k/K

lmCK -aa ikbe e
-k

(3.12b)

tribution from the neighborhood of u =u, ), with f(ii)
there replaced by its quadratic approximation (3.6a).
From Eq. (3.6c), the steepest descents integration contour
near u =u, is along u —u, =coe ', where the real vari-
able co now can be thought to run from —oo to oo. At
u =u, & 1, where the specification (3.3b) pertains,

The steepest descents estimate of the integral (3.2a) is
obtained on the assumption that for large g, b in (3.2b) the
integral over the entire steepest descents contour can be
replaced by its predominant contribution (namely the con-

a+iK(1 —u )'/ =a+
( 2+ b 2)1/2

Consequently, the steepest descents estimate of (3.2a) is

—I~/4 —Kco2((g 2+ b 2)3/2//2~ 2)deme e

1 iK(a 2+ b 2)1/2
e

[jK+a(g 2+ b 2)1/2/'g) (g 2+ b 2)1/4

K m 1 iK(Q 2+ b 2)1/2el 0
2m fg a+kg/(g +b )' ' f

1/2
m X;/4

2m
(3.13)

G +'(x,y;x', y', E)=G +'(x',y', x,y;E) . (3.14b)

Thus 6 '(x,y;x', y', E) can also be interpreted as the
solution to the primed version of Eq. (2.5a) generated by a
unit point source at x,y. On this basis it is intuitively ob-
vious that the asymptotic results (3.12b) and (3.13)—for
x',y' in the fourth quadrant when x,y is in the second or
third quadrant [remember that Eq. (3.1) holds for
x & 0 &x']—in essence must yield the asymptotic behavior
of 6 +'(x,y;x', y', E) when x',y' approaches infinity in
the first quadrant. In other words, although the above
derivations of (3.12b) and (3.13) apparently have made
very strong use of the inequality b &0, in essence Eqs.
(3.12b) and (3.13) should hold at infinity in the first x',y'
quadrant, where b =y —y' &0 for any given fixed y. This
assertion can be verified directly from Eq. (3.2a), carrying
through the appropriately modified (for b &0 instead of
b & 0) version of the steepest descents calculation we have
described. The verification can be performed more easily,
however, as follows.

Suppose y —y'&0 in Eq. (3.1). Then we now define
y' —y =b & 0, in which event Eq. (3.1) will again yield Eq.
(3.2a), except that now Eq. (3.2b) is replaced by

f(u)= bu+g(1 —u )'/— (3.15)

Next, let —u be the new variable of integration in Eq.
(3.2a), i.e., in Eq. (3.2a) integrate over —u rather than u.
Then from Eqs. (3.3), together with the u ~—u reflection
symmetry of the cuts and integration contour in Fig. 3, it
is obvious that this u ~—u variable of integration
transformation once again yields Eq. (3.2a), with f(u)
now once again given by Eq. (3.2b), not Eq. (3.15); more-
over, b in Eq. (3.2b) still is &0, although now b =y' —y,

The Green's function 6 ' of Eq. (2.11) satisfies

(H; E)6 +'(—x,y;x', y', E)=1=5(x—x')5(y —y') .

(3.14a)

Thus G +'(x,y;x', y', E) at points x,y can be interpreted
as the solution to Eq. (2.5a) generated by a unit point
source at x',y'. However, it is known that '

not y —y'. Therefore Eqs. (3.12b) and (3.13) once again
yield the asymptotic behavior of 6 +'(x,y;x', y', E), but
now in the first x',y' quadrant consistent with
b =y' —y & 0. More simply put, we now have shown that,
when x &0&x', Eqs. (3.12b) and (3.13) yield the asymp-
totic behavior of G +'(x,y;x', y', E) in the first quadrant
(y' —y & 0) and in the fourth quadrant (y —y' & 0), pro-
vided we redefine b in those equations as b =

~
y —y'

~

.

B. Interpretation of steepest descents results

Equation (3.13) have a simple and useful interpretation.
Were it not for the g5(x) interaction in Eq. (2.5b),
6 +'(x,y;x', y', E) satisfying Eq. (3.14a) would be identi-
cal with the two-dimensional free space Green's function
Go+ '(x,y;x', y', E) satisfying

(Ho E)Go+'(x—,y;x', y', E)=5(x —x')5(y —y'),
f2 Q2 Q2

2m Qx ~ Qy2
+

Gp+ ' is easily found. ' Specifically,

Hp ———

(3.16a)

(3.16b)

Go+'(x,y;x', y';E) = Ho '(Kp), —
X' 4

(3.17a)

where

p[(xx)2+(yy/i)2]1 /2(g2 +b2)1 /2 (3.17b)

in (3.13), and where E=R K /2m, consistent with Eq.
(2.4b) and our previous definition of K = (k —a )

'/ .
From the known' asymptotic behavior of the Hankel
function Hp", Gp+' at large p is given by

Go+'(x,y;x', y', E):Go+'(p;E) =
2

— e '
1/2fi 2nK.p'"
(3.18)

Our result (3.13) for G ' is not identical with 60 ' of
Eq. (3.18) because waves leaving the source at x,y (x &0)
cannot reach x',y' (x'&0) without encountering the 5-
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Ka Kb

( 2+b2)1/2 '
( 2+b2)1/2 (3.19)

With H;, as with Ho, these K~ and K„components of K
propagate independently and freely at points not on the
line x'=0. At Q in Fig. 5(a), where SP intersects the y'

P( x', y')

function interaction at x'=0 in the x',y' plane, an in-
teraction which is not encountered during free space prop-
agation. Consider that portion of the wave leaving the
source S at (x,y) and traveling along the ray SP shown in
Fig. 5(a), drawn from S to the receiving point P at (x',y').
In Fig. 5(a) we have chosen to place the source in the
third quadrant and the receiver in the first quadrant, so
that we have the circumstances a =x' —x ~ 0 and
b =y' —y &0 discussed following Eq. (3.15); these values
of a, b also are shown in Fig. 5(a). The wave vector K
along the direction SP has the following components:

(K„,Ky) =(K cosy, K siny)

axis, the K» propagation is unaffected because the 5-
function interaction in H; is independent of y, but the K„
propagation along the positive x direction is both reflect-
ed and transmitted. The reflection and transmission coef-
ficients are obtained from Eq. (3.7) of paper II, which
gives the solution of

A K„—g5(x') — / =0,
2m 2m

(3.20a)

for a plane wave of wave number K„and unit amplitude
approaching x'=0 from x'= —oo. This solution is

I

P(x', K„)=e —iK„x'
e ", x'&0

a+iK„

P(x', K„)= iK„
a+iK

iK x'e, x'~0.
(3.20b)

Thus the transmission and reflection coefficients are,
respectively,

iK
T.=

cz+iK
(3.21)

S
( x.y )

li p{x', y'$

5( x, y )

X

S'(-x, y )

a+iK„
Moreover, because the values of K,K„ in the transmitted
wave are identical with K,Kz in the incident wave, the
transmitted wave is not refracted, i.e., SQP is a straight
line, as shown in Fig. 5(a).

We conclude that the amplitude at x',y' for the cir-
cumstances of Fig. 5(a) should be the right-hand side of
Eq. (3.18) multiplied by T„ from Eq. (3.21). Recalling the
definitions (3.17b) and (3.19), it is immediately verified
that the just-stated simple prescription yields precisely the
result (3.13) obtained from the steepest descents evalua-
tion of (3.2a). Of course, our simple prescription has not
accounted for the residue contribution (3.12b), nor could it
be expected to, because the exponentially decreasing factor
e b = exp[a(x —x ') ] in (3.12b) corresponds to propaga-
tion along the x direction with an imaginary K„; for
imaginary wave numbers, the foregoing ray-geometric
visualization of the wave propagation (to x',y' from a
point source at x,y when there is a 5-function interaction
along the y' axis) is totally unsuitable.

Nevertheless, the result (3.12b) also has a simple and
useful interpretation. The integral representation (2. 12)
for G +' satisfying Eq. (2.11) was derived from the expan-
sion [Eq. (3.11) of paper II]

FIG. 5. Diagrams showing the propagation of waves leaving
the source at (x,y) and reaching (x',y'). In (a) x &0&x', and
only the transmitted ray SQP reaches (x',y'). In (b), x'&x &0,
and P is reached by a direct ray SP and a reflected ray SQP. In
each case, we have put the source in the third
quadrant, and have taken y' &y. In (a) the quantities b =y' —y
and a =x' —x are shown. In (b) the quantity b =y' —y is
shown, but a's relevant value depends on whether we are consid-
ering the direct ray SP or the reflected ray seemingly reaching P
from the reflected source S', we have shown the relevant value
of a for the reflected ray only, namely a =a'=

~

x'+x
~

. The
reflection point Q lies on the y' axis, where and only where the
interaction g5(x') is nonvanishing.

(H; —&) '= QX, (y)X,*(y') G( ; xxA, E, ), —(3.22a)

where X=E+ie, e&0; G~(x;x';cr) is the Green's func-
tion satisfying

z
—g5(x) —o G~(x;x', A, ) =5(x —x'),

2m

and X, (y) are the complete orthonormal set of eigenfunc-
tions of the operator —(fi /2m)(B /By~), i.e., X,(y) are
the plane waves (2') ' exp(ikey ) having energy E,
=A kz/2m. However, an equally valid expansion, though
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where the P, (x), having eigenvalue E„are the complete
orthonormal set of eigenfunctions satisfying Eq. (3.20a),
and G»(y;y';k) is the Green's function satisfying

g2 Q2
G»(y;y', A, ) =5(y —y') .

2m Qy
(3.23a)

It is trivial to see [compare the derivation of Eq. (3.10) of
paper II] that

G (y y'A, )= e'"~»
7 (3.23b)

where x'=(2m/R )' v A, , 0&arglr&m. For E, &0, the
eigenfunctions P, (x) in Eq. (3.22b) are precisely the func-
tions P(x;K„) given by Eq. (3.20b) and having energy
E, =R K„/2m Th. ese P, (x) for positive E, are not com-
plete, however; the bound state eigenfunction m(x) of Eq.
(2.3b) must be included in the expansion (3.22b). This
bound state contribution to Eq. (3.22b) is

y —yimo' ~[~„~+~~
~

&ee (3.24a)

where, recalling Eq. (2.4a), we now have

1/2 ' 1/2
m g~a~

2m

1/2 ' 1/2
m g~a~E+ +i@

p2 2m
(3.24b)

Evidently from Eq. (2.4b), in the limit e~0, Ir~k.
Thus for the cases we have examined thus far, namely
x & 0 &x' and y —y' either ~ 0 or & 0, the bound state
contribution (3.24a) is precisely identical to the residue
contribution (3.12b), remembering that a=x' —x. It is
true that our derivation implies that the residue contribu-
tion is present only when Eq. (3.11a) is satisfied, whereas
the bound state contribution (3.24a) obtained from (3.22b)
is valid for all x,y and x',y'. This difference between the
results (3.12b) and (3.24a) is illusory, however. For fixed
source point x,y in the second or third quadrant, both
(3.12b) and (3.24a) become exponentially small as x'~ oo

in the first or fourth quadrants. In other words, as
r' = (x ') approaches infinity in the first or fourth qua-
drants, the bound state contribution (3.24a)—like the resi-
due contribution (3.12b)—is negligibly small unless the
approach to infinity is along directions differing infini-
tesimally from parallelism with the y' axis. Since these
directions lie within the domain satisfying (3.1la) [com-
pare (3.11b)], in the asymptotic regime at infinity the ef-
fective asymptotic domains of (3.12b) and (3.24a)—i.e.,
the x',y' domains at infinity where (3.12b) or (3.24a) must
be added to (3.13) to get the correct asymptotic behavior
of G +'(x,y;x', y', E) are identical. Mor—eover, the previ-
ously interpreted (3.13)—together with this now-
demonstrated complete identity between (3.24a) [from

slightly less convenient for the purpose of arriving at Eq.
(2.12), is

(H; —k) '= gP, (x)P,*(x')G»(y;y', A, E—, ), (3.22b)

(3.22b)] and (3.12b) as r becomes infinite along directions
in the first or fourth quadrants of the x',y' plane —shows
that the asymptotic limit of G '(x,y;x', y', E) does not
contain terms proportional to e ~" ~ or e ~"

~ even
when r'~ ~ along directions parallel to the fourth
quadrant u'=0, U'&0 line in the primed (x',y' plane)
analogue of Fig. l. In other words, recalling Eqs. (2.3b)
and (2.9), in the first and fourth r'=(x', y') quadrants
where (3.12b) and (3.13) are pertinent, the asymptotic lim-
it of G +'(x,y;x', y', E) from Eq. (3.2a) (valid for
x &0&x' and arbitrary y,y') has a negligibly small pro-
jection on bound states of the rearrangement f channel.
This result illustrates (and thereby confirms) the
assumption- originally made in Ref. 4 and importantly
employed in paper I—that an incident channel i Green's
function "does not propagate" in rearrangement f chan-
nels.

C. Asymptotic behavior for x &0, x'&0

( ~2+F2)1/2 ' (a~2+g2)1/2

a'=
~

x'+x ~, b=y' —y, (3.25)

instead of the previous (3.19).
Therefore, for x &0, x'&0, the asymptotic behavior of

G +'(x,y;x', y';E) as x',y'~ao in the second quadrant
should be

iKptm;„/4 e

fz V'2m K ~p

iKp
e

a+iK
~

x'+x
~ /p„~p,

p„=[(x '+x ) + (y' —y ) ]'/
(3.268)

(3.26b)

plus —when x',y'~ao along directions differing infini-

To this point, we have obtained the asymptotic
behavior of G + '(x,y;x', y', E) for x & 0 & x' only. How-
ever, our above-described interpretations of Eqs. (3.12b)
and (3.13) make it apparent that the asymptotic behavior
of G +' in other x,x' domains now can be written down
without having to resort to the somewhat complicated,
time-consuming steepest descents analysis used to derive
Eqs. (3.12b) and (3.13). In particular, consider the case
that x and x' are both &0. Suppose for the moment that
the source S at (x,y) lies in the third quadrant and the re-
ceiving point P lies in the second quadrant, as shown in
Fig. 5(b). Now two rays reach P from S: a direct ray SP
and a ray SQP which arrives at P via a mirrorlike (angle
of reflection equals angle of incidence) reflection at Q.
The direct ray contribution in the asymptotic (x',y'~ oo )
limit is precisely our previously obtained Eq. (3.18). The
reflected ray appears to be reaching P from the image
source S' at ( —x,y), but its amplitude is reduced by the
reflection coefficient at Q of the incident ray SQ. This
reflection coefficient still is R„of Eq. (3.21); however,
K„,K» in the ray SQ initially incident on the mirror are
now given by [refer to Fig. 5(b)]:

(K„,K» ) = (K cosy', K siny')
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tesimally from directions parallel to the y' axis—the
bound state contribution (3.24a) with K =k; in (3.26a) p is
defined by Eq. (3 17b).

It is evident from Fig. 5(b) and our previous interpreta-
tion of Eqs. (3.12b) and (3.13) that the above result (3.26a)
[supplemented near the y' axis by (3.24a)] also holds when
x &O, x'&0 and x',y'~~ in the third quadrant. It is
similarly evident that —in addition to the always appli-
cable bound state contribution (3.24a) near the y' axis-
the asymptotic behavior as x ',y'~ op of
G +'(x,y;x', y', E) when x &0, x'&0 must be identical in
every respect with the result (3.26a), while the asymptotic
behavior when x' & 0 & x must be identical with the result
(3.13). As it happens, we do not require the results for
x ~ 0 in the calculations described in later sections of this
paper. We do not use the result (3.26a), however. There-
fore, to obviate any possible doubt about the validity of
our almost trivial ray-geometric prescription which yield-
ed (3.26a), we shall verify (3.26a) b~ carrying through the
steepest descents estimate of G;+'(x,y;x', y', E) when
x &O, x' &0.

Our starting point, replacing our previously employed
(3.1), now is Eq. (2.12a). We first observe that the first
term on the right-hand side of Eq. (2.12a) [the term
without the factor a(a+ip) '] can be integrated exactly,
without need for a steepest descents estimate. The free
space Green's function Go+' of Eq. (3.16a) is defined by

Go+ '(x,y;x', y', E)= 1im Go(x,y;x', y', E+i e ),
p~O

(3.27)

where e & 0 and where the Green's function Go(E +i e) on
the right-hand side of Eq. (3.27) satisfies Eq. (3.16a) with
E+ie replacing E. With this understanding, and recog-

ik„x ik„y
nizing that the eigenfunctions e " e " of Ho in Eq.
(3.16b) form a complete set, we infer from Eq. (3.16a) that

where, much as in Eq. (3.23b), I~ now equals
(2m /A )' (E+ie)', 0& argo. &a.

The integrals in Eq. (3.28) run along the real k„and
real k» axes. As a function of k„, the poles of the in-

tegrand lie at k„=+(z —k» )'~, where the phase of this
square root still must be specified as a function of ky. In
the k» plane, (ir —k»)'~ has branch points at +v; since

k» in Eq. (3.28) runs over all real k», the branch cuts
through ky

——+~ must not intersect the real ky axis. Re-
call that for simplicity we have limited ourselves to
k &a, i.e., E&0. Then, ~ lies in the first quadrant for
any e&0, and —~ lies in the third quadrant; correspond-
ingly, cuts in the ky plane running up from v and down
from —~ will not cross the real k axis. With the cuts so
drawn, the phase of (~ —k»)' is specified for all k» by
the prescription, much as in Eq. (2.13b), that near k» =0
and for e infinitesimal (i.e., for argtc infinitesimally
& 0),

arg(v —k») =arg(k»+v) -=0 . (3.29a)

Go(x,y;x', y';E+i e)
ik (y —y') ik (x —x')

(2m. )2 fi2 —~ —~ k„+k» —I~

(3.28)

Indeed, by the reasoning given in Eqs. (3.13b)—(3.16c) of
paper II, it now can be seen that

0 & arg(i~ —k» )
'

& vr/2 (3.29b)

for all purely real k». Therefore it now is evident that for
x —x'&0 (&0) the integral over k„ in Eq. (3.28) can be
performed by closing the contour in the upper (lower) half
k„plane, and then com~uting the residue at k„
=(a —k»)'» [k„=—(x. —k»)'~ ]. We find that, for ei-
ther sign of x —x', Eq. (3.28) reduces to
Go(x,y;x', y', E+i e )

ia 1

K (1—u,')'" (3.32)

where J is given by Eq. (3.13) and u, =b(a +b )
'~ as

before. Substituting in Eq. (3.32), it is seen that J' of Eq.
(3.32) is identical to the second p„exp(iKp„) term in Eq.
(3.26a). Similarly, the residue contribution to (3.31), using
(3.12a), is

J dk —e ' e'»'" " ', (3.30)
2n fg

—~ p

where p=(ir —k»)' . As e~O, ~~(k —a )' by Eq.
(2.4b); the cuts at +x coincide with the points Qi, Qq of
Fig. 2, and the integral along the real ky axis must be de-
formed around Qi, Q2 as on the contour I of Fig. 2.
There are no poles at ky=+k in the integrand of Eq.
(3.30), but, of course, there is no reason why the contour
for the integral (3.30) cannot follow I at k» =+k as well
as at k»=+(k —a )' . In other words, the integration
contour over all real k» in Eq. (3.30) deforms to I of Fig.
2 as e~O. Simultaneously, for every ky on I, p in Eq.
(3.30) approaches p of Eq. (2.13a) in magnitude and phase
as e~O. We conclude that the first term on the right-
hand side of Eq. (2.12a) is precisely Go+'(x,y;x', y';E) de-
fined by Eq. (3.27) and given in explicit closed form by
Eq. (3.17a).

As for the second term on the righ-hand side of Eq.
(2.12a), introducing the same new integration variable
u =k»/K employed in Eq. (3.1) obviously reduces this
second term to

1 mia e i&f[u]
dQ

fi —" (1—u )' [ +'K(l — )' ]
(3.31)

where f ( u) is defined by Eq. (3.2b), now with a
=

~

x +x'
~

and b =y —y'; for definiteness we take b &0,
i.e., x',y'~ co in the third quadrant for fixed x,y (recall
now x &O, x'&0), but it is apparent from our previous
discussion of Eq. (3.15) that the steepest descents result
for y —y' & 0 also immediately yields the asymptotic
behavior of (3.31) when x',y'~ ~ in the second quadrant.
The contour for Eq. (3.31) is as drawn in Fig. 3, and the
poles and branch cuts for Eq. (3.31) also are as previously
found for Eq. (3.2a) and shown in Fig. 3. Therefore the
steepest descents contour for Eq. (3.31) is reached by the
same contour deformation as previously.

Thus, comparing Eqs. (3.2a) and (3.31), it is apparent
that —excluding the residue contribution —the steepest
descents contribution to (3.31) is
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(3.33)& (I —k'/IC'))l2
where A is precisely the previously obtained residue con-
tribution (3.12b). Of course, as previously this residue
contribution is obtained only when the inequality (3.lib)
holds. In short, recalling our result —via Eq. (3.30)—for
the first term on the right-hand side of Eq. (2.12a), the
steepest descents estimate of G; + '{x,y;x ',y'; E) for
x &0, x' &0 is exactly as deduced in Eq. (3.26a) from our
ray-geometric prescription, supplemented (for x',y'~co
along directions nearly parallel to the y' axis) by the
bound state contribution (3.24a) with K =k.

and 4/=)Ii/ —P/, and the surface integrals are over the
spherical surface at infinity in r'=(x', y') space, of course;
T(r') now is the primed version of Ho from Eq. (3.16b),
and the "sphere" at infinity now is the circle of radius
R (R ~ oo ) in the primed version of the x,y plane shown
in Fig. 1. The outward drawn normal at any point on this
"sphere" lies along the radius vector from the origin to
that point. Thus, introducing polar coordinates in the
plane ( x'=r'c os/', y'=r'si n(t')), in the McGuire model
Eq. (4.1) reduces to

W[G '(x,y;x', y';E), P;(x',y')] =1t;(x,y),
Jr [ G +'(x,y;x',y';E), qi;(x', y')] =It;(x,y),

(4.2a)

(4.2b)

W[ G '(x,y;x', y', E), ItjI(x',y')]
=Jr [G +'(x,y;x', y', E), qi/(x', y')] =0, (4.2c)

W[G +'(x,y;x', y';E), @;(x',y')]

=W[G +'(x,y;x', y';E), sI&I(x',y')] =0, (4.2d)

where the quantities G ', @;, )Ii;, P/, and 4/ all have
been defined above [e.g., by Eq. (2.8)], where N; =)II;—I)'i;

IV. SURFACE INTEGRALS AT INFINITY

Now that the asymptotic behavior of G +'(x,y;x', y', E)
at large x',y' has been deduced, we can evaluate the
values of the various surface integrals at infinity (in x',y'
space) discussed in paper I and Ref. 4. These surface in-
tegrals all involve expressions of the form

M[X, Y]= I dr'[ Y(r') T(r')X(r') —X(r') T(r') Y(r')],
(4.1)

where T(r ) is the kinetic energy operator in the incident
channel Hamiltonian H;(r') appearing in the LS equation
(1.4), or, equivalently, T(r') is the free space (interaction-
free) Hamiltonian Ho(r'). The integral (4.1) is integrated
over the entire volume of the configurations space speci-
fied by the particle coordinates employed in H (or H;);
the volume integral over all space always can be converted
to a surface integral at infinity, however, using Careen's
theorem (or, equivalently, integration by parts). For
reasons discussed in paper I and Ref. 10, the volume in-
tegrals over all space in Eq. (4.1) are best regarded as the
limits R~oc of integrals over spherical voIumes of ra-
dius R; therefore the corresponding surface integrals at
infinity, after application of Green's theorem, should be
similarly regarded as the limits R —+ao of integrals over
spherical surfaces of radius R.

The surface integral relations we wish to verify are stat-
ed in Eqs. (2.14)—(2.17) of paper I. In the McGuire
model these relations take the following forms:

where the integral in Eq. (4.3) is along the arc of the circle
r'=R.

We will apply Eq. (4.3) to the left-hand sides of Eqs.
(4.2). For the present and until further notice we take
x &0 in Eq. (4.3), which means that we can employ the
specific asymptotic formulas for G +'(x,y;x', y';E) that
were displayed in the preceding section. Because these
asymptotic formulas differ for x'&0 and x'~0, the
reader is reminded that in Eq. (4.3) the interval
Ir/2&/'&3n/2 enc.ompasses the domain x'&0 where
Eq. (3.26a) applies, whereas Eq. (3.13) must be used in
the intervals 0 &))))' & Ir/2 and 3Ir/2 & (t)' & 2' where x' ~ 0.
We also remark (as will be obvious from what follows)
that in Eqs. (3.13) and (3.26a) we can replace p and p„
from Eqs. (3.17b) and (3.26b) by their leading terms,
which simplifies the applications of Eq. (4.3) to the sur-
face integrals of Eqs. (4.2). Specifically, as x',y'~ oo for
fixed x,y it is sufficient for our present purposes to em-
ploy

p=r' (x cos—(t)'+y sing')+. . . , (4.4a)

—i':[x cos(II)'+y sing' )X e

iir(x cos4)' —y sin4)') (4 5a il(. cosP—'
J

ignoring for the moment the residue contribution to 6 +'.
In this same interval, recalling Eqs. (2.3),

g;(x',y') =~ae "'"~e'""""~, Ir/2 &))))' & 3Ir/2 . (4.5b)

Thus (still for x &0 and stijl excluding the residue com-
ponent of G '), the contribution to the left-hand side of
Eq. (4.2a) from the domain x' & 0 is

p =r +{xcos(t) —y sin)It) )+ ' (4.4b)

Now let us evaluate the left-hand side of Eq. (4.2a).
Consider first the corresponding contribution to the in-
tegral (4.3) from the interval Ir/2 & p' & 3Ir/2. EInploying
Eqs. (4.4) in Eq. (3.26a), at large r' in this interval,

iKr'
G(+) lm ' /4 e

)ri'1/2~AC ~r'

lim
2 3m'/2, l Pl

e
—in'l41l ae ar'co+'e ikr'sing'

r'=R~ca 2rri nl2

IKr'
x cos())'+y st') e iir(x cos(()' —y sin4)')

[ IC { pi+ k (4.6a)
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3n'/2 I 7Tar'cosP' d —ar'siny
n. /2 0

m/2
d ~ e

—ar'siny
0

(4.7b)

plus terms in the integrand of higher order in 1/«'. The
essential point to note is that the integral in (4.6a) is of the
form

3m/2
iKr '

dpi ar'cosp ikr'sing F(X y p ) (4 6b)
m/2

where F is bounded, well behaved, and independent of «'.
In the domain vr/2 & P' & 3m'/2, cosP' & 0 and
exp(ar'cosP') vanishes as r'~oo. Thus the only possibly
nonvanishing contribution to (4.6b) in the limit r ~oo
comes from the immediate neighborhood of P'=m. /2 and
3~/2, where cosP'~0.

In fact, Eq. (4.6b) implies
3m/2

~

~
~

& Cv r' f dP'e "'"+', (4.7a)

where C is some finite number. With the change of vari-
able i))

' =~/2+ y, we obtain

said vanishing, namely that as «'~oo the asymptotic
behavior of 6 +' is—except for «'-independent factors—
proportional to (r') '~ exp(iKr'), as in Eq. (4.5a). Of
course, for x'& 0, Eqs. (2.3) yield

ax iky i ar—'cosP' —ikr sin/ 'p'
k

(4.10a)

—ax' iky' ~ ar—'cosP' ikr sing'
, &xy &

— ae e — ae e

0 & Q' & n. /2, 3~/2 & P' & 2m. , (4.9)

instead of Eq. (4.5b); Eq. (4.9) again guarantees that
P;(x',y') is exponentially decreasing at large r' in the in-
tegration intervals to which Eq. (4.9) pertains.

In other words, any nonvanishing contribution to the
left-hand side of Eq. (4.2a) must come from the residue
component of G + ', which to this point has been ignored
in the evaluation of (4.2a). We have seen that for all
values of x,y,x',y' this residue component is given by Eq.
(3.24a) with K =k. In particular, at large r' this residue
component of G +' is (remembering that x &0)

taking advantage of the symmetry of siny in 0 & y & w.

However, in the domain 0& y & m/2, (siny)/y is mono-
tonically decreasing, as is easily proved. In Eq. (4.7b),
therefore,

ax —iky ar'cosP' ikr'sing'

g2

ax iky ar'cosP' —ikr'sing' QI 3 /2
k

(4.10b)

(4.10c)

siny & 2y/vr,

e —ar'siny + e
—2ar'y/~

(4.7c) eaxeikve —ar'cosP'e —ikr'sing' 3~/2 & p' & 2~ (4 lpd)
g2 k

Consequently, combining Eqs. (4.7),
~/2

~M
~

&2C~r' dye "r~ = (1—e ") .

(4.8)

It follows that the integral in (4.6a) vanishes as O(1/v'r ')
as r ~ oo, i.e., that (still ignoring the residue component
of G +') the interval 7r/2 &/'&3~/2 makes a vanishing
contribution to the left-hand side of Eq. (4.2a). Obvious-

ly, this result would not have been altered by retention of
higher order terms O(1/r') in Eqs. (4.4). Equally obvi-

ously, the contribution to the left-hand side of Eq. (4.2a)
from the intervals 0&/' &m/2 and 3m/2 &/' &2rr (where
x' & 0) also vanishes when the residue component of G + '

is excluded; the asymptotic form (3.13) shares with Eq.
(3.26a) the fundamental property that leads to the afore-

Employing now Eqs. (4.5b), (4.9), and (4.10) in Eq. (4.3) as
applied to Eq. (4.2a), we find that the residue contribu-
tion to the left-hand side of Eq. (4.2a) is

3m /2
aV ar'eaxeiky —f dp'e2ar'c '4' Sing

2'
dP e ar cos4 sing'

3n /2
(4.11)

in the limit «'=R'~ oo. There is no contribution to Eq.
(4.11) from the first and second quadrants (0 & P' & vr) be-
cause in those quadrants g;(x',y') and the residue com-
ponent of 6 +' depend identically on x',y', in the third
and fourth quadrants these x',y' dependences are not
identical [compare, e.g., Eqs. (4.10c) and (4.5b)]. Evaluat-
ing the integrals in (4.11), we see that the left-hand side of
Eq. (4.2a) reduces to

3m /2

[+ ~

2ar'cosp' 3n /2 —2ar'cosp' 2n.~[G;+ (x,y;x', y', E), g;(x',y')] = lim av'ar'e "e'ky-
r'=R ~ oo —2'« 2(x«

=~ae e'" =yp;( yx), x &p . (4.12)

In connection with the result (4.12), we note the follow-
ing. In the limit « ~ oo, the nonvanishing contributions
to the integrals in (4.11) come solely from the immediate
neighborhood of P'=3m/2, where cosP'-0; therefore,
consistent with the discussion following Eqs. (3.24), Eq.

(4.11) has not been made erroneous by the fact that the in-
tegrals in (4.11) run over the entire angular range m. to 2m,
rather than over angular ranges falling within the steepest
descents criterion (3.11b) for appearance of the residue
contribution in the asymptotic limit of 6 +'. Our inter-
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pretation of this residue contribution, starting from the
expansion (3.22a), suggests that the residue contribution
has been obtained exactly, without neglect of higher order
terms; g;(x',y') in Eqs. (4.5b) and (4.9) unquestionably is
exact. Moreover, Eqs. (4.10), as well as Eqs. (4.5b) and
(4.9), have not involved any "leading term" approxima-
tions [such as Eqs. (4.4)] to g; or the residue component
of G +'. Thus it appears that (4.11) is an "exact" evalua-
tion of the contribution the residue component of 6 +'
makes to the left-hand side of Eq. (4.2a). Even if Eqs.
(4.10a) represent only the leading terms to the residue
component of 6 +', however [i.e., even if Eq. (3.12b) has
neglected higher order terms which are, e.g., O(1/v r')
compared to the right-hand side of (3.12b)], it is evident
from our final result (4.12) that those higher order terms
would make a vanishing contribution to the left-hand side
of Eq. (4.2a) in the limit r'~ oo. Equation (4.12) has been
derived for x &0 only; but the obvious symmetry (also
remarked on in paper II) of the McGuire model under re-
flection about the x =0 axis, as manifested in Eqs. (2.3)
and (2.12), makes it obvious that our verification of Eq.
(4.2a) for x &0 will carry through to the case x ~0. We
conclude that the predicted surface integral relation (4.2a)
does hold in the McGuire model.

With the foregoing detailed verification of Eq. (4.2a) in
hand, it is easy to see that Eqs. (4.2b) and (4.2c) also will
hold in the McGuire model; it is sufficient to sketch the
analysis. Consider first Eq. (4.2b), where 4; is given by
Eqs. (2.8) and is everywhere bounded. Thus, from the
derivation leading to Eq. (4.6a) and thence to Eq. (4.8), it
is evident that the ray-geometric saddle point portion of
G +' [as displayed, e.g. , in Eq. (4.5a)] will make a contri-
bution to the left-hand side of Eq. (4.2b) which —after in-
tegrating over q'—will be O(1/V r') as in Eq. (4.8), i.e.,
will vanish as r'~ ~. Once again, therefore, the residue
component of 6 ' makes the only possibly nonvanishing
contribution to the left-hand side of Eq. (4.2b). This resi-
due component is exponentially decreasing as r'~op at
fixed P', except at angles P' very near P'=sr/2 and
P'=3~/2 [recall Eqs. (4.10)]. Hence, referring to Fig. 1,
in evaluating the left-hand side of Eq. (4.2b) we need be
concerned only with 4;, and qi;» (needed near p'=m. /2)
and '0;v and '0;v, (needed near P'=3'/2) Apart from.

the constant factor A, +;«(the appropriate form of +;
near P'=sr/2 in the first quadrant) is precisely P;, and
similarly for 4;, (the appropriate form of 0'; near tI)'=m/2
in the second quadrant). As before, assume for the
present that x &0, so that Eqs. (4.10) explicitly display the
P' dependence of the residue component of G ' at large
r'. Then, just as in Eq. (4.11), there is no residue contri-
bution to the left-hand side of Eq. (4.2b) from the neigh-
borhood of P' =vr/2, because in that neighborhood
4;(x',y'), like g;(x',y'), has the same dependence on x',y'
as the residue component of 6 '. Near P'=3'/2, +;v
and +;v& are the appropriate forms of %'; in the third and
fourth quadrants, respectively. Each of +;v and 'P;vI
equals P; plus terms proportional to the constants C and
D, as displayed in Eqs. (2.8); from Eqs. (2.5) of paper II,
or even more simply from the directions of positive r and
u shown in Fig. 1, these C and D terms in 4;v and 4;v&
are seen to vanish exponentially as x',y'~ ac in the neigh-

borhood of P'=3vr/2. In other words, at infinity near
P'=3m. /2, 4';(x',y') becomes identical with P;(x',y'); cor-
respondingly, near P'=3m/2 the evaluation of the residue
component contribution to the left-hand side of Eq. (4.2b)
becomes identical with the calculation carried through in
Eqs. (4.11) and (4.12). In this fashion Eq. (4.2b) is veri-
fied for x &0; that Eq. (4.2b) will also hold for x & 0 then
follows from the same McGuire model symmetry argu-
ment employed in the verification of Eq. (4.2a).

As for Eq. (4.2c), by now it is evident that a nonvanish-
ing contribution to Jr[6 +', gf] and W[G;+', %f] can
come only from the residue component of 6 +', and then
only from integration of the appropriate versions of Eq.
(4.3) in the neighborhoods of P'=~/2 and P'=3~/2. But
Pf(x',y') of Eq. (2.9) vanishes exponentially at infinity,
except near u'=0, i.e. (referring to Fig. 1), except near
P' =5n. /6 and 11vr/6. Consequently, W[G ', Pf ]=0.
Turning next to M[6 +', %f], and again referring to Fig
1, the relevant forms of %f near P'=n /2 are %fq (second
quadrant) and Vf«(first quadrant); near P'=3~/2 the
relevant forms are %fv (third quadrant) and +fvt (fourth
quadrant). From Eqs. (2.10), the only terms in %fq and
0 f«which do not vanish exponentially near P' =sr/2 are
the terms proportional to C; in their respective quadrants
these portions of 4» and %f«are precisely CP;. Hence,
just as in the calculation of Jr [6; +,4; ], the neighbor-
hood of P' =vr/2 makes a vamshing contribution to
W[G +',4f]. Near P'=3~/2, both 'Iifv and %fvg are ex-
ponentially decreasing at infinity, because neither of these
forms of +f contain a component proportional to g;, as
did +;v and qi;v~. Consequently, Jr [6 +', 4f ] also equals
0, i.e., Eq. (4.2c) has been verified. For W[G +', 4'f] (but
not for W[ 6 + ', Pf ] ) this verification pertains only to
x & 0, since in concluding that there is no residue com-
ponent contribution to Jr[6 +', Vf] near p'=sr/2 we
have made explicit use of the fact that Eqs. (4.10a) and
(4.10b) are proportional to P;(x',y') in their respective
quadrants; as we have explained previously, Eqs. (4.10)
hold only for x &0. From Eq. (3.24a), however, it is
readily seen that the x',y' dependences (though not the
x,y dependences) of the residue component of G +' are
the same for x ~0 as for x &0. Thus for x &0, as for
x & 0, the neighborhood of P' =m /2 makes a vanishing
contribution to W[G +', %f], i.e., Eq. (4.2c) holds for all
x. Recalling that N; =4; —P;, subtracting Eq. (4.2b)
from (4.2a) immediately yields Jr[6 ', N;]=0, and simi-
larly for the remaining equality in Eq. (4.2d).

The foregoing completes the verification of Eqs. (4.2).
In paper I it was shown that the relations (4.2d) can be de-
duced (in any two-body collision involving three three-
dimensional particles interacting via short range poten-
tials, not merely in the McGuire model) from precise for-
mulations of the requirements that N;, Nf —the "scat-
tered parts" of 41;,Vf, respectively —must be "everywhere
outgoing at infinity"; these formulations are embodied in
Eqs. (2.54) and (2.59a) of paper I. In paper I and Ref. 4,
however, it also is argued that the relations (4.2d) are to be
expected, because one expects that when both X and Y are
"everywhere outgoing at infinity" the general three-
particle analogue of the Mcguire model integrand in Eq.
(4.3) will cancel at every point on the surface at infinity in
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configuration space. This argument is completely borne
out by the McGuire model results obtained in this section.
As we have chosen g; in Eq. (2.3a), it advances along the
positive y direction, i.e., P;(x',y') is incoming at P'=3'/2
in Fig. 1, and is outgoing at P'=ir/2. Correspondingly,
as we have seen, the entire contribution to the left-hand
side of Eq. (4.2a) comes from P'=3m/2 . Th. e above result
that W[G;+', itjf] =0 even though Pf(x', y') of Eq. (2.9) is
incoming at P = 5m/6 i.llustrates the additional argument,
also made in paper I and Ref. 4, that where Y represents
propagation in a bound state, the surface integral
W[G +', Y] will vanish unless G +' itself can propagate in
that bound state, i.e., unless G +' has a non-negligible
projection on the same bound state. The McGuire G +'
of Eqs. (2.11) and (2.12) cannot be expected to propagate
in the bound state w(u) of Eq. (2.9), because in the i-
channel Hamiltonian H; of Eq. (2.5b) the interaction
g(u)—which appears in the complete Hamiltonian of Eq.
(2.2) and which is needed to maintain w(u) —has been
dropped.

Indeed, our steepest descents estimate of G +' in Sec.
III has explicitly demonstrated that, at large x ',y',
G +'(x,y;x', y', E) does propagate in P; but does not prop-

agate in gf, only one pole can be crossed in deforming the
integration contour of Fig. 3 to the steepest descents con-
tour of Fig. 4, and the residue at this pole is proportional
to i';(x',y'), not to gf(x', y'). The reader will note, more-
over, that our derivation of G +' in paper II, leading to
Eqs. (2.12), did not use an expansion for G +' wherein the
bound state contribution of P; to G +' is immediate and
explicit, as, e.g., would have been the case had we chosen
to derive Eqs. (2.12) from the expansion (3.22a); in other
words, our finding that the steepest descents estimate of
G +' contains a residue contribution proportional to g;
but not to Pf is not explainable as an artifact of having
initially used an expansion for G +' obviously favoring
projections on g; over projections on Pf. These considera-
tions (and the considerations in the preceding paragraph)
also make understandable the result that the portion of
G +' behaving asymptotically like the free space Green's
functions Go+' of Eqs. (3.16) and (3.17) makes no contri-
bution to W[G +', g;] [recall Eqs. (4.5)—(4.8)]; Go+', de-
fined in terms of an interaction-free Hamiltonian, cannot
propagate in any bound states. It now also is apparent
that, for any fixed x,y and x",y",

(),, g2 2, , ()G +',
,
BG'+'

W[G +'(,y;x', y', E), Go+'(x",y";x',y', E)]= lim — j dP'r' Go+', —G +'
r'=R ~ oo 2@i Br' ' Br' =0, (4.13)

because Go+' does not propagate in bound states and be-
cause at all angles P' on the circle at infinity in x',y' space
the ray-geometric saddle point portion of the everywhere
outgoing G +'(x,y;x', y', E) has the same r' dependence in
lowest order —namely-e' ' /~r' —as does the every-
where outgoing G o+ '(x ",y ";x',y', E) [compare Eqs.
(3.18), (3.26), and (4.5a)], so that the integral in (4.13) can-
cels in lowest (and the only possibly nonvanishing) order.

Equation (4.13) is a McGuire model illustration of the
general claim embodied in Eq. (2.60c) of paper I, namely
that M[X, Y] vanishes whenever X and Y are outgoing
Green's functions at real energy, for systems of three
three-dimensional (not merely one-dimensional) particles
interacting via short range forces. It was shown in Ref. 4
that Eq. (4.13) implies

G +'(r', r",E)=Go+'(r', r";E)—J dr Go+'(r;r";E)

X V(r)G +'(r, r', E);

(4.14)

where V—=H; —Ho, and where G; and Go again per-(+) (+)
tain to systems of three three-dimensional particles in-
teracting via short range forces; Eq. (4.14) is a particular

example of Eq. (2.60b) of paper I. Benoist-Gueutal's criti-
cisms of past derivations of the inhomogeneous and
homogeneous LS equations (1.1) and (1.2) rest in part on
explicitly expressed doubts about relations (between real
energy Green's functions) such as (4.14) or Eq. (2.60b) of
paper I. The results of this section mean that, in the
McCxuire model at least, doubts about Eq. (4.14) are un-
founded.

In short, the present section of this paper thoroughly
confirms —in the McGuire model at least —the predictions
made in Ref. 4 and paper I concerning the values of vari-
ous relevant surface integrals at infinity M[X, Y] which
appear in straightforward derivations of the real energy
LS equation (1.2) from the Schrodinger equation (1.5);
correspondingly, this section confirms the qualitative
reasoning underlying Gerjuoy's predictions concerning the
values of M[X, Y]. The implications of these confirma-
tions, which already have been stated in the Introduction,
need not be repeated in this section.
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