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A spin-dependent expression is suggested for the emission rate of preequilibrium y rays in the
framework of the exciton model. The single-particle picture as well as the Brink-Axel hypothesis
are adopted and the angular momentum coupling is treated in detail. The approach is consistent
with the usual equilibrium y emission rate and it also elucidates earlier nonspin preequilibrium re-
sults. The expression is completed by a fully spin-dependent formulation of the exciton model. As
an illustrative example, the primary y ray spectrum of the ' Fe(n, y) reaction at 14.6 MeV is

analyzed. The impact of the angular momentum conservation on the y ray spectrum as well as the
nucleon emission is rather small. The preequilibrium y emission is dominated by hn =0 transitions
between levels with low spins in the very first n-exciton stages of the reaction.

I. INTRODUCTION

So far, only a few papers have dealt with the problem
of preequilibrium y ray emission, ' in contrast with the
attention given to other aspects of preequilibrium decay,
particularly to nucleon as well as complex particle emis-
sion, intranuclear transitions, and particle-hole state den-
sities. Physically, the problem of y ray emission is limit-
ed to developing a proper emission rate. Preequilibrium y
rays seem to be predominantly of electric dipole character
and they are due to single-particle transitions, implying
the selection rule for the number of excitons hn = —2,0.
Further, the Brink-Axel hypothesis must be taken into ac-
count and consistency with the equilibrium limit is desir-
able. In this sense the recent result of Akkermans and
Gruppelaar, which exhibits this consistency, seems more
advantageous than that of Betak and Dobes, where the
consistency is missing.

An essential limitation of the above works, however, is
given by their complete neglect of the angular momentum
coupling. One reason for it is that the angular momen-
tum conservation in the preeequilibrium models has rath-
er generally been neglected. Another reason might be the
complications with the principle of microscopic reversibil-
ity when applied to the preequilibrium y ray emission.
The point is that the emission is related to the transition
n ~n, n —2, while the absorption proceeds via
n ~n, n + 2, or via n —2~n —2, n, and these processes
are not simply reversible because of differences in the ex-
citon quantum numbers of the respective initial and final
states.

On the other hand, the basic techniques for the proper
handling of the angular momentum coupling in the pree-
quilibrium models have already been devised. Also, the
problems with the microscopic reversibility can be avoid-
ed by applying the golden rule of quantum mechanics as,
for example, done by Liotta and Sorensen in the equili-
brium case. An important feature of our approach, how-
ever, is that we apply the golden rule to the inverse pro-
cess too, and eliminate the matrix elements to get the

emission rate.
In the present paper we limit ourselves to the frame-

work of the exciton model of nuclear reactions. Our main
objective is to develop the spin-dependent formulation of
the preequilibrium y ray emission. The emission rate is
derived in Sec. II and the spin-dependent formulation of
the exciton model is completed in Sec. III. An illustrative
example, Fe(n, y ) at 14.6 MeV, is examined in Sec. IV,
and conclusions are given in Sec. V.

II. PREEQUILIBRIUM y RAY
EMISSION RATE

We consider an n-exciton level of energy E and spin J
decaying by a y ray emission with energy e and rnultipo-
larity A, which leads to a final level of energy U and spin
S. First, we present the rate in its general form together
with the energy structure for such a preequilibrium y ray
emission. Next, in this form our rate is compared with all
earlier results. Then, we deal with angular momentum
coupling. For the sake of clarity, we use the notation k
for multipolarity, though we consider electric dipole tran-
sitions only.

A. general form and energy structure

The y ray emission rate per second per unit energy in-
terval is

Wr(EJ ~ US)

2m' 6A, EA,

~

%„(EJ~ US)
i

co„(EJ~ US)co(e),

where
~

933„~ is the average squared transition matrix ele-
ment and co„ is the density of the accessible final nuclear
levels, while co refers to that of y rays. These densities,
together with the spin matrix element, will be evaluated
explicitly, and the rest of the matrix element will be ex-
pressed by means of the inverse process, i.e., the y ray ab-
sorption.
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~
~

K"„~ Y„"X~co(e)] . (2)

Here, K"„+ " is the nonspin part of the transition matrix
element; Y„"+ " represents the energy dependence of the
density of accessible final nuclear levels, while X~+ "
contains the spin dependence of this density and the angu-
lar momentum structure of the transition matrix element.

Finally,

( )= V

mac
is simply the state density of free y rays, where V is the
nuclear volume.

The rate of the inverse process per second can be ex-

pressed by means of the y ray absorption cross section as
ccrc„' '/V, and also by using the golden rule. The single-

particle operator leads now to the selection rule
hn= + 2,0; therefore,

The quantity K„ is proportional to the reduced matrix
element of a multipole electromagnetic operator that can
be divided into radial and spin matrix elements. Also,
the nuclear level density can be, approximately, expressed
as a product of energy and spin-dependent parts. The
single-particle nature of the electromagnetic operator im-
plies for the y ray emission the selection rule An = —2,0
(Refs. 1 and 2). Thus, Eq. (1) leads to the two terms, in

each of which the energy and spin parts are separated:

6A,

W„"(EJ~ US)= [ ~

K"„~ Y„" X~ co(e)

EA.

o'„'( US ~ EJ)=os,'(S ~ eJ),

with

EA,

o,','(S ~ eJ) =o', ,'(e)
3

(7a)

(7b)

( 2J ~ 1 )co„(E,J)Y„"X~ = (2S + 1 )co„(U, S)y„"x„s, (9)

where n'= n, n —2 and co„(E,J) is the total n-exciton lev-

el density.
Using Eqs. (2)—(5), (7), and (9), one gets the emission

rate of preequilibrium y rays in a rather general form,

W~(EJ ~ US)

~ o.s,'(e) co„2(U,S)b„2s+co„(U,S)b„~
(10)

3~2/3c 2 co„(E,J)

where gJ ——(2J+1)/(2S+ 1) is the statistical factor and

os,'(e) is the full electric dipole photoabsorption cross
section of a nucleus in the ground state. It can be ex-
pressed conventionally as

(eI'g )
s.s. ( )= z

(E —I g ) ~(EgI ~ )

with crz, Ez, and I z being the giant dipole resonance
cross section, the energy, and the width, respectively.

The Y and X functions for emission are related to their
counterparts for absorption, the y and x functions, by
means of the detailed balance

—o' '(US~EJ)= ( iK"+
~

y" + x"+

+
/
K„"f y„"x„~) . (4)

where
n nJ

b nJ yn —2Xn —2S
n —2S n —2 n —2J n nJ

yn —2 Xn —2S +yn —2Xn —2S
(1 la)

Here, the matrix elements refer to the transitions
n~n + 2 and n~n, respectively, and the functions y
and x have a similar meaning as Y,X in Eq. (2).

Equation (4) can be used to obtain the nonspin matrix
elements. To this end an assumption should be made

about the relation between the element associated with

pair production and the element associated with the pro-
cess En=0. By assuming weak dependence on An, one

gets

~K" +2~2= ~K" ]2

f (~)= 1

2@2 2
(6)

gJ

implies

implying that the branching ratio for the population of
levels with different final exciton numbers due to absorp-
tion is fully given by the y and x functions.

Now we apply the Brink-Axel hypothesis to Eq. (4). In
terms of the electric dipole y ray strength functions of ex-

cited levels, the hypothesis is tantamount to assuming
their identity with the y strength function of the ground
state (cf. p. 240 of Ref. 7). Thus, the strength function ex-

pressed via the photoabsorption cross section,

o„' '(US ~EJ)

n nJ
ynXnS

n nJ n+2 n+2J
ynXnS +yn XnS

The following relation holds,

( 1 lb)

( 1 1c)

g n ~1En
60„(E,J)=, R„(J),

p!h! p+h —1!
2J + 1 —(J~ 1/2)2/2n2

2~2~~3

(12a)

(12b)

where g is the single-particle state density, n= p+ h, and
o.„=no. is the spin cutoff parameter. As shown in Ref.
9, the separation is justified provided the correction due to
the Pauli principle is small, which, for example, is espe-
cially valid at low n.

The y functions, representing the energy part of the ac-
cessible level density after y ray absorption, have a simple

and analogous to the nonspin formulation of Akkermans
and Gruppelaar, ' the coefficients b„"q+ and b„z can be
interpreted as the branching ratios that subdivide the pho-
toabsorption cross section o.'„' over the different exciton
levels accessible after absorption.

The particle-hole level density is written in a form with
energy and spin separated,
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form. Since the single-particle processes are involved,
An = + 2 corresponds to a two-exciton state density, and
An=0 corresponds to a one-exciton state density multi-
plied by the number of excitons available for the transi-
tion,

(13a)

(13b)

B. Comparison with previous results

Before we proceed with evaluating the x functions in
the next subsection, it is worthwhile to compare our pree-
quilibrium y ray emission rate with the usual equilibrium
expression, as well as with the nonspin preequilibrium
rates obtained previously.

In the equilibrium limit the emission rate can be ex-
pressed as

EA, ~ (EJ)
Wr (EJ US)= g Wr(EJ US)

co(E,J)

where co(E,J)= g„co„(E,J). Inserting Eqs. (10) and
(1 lc), we obtain

Wr (EJ~ US)= — ' T (e),1 co(US)
(14a)eq h co(E J}

where Tr(e) is the y ray transmission coefficient for the
electric dipole transition,

2e os,'(e)
T„(e)= ' =2rre'fr(e), (14b)

37TA c

in accord with the usual spin-dependent equilibrium emis-
sion rate (see, e.g. , Grover' ). This means that our pree-
quilibrium rate satisfies the consistency requirement with
the equilibrium result.

Our 8'~ can be reduced to a nonspin expression provid-
ed all spin terms, i.e., the functions x and R in Eqs.
(10)—(12), are adequately simplified. Assuming x= 1 and
R ~2J+ 1, and summing Eq. (10} over the final spins
S =J—1, J, J+ 1, we obtain the nonspin emission rate of
Akkermans and Gruppelaar, ' since Eqs. (11) and (13) give
exactly their branching ratios,

o.'„'(U ~ E)=os,'(e) 1+
g E

(15)

C. Angular momentum coupling

We evaluate the angular momentum coupling terms for
the absorption, x„"z+,adopting the approach outlined in
a somewhat different context by Feshbach et al. We
consider the electric dipole transitions and discuss first
the angular momentum structure of the reduced transition
probability, after which we proceed with the averaging
procedure.

The reduced transition probability

I &J
I
l~(e~)

I IS & I

' (16)

is determined by the reduced matrix element of the elec-
tric dipole operator ~(eA, ). We assume that the initial
and final levels S,J are described by the same j3 core that
does not change during the transition and by a single ac-
tive excitation that makes the transition j2~j&,' see Fig.
1(a). The operator acts thus on this single exciton only.
The reduced matrix element of such a system composed
of two parts, with an unimportant phase factor omitted,
is"

Equation (15) means that the energy dependence of the
photoabsorption cross section for the excited state differs
in the functional form from that for the ground state.
Following the Brink-Axel hypothesis, however, one
should rather expect accordance of the two functional
forms (cf. p. 240 of Ref. 7). Although the difference is
small for low n, it may be of importance for larger n. Ul-
timately, as pointed out already in Ref. 1, it leads to the
inconsistency between the emission rate of Ref. 2 and the
usual equilibrium result.

2
n g & n g&b„ b„=

g e+g(n —2) g e+gn
Our approach makes it possible to explain also the

nonspin emission rate of Betak and Dobes. The latter
differs from that of Ref. 1 by the coefficients

(a) ~n =0 (b) an =+ 2

g E

Equivalent to these coefficients is the assumption that the
transition matrix element K„ in Eqs. (1) is independent of
n. Then, Eq. (5) reads

l

K„"+
l

=
l K„"l =const, which

can be obtained simply from Eq. (4) for n =0, i.e., for the
ground state by realizing that for this state the absorption
of the type b,n =0 is not allowed.

As a consequence, Eq. (4) now implies, for the total
photoabsorption cross section on a state n, that

FIG. 1. Diagrams of x and x+ functions for y ray absorp-
tion.
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J2 J3 S
&(J ij~ )J

I
l~(«)

I I(j~3)» = l(2S+1)(2J+1)l'" '

JJ (17)

where the single-particle electric dipole matrix element reads

J2
(J] lm(el. )llj2) o: [(2j]+l)(2A. +1)(2j2+1)]'

2
1

2

We substitute from Eqs. (17) and (18) into (16) and get the angular momentum structure of the reduced transition proba-
bility,

J2 ~ Ji
(2j, + 1)(2A + 1)(2j~+ 1)(2J+ 1)

2 o 2

2
2S

J A, j( (19)

The reduced transition probability should be summed over final levels weighted by R&(j& ) and averaged over initial
levels. The averaging function is R„~(jq)R~(j2)/R„(S), as can be shown in accordance with Ref. 4. Since for the
An =0 the particle-hole distinguishability has already been accounted for in calculating the energy function y, one has

(2k+ 1)(2J+ 1)=+nS R„(S) J jg (2j, +1)R,(j, )(2j, +1)R,(J,)R„,(J3) 0 1

2

2

J2 j3 S
J A, j) (20)

Equation (20) is substantially simplified for n= 1 since
the core spin j3 is now fixed. Assuming j3 ——0, one gets
j2 ——S,j &

——J; hence the square of the 6-j symbol is
1/(2S+ 1)(2J+ 1), and the averaging function is reduced
to unity. Therefore,

J 2S
x Is =(2A, +1)(2J+1)R,(J)

2 o —
2

(21)

For the An= + 2 absorption, the above argument is
slightly modified in view of Fig. 1(b). The 6-j symbol in
Eq. (19) is now replaced by

2
0 S S

(2S+1)(2J+1) '

the summation over final levels is weighted by
R ~(j~)R ~(jq), and the averaging over initial levels can be
omitted. Thus,

x+—:x„"s+ —— g(2j~+ 1)R ~(j~ )(2jz+1)R &(j2)
2J+1

J J2

x 4
+

+
C)

X

-5—-3

C =5 MeV

That this condition is approximately valid can be seen by
the following argument.

Equation (22) readily implies x+ ~gJ irrespective of n

Equations (20) and (21) after numerical evaluation suggest
that although x is not strictly proportional to gJ at low
n, it approaches this condition well at larger n. The y
functions given by Eq. (13) imply for preequilibrium y
rays y+ &&y, since low n and large e are involved; hence
y x +y+x+=y+x+ ~gJ, as expected. The bulk of the
equilibrium y rays is of low energy, but it originates from

J2 Ji
X &, b(Skj), (22)

2 2

+
X

0.04

p p + + 2J+1
y x +y+x+ ~gJ ——

2S+1 (23)

where b, (SM) is 1 for
I
S —A,

I
(J(S+A, and 0 other-

wise.
Provided our procedure is entirely consistent, the ma-

trix elements as extracted from Eq. (4) should not depend
on the angular momentum, and the whole spin depen-
dence should be concentrated in the x functions. Thus,
Eqs. (4) and (7) suggest that one should expect the follow-
ing functional condition:

0.02

0.5 2.5 4.5 6 5

J (0)
8.5 10.5

FICs. 2. Dependence of x functions on the angular rnomen-
turn calculated for absorption of y rays on ' Fe assuming S =J.
Shown below are x for n = 1,3,5 and x +, which is constant.
Shown above is the corresponding function (y x +y+x +

) /g J
for the y ray energy e = 5 MeV.
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larger n; therefore the condition (23) should again be ap-
proximately satisfied.

As an example we have studied the Fe(n, y) reaction at
the incident neutron energy 14.6 MeV; see Sec. IV. Here,
in Fig. 2, we show x as a function of J for the intermedi-
ate statistical factor gJ ——1. It is seen that x, with in-
creasing n, becomes really spin independent. Further-
more, shown in Fig. 2 is the corresponding function
(y x +y+x+)/gJ. Again, it is seen that even for a rela-
tively low y ray energy @=5 MeV, this function is, within
a few percent, constant.

III. THE EXCITON MODEL
WITH ANGULAR MOMENTUM COUPLING

The closed-form expression for the differential cross
section of a, say, (b, y), reaction can be written in the
never-come-back approximation of the exciton model as

dv~b, ri(e) — I kj1
ob(E,J).

J n=l k=1
hn =2

g W„~(EJ US)

W~ l = 11lf„"+'
I

'Y„ tX„,I, (27)

[(2js+1)(2j3+1)(2j, + l)(2J2+1)]'

where
~

M„"
~

is the average squared nonspin part of
the intranuclear transition matrix element, Y„g is the en-

ergy part of the accessible final levels (see, e.g., Ref. 15),

3E2
(28)

2(n +1)
and X~& determines all the angular momentum depen-
dence of the process.

The function X~& can be evaluated exactly in the way
devised for the multistep compound reactions in Ref. 4
and extended to the spin —,

' particles in Ref. 16. By con-
sidering the residual two-body interaction in 6-function
form,

V( r& —rz) =const && 6(r
&

—r2),

and by applying standard techniques, ' the angular
momentum structure of the transition matrix element can
be expressed as (see Fig. 3)

(24)

i5 is Q
X 102 2

Jl J2 J3
~(Qj4J),

2 2

(29)

where o b (E,J) is the composite-nucleus cross section, the
term in large parentheses is the depletion factor, and
W~, 8'~ is the total decay rate and the channel emission
rate, respectively. The damping and the total widths are
given as

r & =Am„, &,

1 =RW $+ +fig 1 W„(EJ US)de,
v S

(25a)

(25b)

where W~l is the damping (intranuclear) transition rate
of the type An= + 2, and 8'~ is the nucleon emission
rate, v being a neutron or a proton.

Nucleon emission in the exciton model is treated as the
single-particle process n~n —1. The emission rate can
be readily obtained by considering the angular momentum
conservation and by applying detailed balance. ' If one
further distinguishes neutrons and protons, the emission
rate reads'

1 co„ i(U, S)
W„(EJ~ US)= — Q„(n)

h co„(E,J)

where we neglected the unimportant phase factor. (The
radial part of the transition matrix element was already
incorporated into M„"+, the average value of which is
treated as parameter in the exciton model. ) The matrix
element (29) should be squared, averaged over initial states
weighted by R„&(j4)R&(Q)/R„(J), and summed over fi-
nal states weighted by Rz(j3)R, (js). This latter pro-
cedure, finally, includes averaging over pair states weight-
ed by R~(j~)R~(j )2R/z(j )3. The result is

S+1/2 J+j
&& g g Tt(E),

j= IS —1/2
(26)

T~(e) being the transmission coefficient and Q (n), as ex-
pressed in Ref. 14, represents the fraction of neutrons or
protons among excited particles.

We evaluate the damping transition rate in a way close
to the usual nonspin approach. The residual interaction
involved is the two-body scattering of the type n~n + 2.
Because of (12) the energy and the angular momentum
dependence can be factorized and the golden rule written
as FIG. 3. Diagram of the X~& function for damping.
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X~ & = g R ~(Q)F(Q)R„~(j 4)h(Qj 4J), (30)
R„(J) . g

where

F(Q)= g (2j 5+1)R&(j 5)(2j 3+1)

we found (X~ & ) =0.0208, 0.0208, and 0.0207 for n =3,
5, and 7, respectively. The averaging was performed ap-
plying the distribution function given by the composite-
nucleus cross section ob(E,J) T. aking simply the n=3
value, one finally has

Q
XF(j3)

2 o 2

2

(31)

+1 K
4(X»» W' E

IV. ILLUSTRATIVE EXAMPLE

(36)

and the angular momentum density of pair states is

F(j,)= g (2j, +l)R, (j, )(2j, +1)

Ji J2 J3
XR)(j2)

2 2

2

(32)

Equation (30) is simplified for a specific case n = 1,
since the core spin j4 is now fixed. Assuming j4 ——0, one
has

X,Jl=F(J) . (33)

An obvious question is how one should relate the non-
spin part of the matrix element

~

M„"+ ~, as introduced
in Eq. (27), to the established systematics of the matrix
elements

~
M„~ obtained from fits to nucleon spectra in

earlier studies that, however, neglected the angular
momentum conservation. We argue that the spectra
evaluated in these studies should not be significantly in-
fluenced by the angular momentum effects. The reason is
that neither the nucleon emission width nor the damping
width depend strongly on the angular momentum (cf. Sec.
IV). This, in turn, means that the matrix elements ob-
tained earlier do take into account, on the average, the an-
gular momentum part as well. Therefore, one should ex-
pect

iM„"+
/

(X~()= iM„ f
(34)

where the expression to the right is taken from the in-
tranuclear transition rate adopted in the hybrid model,
and the mean free path adjustment factor k is chosen so
as to fit the usual rate at n =3. Considering g = —,', A, one
thus gets

~M„~ 4 A3E
(35)

It turns out that (X~ t ) depends on n only weakly. In
our illustrative reaction Fe+ n (14.6 MeV), for example,

where the angular momentum term (X~ g ) is averaged
over J.

The average squared matrix element
~
M„~ is often as-

sumed to have n-independent form,
~
M„~ =KA E

where K is the empirical constant. ' More recent
works' ' assume

~
M„~ increasing with n. Following

Ref. 19, for example, one can set

2m. z g E 1.4X10 '

2(n +1) k

As an illustrative example we selected the Fe(n, y) re-
action at the neutron incident energy 14.6 MeV. The exci-
tation energy, 22.0 MeV, sufficiently exceeds the giant di-
pole energy, 18.3 MeV, which, in turn, is 4 MeV above the
strong tail from the ) rays produced by the (n,n'y) pro-
cesses. Thus, one should have a relatively large region of
primary y rays not affected by other components.

High energy y ray spectra of this reaction were mea-
sured in Refs. 21 and 22. Cross sections reported in Ref.
21 go up to a y ray energy of 18.5 MeV, displaying a kind
of oscillation due to the unfolding procedure applied to
the raw instrumental spectrum. The spectrum reported in
Ref. 22, taken at a somewhat lower neutron energy of 14.1

MeV, is not unfolded. The spectrum, therefore, has
remained smooth, but it is somewhat distorted by realistic
energy resolution of the spectrometer, giving rise to ener-

gy points exceeding the full excitation energy. The two
spectra can be regarded as complementary, with good ac-
cord in the overlapping y ray energy region.

Calculations were performed with a set of fairly stan-
dard parameters. The single-particle state density was

g = —,', A and, following Ref. 8, the spin cutoff parameter
was taken as o. =0.28A . The intranuclear matrix ele-
ment was taken with the constant K=190 MeV support-
ed by the analysis of a number of double differential (n,n')
cross sections at 14 MeV as performed in Ref. 23. The
giant-dipole resonance (GDR) y ray strength function was
taken with the resonance parameters ER ——18.3 MeV (Ref.
24), I z ——5 MeV, and cr~ ——13A /I ~ (in mb). The proton
emission is weak and was neglected, and neutron
transmission coefficients were obtained with the locally
fitted optical potential. The n=1 state of the Fe com-
posite nucleus corresponds to an excited neutron above the

Fe ground state, implying zero core spin, as assumed in
Eqs. (21) and (33). Simultaneously with the spin-
dependent calculations, the nonspin calculations were per-
formed for comparison.

Spin-dependent y ray widths,

r& =my f W&(EJ VS)d&,
S

are compared with the non-spin values in Fig. 4. They in-
dicate the importance of low spins in the preequilibrium y
emission. The results show that with increasing n the
spin dependence of I ~~ washes out and approaches non-
spin widths. The widths for n = 1 are entirely due to the
An=0 term, since the An = —2 process cannot take place
there. At higher n, however, the role of this latter process
increases until finally, at limiting values of n, it is practi-
cally the only process possible.
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SPIA

non- spin

10
0.5 2.5 4.5 6.5 8.5 10.5

FICx. 4. y emission width I ~ as a function of the angular
momentum J for ' Fe(n, y) at 14.6 MeV. Shown for comparison
are nonspin widths.

10

X
c

L

Shown in Fig. 5 are neutron decay widths and damping
widths, I ~ and I ~ g, as functions of the angular momen-
turn. The neutron decay widths demonstrate their weak
dependence on J. Nonspin neutron widths are not shown
since in absolute terms they are nearly identical with the
spin-dependent values. Damping widths, except for n = 1,

depend on J only somewhat stronger than the correspond-
ing neutron widths. With increasing n they approach the
nonspin value that, in view of Eqs. (28) and (35), is con-
stant for all n. Since neutron emission is governed by rel-
ative widths, I ~/(I ~4+1~), n &3, our results imply
weak impact of the angular momentum conservation on
the preequilibrium neutron emission and, more generally,
on the preequilibrium nucleon emission.

Shown in Fig. 6, finally, are the y ray spectra. Of in-
terest to us is the y ray energy region 14—22 MeV,
displaying a pure (n,y) component. Below 14 MeV there
is a strong increase in the observed cross sections due to
the (n,n y) contribution. The curves show preequilibrium
spectra of primary y rays. The agreement with the data
seems to be surprisingly good, especially if one notes that
no adjustment of parameter has been made.

The n = 1 term, representing a kind of statistical
description of direct capture, is shown separately. In this
term the dominance of transitions involving low J is most
clearly manifested. Thus, for example, the spin J=2.5,
representing 16% of the composite-nucleus population,
contributes to the n=1 capture cross section by 25%,
since the ratio I ~IJ/I &J l =6.9& 10 . For the spin
J=6.5, however, this ratio is already down to 0.86)& 10
and the contribution to the n = 1 capture is only 1.4%, al-
though the population of the composite nucleus amounts
to 7.2%. The terms with higher n are more independent
toward all spins, and with increasing n they gradually
give rise to an increase of the low energy part seen in the
full preequilibrium y ray spectrum.

The impact of the angular momentum coupling on the
shape of the y ray spectrum is rather small. The nonspin
result is somewhat higher than the spin one. This effect is
basically due to the n=1 term, where the y ray emission
from higher spins, J&4.5, is suppressed most effectively.
On the other hand, our parametrization of the intranu-
clear matrix element increases the n=1 spin-dependent
spectrum, since (X3Jl ) =0.0208 rather than
(X&JL)=0.0163 was applied in Eqs. (36).
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The preequilibrium y ray spectrum for Fe(n,y) at 14.6
MeV reported in Ref. 26, supposedly based on the nonspin
approach, is an order of magnitude higher than our spec-
trum. We checked this point carefully. The calculation
was repeated and we found that the spectrum in Ref. 26
was shifted by mistake by a factor of 10.

V. CONCLUSIONS

%'e have derived the spin-dependent expression for the
emission rate of the preequilibrium y rays together with a
fully spin-dependent formulation of the exciton model in
the never-come-back approximation.

It seems that the impact of the angular momentum con-

servation on the y ray spectra as well as on the nucleon
emission is rather small. Essential in the preequilibrium y
ray emission are the lowest n-exciton levels, the y transi-
tions being presumably of the An=0 type between levels
with low angular momenta.
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