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A theoretical framework for the description of the (€,e'P) reaction is presented. A set of physi-
cally motivated, linearly independent four-vectors is employed to construct a complete set of second
rank Lorentz tensors in terms of which the nuclear electromagnetic tensor is expressed. The impli-
cations of charge and parity conservation, time reversal, restricted spin dependence, and the final
state boundary conditions are developed and applied. The azimuthal angular dependence (in the lab-
oratory frame) of the nuclear tensor is made explicit, leading to the definition of a set of 18 indepen-
dent response functions. The cross section and the polarization vector of the ejected proton are ex-
pressed in terms of the 13 new, spin-dependent response functions. The physical significance of
these response functions with regard to spin observables is manifest. The separation of the response
functions, both theoretically and experimentally, is discussed. Extensions and restrictions to the
general (€,e'X) reaction, to reactions which violate current and/or parity conservation, and to the
case of oriented (polarized) targets are evident. Questions of linear dependence, completeness, and
alternative representations of the nuclear tensor for both (€,e’P) and the general (€,e’X) reaction
are resolved. Preliminary numerical results indicate the sizes and relative importances of the new
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response functions and demonstrate their experimental accessibility.

I. INTRODUCTION

High duty factor, continuous-wave electron facilities
provide an enhanced capability for performing scattering
experiments of the coincidence type. Given appropriate
theoretical developments, such experiments may be ex-
pected to play an important role in a systematic program
of fundamental investigations at these facilities. Al-
though analyses of proton electroproduction (e,e’p) have
characteristically focused on the extraction of nuclear
bound state information,? it is also important to explore
the extent to which nucleon electroproduction, both with
polarized (€,e’N) and unpolarized (e,e’N) electrons, probes
the strong interaction dynamics of the many-body nuclear
system. Thus theoretical and experimental investigations
of the (€,e'N) reaction must be performed with both stat-
ic properties and dynamical degrees of freedom in mind.

In a previous work” we examined, in the distorted wave
impulse approximation, the effects and the importance of
final state interactions (FSI’s) for the (€,p’p) reaction.
These effects were found to be large and substantial
differences were noted between the microscopic predic-
tions of the nonrelativistic* and relativistic’ (Dirac) ap-
proaches to the description of the ejected proton. Future
considerations of nucleon electroproduction must include
investigations of more fundamental dynamical treatments
posed in terms of explicit meson-nucleon and/or quark-
dynamic degrees of freedom, as well as of controlling un-
certainties which arise from approximation schemes
which violate current conservation.

However, there is no reason to neglect the possibility
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that the ejectile’s spin degree of freedom may provide an
important source of insight into its fundamental interac-
tion dynamics. At present, although a general form for
the (e,e’'N) reaction®’ has been extended to include elec-
tron polarization®~!' and although there has been
renewed interest in electron scattering from polarized tar-
gets,12 a formal framework for the (’e’,e’ﬁ) reaction does
not exist. The objective of this paper is to provide such a
framework. This is done by the extension of techniques
often employed in electron scattering®®!>!* to deal with
the problems peculiar to the ejection of polarized nucleons
from the many-body system. For convenience, we present
our treatment of the electroproduction of polarized nu-
cleons with the (€,e'p ) reaction in mind. It is, of course,
equally applicable to the ejection of neutrons.

As we will see, there are 18 independent response func-
tions for (E’,e'ﬁ), as opposed to five for (€,e'N) , so that
there is indeed an additional richness associated with the
detection of the ejectile’s final-state spin vector. The simi-
larity in form of the cross section to the ‘‘super-
Rosenbluth” formula of Donnelly'®!! is an obvious conse-
quence of having a sufficient number of independent
four-vectors to span the space. Although we give some
preliminary indication of the sizes and importances of the
13 new response functions for (€,e’p ), we will be mainly
concerned with the formal description of the reaction. A
detailed study of the new response functions and their
physical content will be presented in a subsequent paper.

In Sec. II the general formalism for the electron scatter-
ing process is briefly reviewed;'3~!3 this serves both to de-
fine our notation and to provide the basic groundwork re-
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quired by the later analysis. Because the ejected nucleon
experiences strong interactions with the recoiling residual
nucleus, FSI’s have important implications not only for
detailed calculational predictions, but also for the formal
framework itself. Plane wave limits are not adequate.’
Careful consideration of symmetries and their resultant
constraints is therefore necessary. Thus, Sec. III consists
of a brief treatment of the constraints on the nuclear elec-
tromagnetic tensor. The constraint due to parity conser-
vation is obtained and the relationship between time rever-
sal and the final state scattering boundary conditions is
described. The fact that time reversal does not yield an
immediately useful constraint upon the nuclear tensor for
(€,¢'N), due to FSI’s and the presence of the boundary
conditions, is explicated. In Sec. IV a systematic con-
struction of the general form of the nuclear electromag-
netic tensor is given. Extensions to the general ( €,e'X), as
well as other reactions, are indicated. In Sec. V we em-
ploy the results of Sec. IV to separate the (laboratory
frame) azimuthal angular dependences and identify a set
of 18 response functions. Their relationship to the
ejectile’s polarization vector defines a natural set of spin
variables in terms of the projections of the polarization
vector and in terms of the response functions. The experi-
mental separation and identification of the various
response functions is discussed. In Sec. VI the theoretical
prediction of the complete set of response functions is
described. Preliminary indications of the sizes and impor-
tances of the response functions are presented. The spe-
cial features of the plane wave limit are discussed relative
to time reversal and the FSI’s. Section VI concludes with
a brief, qualitative discussion of the physics issues and im-
plications associated with the new response functions.
Section VII consists of a summary of our results and a
prospectus for further work.

II. ELECTROPRODUCTION OF NUCLEONS

The proton electroproduction process, with the usual
assumption of a one-photon—exchange mechanism, is
schematically illustrated in Fig. 1. The initial (final) elec-
tron spin and four momentum are represented by s. and k
(s¢ and k'), respectively. The initial and final momenta
of the target are P and P’, while the exchanged photon

FIG. 1. Schematic diagram of the (e,e’p) reaction.

momentum is ¢ =k —k’ and the momentum and spin of
the ejectile are p’ and s’, respectively. In the following,
the electron charge is e, m. (m) is the electron (nucleon)
mass, ei =k’>+m}, EI,2 =p2+m2, and our conventions for
Dirac spinors and gamma matrices follow the standard
conventions.'®

In the laboratory frame (target initially at rest), the dif-
ferential cross section for the electroproduction of a polar-
ized nucleon of four-momentum p’ and (rest-frame) spin
sg by electrons of (initial) helicity A is given by

do | 2rm, ot | N WH*BR) | | me dk’
TIn3eT k| ¢ m? & (2m)
3.0
x| mdp | @.1)
E, (2m)

where the electron tensor 7, is defined as usual in terms
of the electron current matrix elements:

Nuv=m2 3 jliy . (2.2)
se
where
Jv=ulk’s¢)yuk,s,) . (2.3)

For later use we note the explicit form of the electron
tensor in the extreme relativistic limit (ERL), which is
applicable at intermediate energies,'’ ~!°

nﬁv=%(k1#kv+k1 Vk“—k‘k'g"w—}—ihe”vpak;,ka) s 2.4)

where 4 is the initial electron helicity and €**? is!® the
completely antisymmetric Levi-Civita tensor. It is con-
venient to express Eq. (2.4) as
2
KrKv+ 4
4

kg,

ghv— a‘q” l
q*.

(2.5)

where K =(k'+k)/2, so that ¢-K =0 in the ERL and
n*¥ manifestly satisfies the current conservation require-
ments g, 7*"=0=7""g,. Thus in the separation of the
electron tensor into parts symmetric and antisymmetric
under exchange of its indices 7*¥V=7%"+7,

2 rov
77‘51': KMKV_+_£4_ gl""_—q——%— ’ (2.6)
q
and
pv_ R uvpo g (2.7
M4 = 2 an . 7

Since in view of Eq. (2.2) 77 is a Hermitian tensor, its sym-
metric and antisymmetric parts are real and pure imagi-
nary, respectively.

The nuclear electromagnetic tensor W*¥ which appears
in Eq. (2.1) is given by

wee=3 [

3pr
d P3 O(P')(27)?
(2m)

X84k —k'+P—P' —p)T*, (2.8
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where the notation Y, ; denotes the usual average over ini-
tial states, ¢(P’) is a density of states factor appropriate to
the intrinsic spin of the residual nucleus [here the recoil is
nonrelativistic, ¢(P')=1], and I'*¥ is defined by

= J4g) g, (2.9)
F

where the sum is over the set of undistinguished intrinsic
final states of the residual hadronic system and the J*(q)
are the matrix elements of the nuclear electromagnetic

current operator J #(q) analogous to Eq. (2.3), viz.,

JMG)=(F|THq)|I) . (2.10)

If the leptonic current is considered to be completely
known and the one-photon—exchange mechanism reliable,
then the foregoing considerations isolate the unknown
quantities of central interest, namely the nuclear current
matrix elements, or the tensor I'*¥ of Eq. (2.9), from the
rest of the (known) ingredients required for the construc-
tion of the cross section.

The full physical matrix element of Eq. (2.10) is depen-
dent on both the initial and final physical hadronic cir-
cumstances and the interaction dynamics of the theoreti-
cal framework adopted, be it nonrelativistic or relativistic
potential theory, meson theory, quark models, etc. The
separation of Eq. (2.10) into initial and final states and a
current operator, however, is not unique, even when the
dynamics is fully specified. It depends upon the choice of
initial and final basis states and suppressed degrees of
freedom, for example.’

For these reasons it is important in constructing a gen-
eral framework for nucleon electroproduction to avoid
specifying the details of the description of the nuclear
states and the hadronic current operator. Retaining com-
plete generality, we write Eq. (2.10) in more explicit form
as

JHg)={p',sp,(—);F,P'|T*q) | LP) , (2.11)
so that
=3 (p',sk,(—);F,P'| T ¥(q)| LP)
F
XALP|TH@" | p',sk,(=KEP) . (2.12)

In Egs. (2.11) and (2.12) the initial state consists of an in-
trinsic target state, I, with total four-momentum P. The
final state is a scattered wave ejectile-nucleus state which
asymptotically consists of the intrinsic state F of the resi-
dual nucleus with total four-momentum P’ and the eject-
ed nucleon of momentum p’ and rest-frame spin sz. The
incoming scattered wave boundary condition is denoted by
(—). The distinction between incoming and outgoing
scattered wave boundary conditions is important for time
reversal considerations. It is also useful in considering the
properties of Egs. (2.11) and (2.12) in the next section to

|

keep in mind the limiting case of a single-particle Dirac
model, in which case the current operator in Egs. (2.11)
and (2.12) might be approximated by the free nucleon
current operator (although this usually results in current
conservation violations), the final ejectile adjoint state is a
Dirac adjoint, and the overlap of the initial and final tar-
get states is a single-particle shell model state.

III. CONSTRAINTS, SYMMETRIES,
AND BOUNDARY CONDITIONS

Current conservation (gauge invariance) requires that
the nuclear current matrix element of Eq. (2.11) satisfy
9,J"(g)=0 so that the tensor I'*¥ satisfies ¢,I'**=0
=TI*""q, or

g W B R)=0=WHBx)q, . 3.1

The dependence of the nuclear tensor upon the ejectile’s
spin four-vector is restricted to be at most linear; a direct
result of its spin 5 nature. This general property is easily
appreciated in the case that the ejected nucleon’s asymp-
totic state is described by the free Dirac equation upon
noting that Eq. (2.12) can be written

T =a(p',sg) T " u(p',sg) , (3.2)

where all the complications reside in T"#. But this can be
written

g'+m

TH 3.3
- (3.3)

I'*=Tr

1+yss’
2

where s’ is twice the ejectile’s spin four-vector, s'-p’'=0,
which is given in terms of $; by

., Br-plp
’SR

m(E, +m)

A
, SR'P

S =

(3.4)

Since Eq. (3.3) contains only one power of s’, T'*¥ may be
restricted to be, at most, linear in s’.

To examine the implications of parity and time reversal
symmetries, we consider electroproduction from the (non-
degenerate) ground state of the target nucleus, leading to a
final residual-nuclear state of intrinsic angular momen-
tum J. We also restrict ourselves to the case where the
residual target’s spin projection is not observed, so that
the sum over F in Eq. (2.9) is a sum over spin projections.
(These restrictions are made for simplicity; generalizations
are straightforward. For example, the restriction on the
initial state can be removed simply by defining I to in-
clude an appropriate average over intrinsic initial states.)
Then, from Egs. (2.12) and (3.4), we have

CHY=T*Y(q,p',P,s’,(—)) . (3.5)

We consider first the parity operator II. From Eq. (2.12)
we have

= ({p',sk,(— );FP" | I '[IIT " (@)1~ 11| I,P){L,P | M- [NT4 @I~ | p’,sk,(—);F,P')} . (3.6)

F
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The exact form of the parity (and time reversal) operator
depends, of course, on the particular theoretical frame-
work involved. However, the physical picture uniformly
imposed in the definition of the parity (and time reversal)
operation implies certain results of general validity. The
parity operator reverses the space components (only) of
the momenta of free plane wave states and leaves the
rest-frame spin s; unchanged. Since the electromagnetic
current operator should transform as a true vector, it fol-
lows that

N7, '=m(u)J, (@) , 3.7)

where g =(q¢,q) implies §=(qy, —q) and where, numeri-
cally, m(u)=g,,. No summation convention is assumed
to be associated with 7(u), as in Eq. (3.7), for example.
Equation (3.7) simply states that the space components of
the parity transformed current operator are reversed in
the parity transformed reference frame (where ¢—¢). It
is easy to verify that Eq. (3.7) follows for the free nucleon
current operator!’

Fz(qz)
m

. v
ioc*q,

Tug)= [ d*kd*k’| k') |Fy(gDy*

X8 k'+q —k)(k| , (3.8
where F, and F, are the electromagnetic form factors of
the nucleon, the abstract Dirac kets |k) signify free
momentum-space eigenvectors with four-momentum k#
and satisfy

(k'|ky=8%k'—k), (3.9)

and the free, Dirac (momentum-space) parity operator is'>
M=y,Py , (3.10)

where P;|p)=|p). Combining Egs. (3.6) and (3.7)
yields

W =m(u)m(v) S (F',sk,(—);FpP' | TG | LP)
F.

w

X(LP | TH@ |5\ sk, (=) FpP')

(3.11)

where F, denotes the parity transform of F and where we
have employed the previously asserted properties of the
parity operator, as well as the following.

(1) The bilinearity of Eq. (3.6) obviates any phases from
the parity operation.

(2) The parity operator commutes with the Hamiltoni-
an.

(3) I is nondegenerate, so, in view of (1) and (2), I —1I in
Eq. (3.6).

(4) The set of states F transforms into itself under the
parity operation.

(5) The parity operator is a linear (as opposed to antilin-
ear) operator, so that (2) implies that the parity operator
commutes with the Mgller operator

Q4= . lim [exp(tiHt)exp(FiHyt)], (3.12)

so that the boundary condition remains unchanged. Mak-
ing use of Eq. (3.4), we conclude from Egs. (3.5), (3.6),
and (3.11) that

r™g,p ', P, —5' (=) =m(w)m(v)[*(q,p",P,s’,(—)) .

(3.13)

Equation (3.13), or the equivalent result for WH#(8}%), is
the parity constraint upon the form of the nuclear tensor.
Turning to an examination of time reversal symmetries,
it is convenient to consider rather than the time reversal
operator .7~ the product .7 II. The general features of the
J operation are analogous to those of II, except that .7~
reverses the rest frame spin. Thus the analog of Eq. (3.7)
is
THG) , (3.14)
which can easily be verified for the current operator?® of
Eq. (3.18) and the free Dirac (momentum-space) .7~ opera-
tor 7 =iy,y3PrK, where K is the complex conjugation
operator. To consider the Il operation we employ the
technique analogous to the transition from Eq. (2.12) to
(3.6), except using 7 instead of Il and starting with Eq.
(3.11). If we then employ Eq. (3.14), we find

2 (P vsR’ -

X(LP | 7T |

7.7“(q)7“=7r(,u

), Fp, P | T Tq))T | LP)

I,S}g,(—);F,,,F’) .
(3.15)

The only changes in going from the five assertions for
IT made after Eq. (3.11) to the analogous statements here
are the replacement of Il by .7~ and the fact that .7 is an
antilinear operator. The antilinearity of .7~ implies that
T0+7'=Q5, so that the boundary conditions are
changed by .7~ and, further, the initial and final states are
interchanged in each of the matrix elements, or,
equivalently, 4 and v are interchanged. Thus, Eq. (3.15)
becomes

=3 (p',—sk,(+);FP' | T*q) | L,P)
F_

X{LP T |p', —sk,(+);Frs,P') , (3.16)

so that, noting Eq. (3.4), we have, in view of Egs. (3.5) and
(3.6),

I'“(q,p’,P,s",(—))=T""(q,p",P,—s",(+)) .

Equation (3.17) states that the nuclear tensor is symmetric
under the simultaneous interchange of the tensor indices,
changing the sign of the spin vector, and switching the
boundary conditions. This would provide an immediate
constraint upon the nuclear electroproduction tensor if it
were not for the change of the boundary conditions. In
the general case .7~ does not provide a constraint on the
form of the electroproduction tensor (it relates it to an
electroproduction process which, due to the scattered flux
at infinity, involves a complicated asymptotic configura-
tion). The effect of Eq. (3.17) in certain limiting cases
and approximations is discussed in Sec. VI.

(3.17)
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IV. CONSTRUCTION OF THE NUCLEAR TENSOR

In addition to transforming as a Hermitian, second
rank Lorentz tensor, the nuclear tensor must satisfy the
three constraints of the preceding section: gauge invari-
ance, no dependence on s’ beyond linear, and parity con-
servation. The general | form of the nuclear electroproduc-
tion tensor for (€,e 'N) must be constructed from the
available independent variables, which are the four-
vectors g, p', P, and s’. Several other vectors can be
fashioned from this set by making use of the completely
antisymmetric Levi-Civita tensor €**?? and any three of
the above vectors, e.g.,

§H=e"Pq,p,P, .

Clearly, there are three other such vectors.

The independent Lorentz scalars which can be con-
structed from these four-vectors can be separated accord-
ing to their panty properties. The true scalars are g¢2,
qp qP p'-P, and &-s’ (note p’ —mz, s'?2=—1, and

MT) while the pseudoscalars are g-s’ and P-s’ (note
p -s’=0). Scalars obtained by contracting two of the vec-
tors constructed from €**?? are not independent of those
listed. The contraction of higher order tensors construct-
ed from the available four-vectors is also easily seen to
yield no new independent scalars: the set of scalars listed
above is complete.

Prior to the construction of the nuclear tensor, it is also
convenient to construct a set of orthogonal four-vectors
with which to span the four-dimensional space. The
gauge invariance (current conservation) condition requires
that the nuclear response tensor WY lies in a subspace
orthogonal to g. It is therefore desirable to choose g as
one of the basis vectors and to replace p’ and P by the
usual “gauge invariant” forms

4.1

vi=p—£4, 4.2)
q

and

Vi=p'— Lq;q q, @.3)
which satisfy g-V;=¢q-V,=0. If we now define

ViV
Vf—Vf——V—V,- , (4.4)
i

then the three vectors ¢, ¥}, and T/f form an orthogonal,
linearly independent set. A fourth independent vector is
required to span the space. It turns out to be desirable for
the remaining vector to be independent of s’ and thus to
choose & of Eq. (4.1). Note that £ may also be written

£ =74, (V,),(V))o 4.5)

so that g-£=V,-£=V;-£=0. Thus, & completes the set
of orthogonal, linearly independent vectors. Note that the
construction of such a set of four vectors implies that (in
general) three are spacelike, one is timelike, and that the
set spans the four-dimensional space.?!

It follows that the nuclear tensor, or for that matter any
second rank Lorentz tensor, can be expanded in terms of
these vectors as

WH @y 2 F,Z!'z} (4.6)
where the set Z;, i =1—4, is the set ¢, V;, Vf & and where
the coefficient functions F;; are Lorentz scalar functions
of the independent scalars identified above. In the follow-
ing we shall give up the orthogonality of the decomposi-
tion of Eq. (4.6) and employ, for simplicity, ¥, rather
than Vf Applymg the gauge invariance conditions to Eq.
(4.6) yields (Z, =

g, WH* Sy )=q2 SFyZ/= (4.7a)
J

and

W””(@}g)qv=2FiIZf'q2=0, (4.7b)
so that, in view of the linear independence of the Z;,
F,;=F;;=0 for all j and Eq. (4.6) becomes

wWrER)= 3 F,ZFZ},
ij#1

(4.8)

consistent with gauge invariance.

The decomposition of the nuclear electroproduction
tensor given in Eq. (4.8) is of more general validity than
just the ( €,e’N) reaction. The basic assumption necessary
for its validity is, of course, current conservation [in the
absence of current conservation—for example, in the weak
reaction (v,v'X)—one simply reverts to Eq. (4.6)]. The
nine independent tensors of Eq. (4.8) are also va]id for the
restriction to the (unpolarized) ( €,e'N) reaction®? as well
as for the general (€,e’X) reaction?? with obvious, but
generally nonunique,'® reinterpretations of the momenta
p’ and P, whether or not any spin observables are detect-
ed. These are advantages of constructing the second rank
tensors from a set of spin-independent four-vectors. As
will be described shortly, another such advantage lies in
the effective restriction of the (at most linear) spin depen-
dence to the scalar coefficient functions. This forces the
ejectile’s spin vector to occur only in scalar products with
the momenta that, in turn, permit a simple separation of
the ejectile’s polarization vector and the spin-summed
cross section.

It should also be noted at this point that, although we
have restricted ourselves to nondegenerate initial target
states for simplicity, virtually all of the preceding analysis
is also applicable in, and advantageous for, the case of
oriented (polarized) targets.!®!*!3 In this case, of course,
the initial target angular momentum vector, which
transforms like the ejectile spin vector under parity and
time reversal, must be included in the set of four vectors
available for the construction of a complete, linearly in-
dependent set of scalars. Similarly, the extension of the
complete framework to charge and/or parity nonconserv-
ing reactions will also be seen to be immediate.

The nuclear electroproduction tensor of Eq. (4.8) can be
decomposed into its symmetric and antisymmetric parts
(A¥BY)s 4 =(A*BY+ AYB#), viz.,

WHEY S R) 4.9)

=WEGR)+WHEYR) .

One finds



35 FORMAL FRAMEWORK FOR THE ELECTROPRODUCTION OF . . . 271

WS r)= Fi[G*]+F[VEV]]
+F3[VEVEI+Fu[VEVF]s

+Fs[VEE s +FelVFE s (4.10)

and
WY ER)=F1[VEVi 4+ Fs[VEE" ) 4+ Fo[VFE']4 , (4.11)

where

G#v=g B — ”21’ ’
q

and we have used the properties of the Levi-Civita tensor
to replace £#£¥ by G**. In Egs. (4.10) and (4.11) the coef-
ficient functions F;, i =1—9, are functions of the avail-
able scalars listed following Eq. (4.1). Since WH**(Sg) is
at most linear in s’, and since this dependence is confined
to the coefficient functions by the expansion of Egs. (4.6)

and (4.8), it is useful to manifest any dependence of the

(4.12)

coefficient functions F; upon the spin-dependent scalars
and to isolate coefficient functions, W;, which are func-
tions only of the momentum-space (true) scalars g2, g-p’,
q-P,and p'-P.

In the absence of a further constraint, this leads to 36
independent terms, four terms for each of the nine tensors
of Egs. (4.10) and (4.11): a spin-independent term and
terms linear in g-s’, P-s’, and £-s’. However, under pari-
ty, the spin-independent and £-s’ terms are true scalars,
while g-s’ and P-s’ are pseudoscalars [see Egs. (3.13) and
(4.1)]. Since £ is a (parity) pseudovector while the other
basis vectors are true vectors, terms in Eqs. (4.10) and
(4.11) linear in £ must be matched with coefficient func-
tions F; which are pseudoscalar. Therefore, only one of
the two categories of spin-dependent scalars is permitted
to contribute for each of the explicit tensors. Thus, there
are only 18 independent terms. It is easily verified that
the result for the (E’,e’ﬁ) electroproduction tensor that is
consistent with the parity constraint of Eq. (3.13) is

WEYSR) =W+ W 1E5 )G + (W, + W& \WEV +(W3 + WiE-s'WEV

+ (W W& s IVEVH s +(Wsq-s'+ WsP-s [ VIE s +(Weq-s'+ WeP-s [ VFE']s

and

WHBR)=(W7+ Wi [ VEV 4+ (Wsq-s'+ WP-s"[EV ] 4 +(Woq-s'+ WoP-s ) E V14 ,

where the coefficient functions W; and W; are functions
of (only) the momentum-space scalars.

V. RESPONSE FUNCTIONS, CROSS SECTION,
AND POLARIZATION

In the preceding section we obtained the general form
of the nuclear electroproduction tensor W**. In this sec-
tion we consider the contraction of the nuclear and lep-
tonic tensors and the construction of expressions for the
physical scattering observables in the laboratory frame.
We manifest the azimuthal angular dependence of the nu-
clear tensor and thus separate a set of (azimuthal) angle-
independent response functions and obtain expressions for
the cross section and the ejectile’s polarization vector in
terms of a physically motivated set of response functions.

The coordinate system which we choose for the evalua-
tion of the various quantities of interest in the laboratory
frame is depicted in Fig. 2. The basic quantity of interest
is the contraction of the nuclear and leptonic tensors,
which we decompose as

=1, WH(E}R)
= WE B R+ WH B R)

Considering first 25, the symmetric/symmetric contrac-
tion, and recalling Eq. (2.6),

2 HaV
ngt': K“KV+% g#V_LIJ;_ , (5.2)
q

we see that, in the coordinate system of Fig. 2, 7§Y=0 if

(4.13)

(4.14)

I

either u=1 or v=1, unless u=v. Further, the electron
tensor satisfies the charge conservation condition which
enables us to eliminate any 3 index in n*¥ in favor of the
zero index, e.g., | q|7*Y=¢on®. In view of these condi-
tions, it is evident that the construction of ¢ depends (in
the laboratory frame) only on the four components of
WEBR):  WPGER), W R +WPER), WiGEy)
—W&BR), and WPER)+WPS%). Since the
momentum-space scalars are all independent of the az-
imuthal angle [, the only azimuthal dependence in
WH¥(8 ) resides in the spin-dependent scalars (which are
already explicit) and in the tensors. The azimuthal angu-
lar dependence of the four relevant components of the
constituent tensors of W**(8%), in the system of Fig. 2,
may be obtained by inspection of Eq. (4.13). This can

X

FIG. 2. Coordinate axes used to define the angles a and .
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then be used to define a set of response functions which
are independent of the azimuthal angle f3; for example,

1 B ey 00/

TR +R £s)= [ dE,W™R%), (5.3)
where we have followed the usual practice of defining
response functions in terms of an integral over a linewidth
in the missing mass spectrum, and where the factor of 5
is inserted to conform to the usual normalization of spin-
independent response functions.

Similarly, we have, from Eq. (2.7),

77Av"_“ ﬂeﬂVPaqua >

(5.4)
so that 77%”=0 for u=v and, since neither g nor K has a 1
component, either p=1 or v=1. Again, gauge invariance
allows the elimination of the 3 components in favor of the
0 components. Thus, the antisymmetric nature of 7% im-
plies that the only components of W’“’(s ) needed to con-
struct EA are [W8%)—WO°(B8%)] and [W'2(5E%)
—wW?4(8%)]. The azimuthal dependences are obtained by
1nspect10n of Eq. (4.14) and response functions again de-
fined accordingly.

However, it turns out to be advantageous to proceed in
a slightly different manner. The response functions, de-
fined as above, are arbitrary functions of the variables g2,
gp’, q-P, and p'-P or, in other words, g5 |q|?%
q0P0—q'P’s Mrqy, and Mypp,,. Equivalently, they are
functions of gqo, po=(|p'|*+mH'% |q|?% and q-p'.
Evaluation of the spin-dependent scalars yield

Es'=Mp(qXp')Sk , (5.5a)

Ps'=(Mp/m)p' Sk, (5.5b)
and

gs'= %—fu}fﬁ p'8r—q3k, (5.5¢)
Thus, we may make the variable replacements

Es'—>N-Sx (5.6a)
and

Ps'—138% , (5.6b)

Ry +RIASR) = flmedE WOER),
L(Rr+RIMISR flmedE (WG R)+W2ER)],

T[(Rrr + RIS

~

)cos2B+(RiT8 % + RIS

A Do

s[(Rer+RErASR)sinB+ (RirE8 R + Ry {13
(R r+R A8 R )cosB+ (R 718}
and

%[(R#T?§k+R'T’TT-§R)]_zf dE,[W'(8%)—

w2
lin

R )cosB]= f
r+R IT smB]—zf dE, [Wm
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FIG. 3. Unit vectors employed for the ejectile spin projec-
tions in relation to the coordinate axes.

where fi and T are unit vectors in the direction qXp’ and
p’, respectively, by simply absorbing the other factors in
Eqgs. (5.5a) and (5.5b) into redefinitions of the relevant
response functions. Similarly, since g-s’ and P-s’ always
occur in combination [same azimuthal dependence, see
Eqgs. (4.13) and (4.14)], we may make the variable replace-
ment

gs'—18%, (5.6¢)
where 1 is a unit vector in the direction fiXp’, by again
redefining the response functions which are associated
with P-s’ and g¢-s’. Note that T is transverse to the
ejectile’s momentum vector and that, in the coordinate
system of Fig. 2, fi is the normal to the photonuclear
scattering plane, which is defined by the momenta of the
exchanged photon and the ejected nucleon, i= B, and
t=&. The unit vectors f, 1, and T are indicated in Fig. 3.

The explicit relationships between the new set of
response functions (defined using three-vector scalar prod-
ucts) and those defined in terms of four-vector scalar
products are easily obtained. However, the main point to
this is the relationship of the new response functions to
the components of the nuclear tensor W**. The defining
relationships are simply

(5.7)

(5.8)

r)sin2Bl= [ dE W) —W"ER)], (5.9)
o dE WS R)+WPOER)], (5.10)

. woYs )T, (5.11)

rR)] - (5.12)

The main advantage of the response functions defined by Egs. (5.7)—(5.12) is that they are more simply related to the

scattering observables.

This is clear from the resulting expression for the differential cross section, wherein a spin-

independent piece is isolated and the dependence upon the rest frame spin vector is decomposed into separate depen-
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dences upon the projections of 8% onto the set of orthogonal unit vectors 1 (parallel to p'), i, and T (both transverse to
p’). Combining Egs. (2.1) and (5.7)—(5.12) with an explicit evaluation of the components of the electron tensor, we find,
for the differential cross section for the ejection of nucleons of spin sj by electrons of initial helicity #,

d3o

__dao mlp'|
d€k'ko'de'

- _do_
o 20w

dQy.
4
(R, +RIA8R)+

Mott

-9

X
lq|

2
tan%(8/2)— ;‘1—

(Rr+R70-8R)

lq|?

A ~

2
——2 _[(Ryp+RIMA87%)c0s(2B) + (Ri18 % + RT3 % )sin(28)]

2|q|?

L9
2
lq]

2 172

tan(0/2)— Tq—ﬁ
q

+h[4—22
lq]

2

tan(6/2)— —1—

+ htan(6/2) 5
lq

with the Mott cross section, in the ERL assumed valid
here, given by

a’cos?(0/2)

_do_ _ _a’cos¥(6/2)
4|k |%in%6/2) ’

a0, (5.14)

Mott

where, in Eq. (5.14), « is the fine structure constant.

In order to take advantage of the decomposition evident
in Eq. (5.13), it is only necessary to note that the differen-
tial cross section for the observation of a spin-% particle
with (rest-frame) spin vector sj, o(sz), has the general
form

—— 14+, SR), (5.15)

A ~

[(Rpr+RPAS8R)sinB+(R. A8k +REA8 R )cosB]

tan(6/2)[(R}r+R;r08 g )cosB+(R;4T8 r +Rir18 & )sinB]

, (5.13)

f

where o(0) is the unpolarized differential cross section
and m,, is the polarization vector. In the present cir-
cumstance let us introduce the notation

d3c
R) = |—————— , 5.16
an(Sg) derdQd 0y, h ( )
as well as
o, (0)=0p(sk)+op(—sk) (5.17)

for the unpolarized cross section from electrons with heli-
city A, and m,, for the ejectile polarization vector.

These observables follow immediately from Eq. (5.13),
using Eq. (5.15). Equation (5.13) is the expression for
oy (sk), while®

4 2 2
do 1 1
op(0)="1PL | do —4— | Ry + |tan0/2)— = | -2~ | |Rp—= |-ZL— | Ryrcos2
’ 2m? |40 Mm[ la| | °F 2 | lq| 172 | Tap | Rrreos?h
2 21172 2
+ Tflll— tanX(6/2)— ——q—J R, rsinB+h T‘ql_l tan(9/2)RiTcosB], (5.18)

and the ejectile polarization vector for incident electrons of helicity A may be decomposed into three orthogonal com-

ponents according to

~
my =i+ mhl+ 7T,

where the component of the polarization vector normal to the photonuclear scattering plane is given by

4
do R[+

a0,

9
lq]

ah(o)ﬁ;___m

(2m)?

Mott [

2

9
lq]

1
2

2

lql

tan®(6/2)—

R;'TCOSZB+

tan(6/2)R;rcosp } )

(5.19)
l 2
= _q_ R"
2 | lq] T
2 2112
—4_ | |tan¥6/2)— |—1— R]rsinB
lq| lq
(5.20)
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and the components of the polarization vector within the photonuclear scattering plane are given by

2 2 21172
a,,(0)7r§|=1”—lPi3L dg [_—1 —4 | Risin2B+ |—4— | |tan¥(0/2)— |—L— R} rcosB
2m? 4% |y | 2 | 14l q| lq|
2 21172
+h ‘Tt;Ll tan(0/2)R}rsinB+h tan(8/2) |tan*(6/2) — h% Rir (5.21)
M
with [ =I/,t. Note that the circumstance of no incident bluth technique; however, since all of these contributions

electron polarization is obtained from Eq. (5.13) by simply
averaging over the incident electron helicity A =+1. In
effect, this simply removes from Eq. (5.13) the terms
which are linear in A. As a consequence, all of the other
equations for the scattering observables, Eq. (5.18) for the
unpolarized (nucleon) cross section and Egs. (5.19)—(5.21)
for the nucleon polarization vector, are also modified only
by the elimination of the terms linear in 4 and by the no-
tational change o), — 0 and 7}, — .

Equations (5.13) and (5.18)—(5.21), and their analogs in
the h =0 circumstance, completely specify the relation-
ships between the response functions and the experimental
observables expected to be accessible in the near future
(observations of the final electron spin do not appear to be
in the offing). Thus, this set of equations governs the ex-
traction of the individual response functions from experi-
mental data. Of practical relevance to this process are the
sizes and relative importances of the various response
functions; this is discussed in the next section. Here we
only indicate an “in principle” procedure for the experi-
mental discrimination of the various response functions.
We suppose that each of the four observables, Eqs. (5.18)
and (5.20) and (5.21), is experimentally accessible, both
with and without polarized initial electrons. The response
functions which contribute to Egs. (5.18)—(5.21) through
terms linear in h are then immediately separated from the
rest. This determines R;; [from the unpolarized cross
section 0,(0)] and R;7 (from the component of the polar-
ization normal to the photonuclear scattering plane, 7}),
while the separation of R;; from Ry (in the longitudinal
component of the polarization vector, ;) and of R;r
from R%r (in the remaining component of the polariza-
tion vector, 7}, ) is perhaps most easily made on the addi-
tional basis of a sign difference in the contribution of R}y
and R;'; for B=+m/2. This is especially attractive due
to the fact that the other contributors to 7, and 7}, vanish
in the electron-scattering plane. Note that the determina-
tion of R;r and R;T requires measurements out of the
electron-scattering plane. The remainder of the response
functions may be determined without a polarized electron
beam. The unpolarized differential cross section yields
R;, Ry, Ryr, and R;r. The discrimination of R; 7 is on
the basis of a sign difference in its contribution for
B==*m/2, that of Ry is on the basis of B dependence
(and so requires measurements out of the electron-
scattering plane), and that of R; and Ry is through a
Rosenbluth separation. The response function R}, R7,
R7r, and R} are obtained in a completely analogous
fashion from the nucleon polarization projection 5. Fi-
nally, the separation of R} from R} (in 7)) and of Rip
from R}r (in 7{) can be most easily made by the Rosen-

vanish in the electron-scattering plane, their determina-
tion requires measurements out of the plane. Note that all
of the required out-of-plane information can be obtained
from experiments performed at a single angle B~ +7/2,
say |B| =m/4.

VI. CALCULATION AND CHARACTERISTICS
OF THE RESPONSE FUNCTIONS

Methods for the (approximate) calculation of the
current matrix elements J#(q) of Egs. (2.10) and (2.11), in
the laboratory frame, are treated in detail in Sec. III of
Ref. 3. Briefly, the calculation of the current matrix ele-
ments is carried out in a Dirac-spinor representation and
entirely in momentum space. Among the advantages of
such an approach is the flexibility of obtaining theoretical
predictions within the context of both the nonrelativistic
and relativistic (Dirac) descriptions of the nuclear bound
state and ejectile scattering dynamics. The major approxi-
mations employed in Ref. 3 (and in general) are single-
particle descriptions of the bound states, an optical model
treatment of the ejectile-nucleus final state interaction,
and the use of the free-nucleon current operator. The po-
tential severity of these approximations, particularly in re-
gard to violations of current conservation, is discussed in
Ref. 3, as is a simple error estimate. The numerical pre-
dictions of the sizes and relative importances of the vari-
ous response functions presented later in this section are
based upon these methods.

It is straightforward to extend the computational
methods of Ref. 3 to the calculation of the new, spin-
dependent response functions. The main complication of
this extension lies in relating the present considerations to
those of Ref. 3. In this paper the treatment of the ejectile
has been given in terms of its spin unit vector S%; no
choice of a quantization axis was necessary. However, in
most calculations of electromagnetic current matrix ele-
ments it is convenient (especially when a multipole expan-
sion is used) to construct the operators and states for the
case in which the axis of quantization is chosen to be
along the three-momentum transfer vector q. This choice
of quantization axis is used in Ref. 3. In view of Egs.
(5.7)—(5.12), it is necessary to deal with spins pointing
along each of the directions T, 1, and T in order to obtain
the spin-dependent response functions. It is therefore
necessary to reference the description of these spin direc-
tions to the q§ choice of quantization axis and to construct
a projection technique for extracting the individual
response functions on this basis.

Since the problem is primarily associated with the
description of spin, we first manifest the dependence of
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the current matrix element of Eq. (2.11) on the rest-frame
spin vector by means of the notation J*(q,s). Here, s is
the (rest-frame) spin projection along the axis of quantiza-
tion, which is taken? to be the § or Z axis (see Fig. 2). It
is the J*(q,s) which are explicitly calculated in Ref. 3.
Given the currents J#(q,s), the determination of the vari-
ous response functions proceeds as follows. Define a set

ot @=3 [ 4F

) (P (2m)*8*k —k'+P —P'—p)
i T

X 3 (p',s'q,(—jF,P' | T"q) | LPY{I,P|T¥¢q) | p',sG,(— ;F,P') .
F

Note that the operators w%(q) are defined such that

WHE8)=f(q) . (6.3)
From Eq. (6.2) one can define »**(q§) such that
of5(@)=(s"q|8*@) |54 , (6.4)

where |s,§) denotes a standard Pauli spinor of (rest-
frame) spin projection s pointing along q.

The operators &#¥(q) are 2X2 matrices in the spin
space of the ejectile, with matrix elements given by Eq.
(6.4). Clearly, these operators follow immediately from
knowledge of J#(q,s). It is also evident from Egs. (6.3)
and (6.4) that the spin-summed nuclear tensor WV is
given by

WHY = WIS %)+ WH(—8 ) =Ti[6"@)] . (6.5

The nuclear tensor appropriate to the case wherein the
ejectile spin is required to be along an arbitrary direction
a, WHY(Q), can also be written [see Egs. (2.8) and (2.12)]
as

WEY(+8)=(+,+a| WH| 1, +a) (6.6)
or
wr @)= 3 (1,3]5,8)(s,q|5*(@)|5,q)
5,8’
x(s,q4|3,2) . 6.7
Making use of the spin projection operator
1 ‘a
p,=-to3 (6.8)
2
yields
W @)=Tr[&*"(q)P;] , (6.9)
so that
WHEY = W (R)+ WHY(—2)=Tr[6*"(§)], (6.10)
and upon defining
AWrY(a)=WwH"(a)— WH(—-3a), (6.11)

together with

of tensors w4 (q) to be given by the combination of Egs.
(2.8) and (2.9), except for the replacement, in Eq. (2.9),

JMPT Q) — TG, T q,s) , (6.1)
so that, in view of Eq. (2.12),
6.2)
[
3.=04, (6.12)
that
AWM @) =Tr[2;6"@)] . (6.13)

Equations (6.5) and (6.11)—(6.13) allow the effective pro-
jection of each of the 18 independent response functions
from their defining equations, Egs. (5.7)—(5.12).

In particular, upon defining the spin-space operators

dE, &% (q) ,

)

L= line

r= [ _dE[6"@+62@],
Ryr= [, dE,[6%@—6"@)],
Rir= [ dE,[6%@)+6™@],

Rir=i [ dE,[6°@—6"@],

x>

i

(6.14)

and
Rpr=i [, dE,[6'@)-67@)],

we find that the complete set of response functions is
given by

R =Tr[R.); R=TrR.3;],

Rr=TrRr); R}=Tr{Rr3],
cos(2B)R77=Tr[Ry7]; cos(2B)RIr=Tr[Rrr2.]1,
sin(2B)R§r =Tr[R7734]; sin(2B)R7r =Tr[Rrr24] ,
sin(B)R.r=Tr[R.r); sin(BRr=Tr[R.r3:], (6.1
cos(BIR[r=Tr[R.r2;]; cos(B)R[r=Tr[R.724],
cos(BRir=Tr[R .7]; cos(B)R{r=Tr[R ;73] ,
sin(BR{r=Tr[R 1r2;]; sin(BR/r=Tr[R 125,
Rir=Tr[R 23] Rir=Tr[R 24l -

This completes the description of the method we have

used to obtain the theoretical predictions of the 18 in-
dependent response functions.
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A detailed study of the new response functions and
their physical content will be presented in a subsequent
paper. Here we consider only the predicted sizes and rela-
tive importances of the various response functions. This
is, of course, a crucial consideration for their experimental
investigation and for their separation and determination
from experimental data.

A preliminary calculation of the response functions as
defined by Egs. (6.14) and (6.15) has been performed using
the Dirac dynamical approach described in Ref. 3. The
results summarized in Table I are for the ejection of 135
MeV protons from the 1p, ,, shell of '°0O at a momentum
transfer of 2.64 fm~!. Column 2 of Table I contains the
magnitude of the maximum value of the response func-
tion specified in column 1. For reference, the ratio of
each magnitude to that of R; is shown in column 3.
Column 4 indicates whether or not the corresponding
response function survives in the case in which the 11
operation implies an additional restriction on the form of
the nuclear tensor. As discussed in Sec. III, this is the
case when the difference in boundary conditions on the
left and right hand sides of Eq. (3.17) can be ignored.
This obtains, for example, when the FSI’s produce no
scattered flux at infinity, as in a plane wave limit. When
the boundary condition differences can be neglected, Eq.
(3.17) requires the nuclear tensor to be symmetric under
simultaneous interchange of its tensor indices and spin
flip. Thus, any terms linear in spin must vanish in the
symmetric part of the tensor and any terms not linear in
spin must vanish in the antisymmetric part of the tensor.
The symmetric part of the tensor then makes no contribu-
tion to the polarization; the only such contribution comes
from the antisymmetric part of the tensor (which makes
no spin-independent contribution) and this can only occur
for nonvanishing electron helicity. This makes evident
the crucial role of the FSI’s for certain of the response

functions and spin observables, so that a summary of
these results is included in Table 1.

Column 5 indicates whether or not the response func-
tion can be measured in the electron-scattering plane and
column 6 indicates the reflection symmetry through the
xz plane of the term in the cross section containing the
specified response function. The most easily isolated
response functions are those which can be measured inter-
nal to the electron-scattering plane and which are odd
under reflection through the xz plane. From Table I it
can be seen that the new “polarization” response functions
range in relative size from 7% to 164% of R;. An in-
teresting feature of our results is that while the unpolar-
ized response function Ryr is small, being on the order of
6% of R;, the corresponding response function for longi-
tudinally polarized protons is 7% of R, the two response
functions for transversely polarized protons are more than
half as large as R;. It is also interesting to note that the
largest response functions are R;% and R;7, both of
which require polarized incident electrons as well as the
detection of the ejected proton’s spin.

A detailed presentation of our results for the various
response functions will be provided in a subsequent paper.
However, of general interest are the physics implications
of the new response functions and the underlying dynam-
ics issues which are intertwined with obtaining an under-
standing of their properties. Of course, the independence
of the new response functions, in and of itself, ensures
that they will provide additional access to both the initial
hadronic system and the dynamical mechanisms which
occur during the electroproduction process. For example,
the new response functions are intimately connected to the
ejectile spin. Since both elementary hadronic interactions
and the current operators exhibit considerable spin depen-
dence, one expects the new response functions to be espe-
cially adapted to probing spin structure in the reaction

TABLE I. Summary of the properties of the various response functions and their characteristics.

See text for discussion.

max | R; |
(fm?) max|R;| g1 In plane Symmetry
max | R; |
R, 28.1 1.00 yes yes even
R} 4.7 0.17 no yes even
Ry 39.0 1.39 yes yes even
R7 4.9 0.17 no yes even
Ror 1.6 0.06 yes yes even
Rir 15.8 0.56 no yes even
Rir 2.1 0.07 no no odd
Ry 16.0 0.52 no no odd
R;r 10.3 0.37 yes yes odd
RIr 33 0.12 no yes odd
Rl 10.5 0.37 no no even
Rir 3.7 0.13 no no even
R 15.7 0.56 no no even
R.% 44.1 1.57 yes no even
Ry 14.3 0.5 yes yes odd
R/ 46.0 1.64 yes yes odd
RY 38.6 1.37 yes yes even
R7 3.9 0.14 yes yes even
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mechanism. Such a spin-selective probe may be expected
to be of great value in studying the electroproduction pro-
cess since the important dynamical degrees of freedom
(and thus the character of the response functions) will
vary among nonrelativistic, relativistic, mesonic effects
and baryon resonances, and subhadronic domains and
their interfaces as the four-momentum transfer carried by
the virtual photon is varied. Because of the crucial and
distinctive role played by spin couplings in these various
domains, they and the interfaces between them may be ex-
pected to be characterized by strong and distinctive spin-
dependent effects.

On the other hand, the complexities associated with
treating these diverse dynamical domains, as well as off-
shell considerations,»?’ questions concerning the ap-
propriate elementary current operator,?> current conserva-
tion violations,? and the truncations necessary to arrive at
an impulse approximation,® indicate the primitive state of
current models. Because of these difficulties, as well as
intricate questions of consistency between the interactions
and the currents, present approaches possess a large de-
gree of model dependence. Thus, care must be exercised
in drawing general conclusions about the physics attri-
butes of individual response functions. In fact, this com-
plicated interplay of many dynamical aspects makes un-
likely the simple, straightforward extraction of specific
quantitative results, at least without considerable further
preparatory work. It seems more likely that comprehen-
sive analyses will permit inferences to be drawn on the
basis of simultaneous comparisons with a set of response
functions. This approach takes advantage of the distinct
dependences of the various response functions. The com-
plicated interplay of the different dynamical aspects of
the problem then enhances the versatility of the set of
response functions as a dynamical probe.

However, with the foregoing caveats in mind, one can
make some general qualitative, but model-dependent,
inferences concerning the various response functions.
First of all, the 13 new response functions depend on the
ejectile spin vector for their existence and hence should
prove useful as spin filters; for example, in regard to veri-
fying relativistic (Dirac) effects expected on the basis of
the properties of the usual five response functions,® resolv-
ing and studying virtual baryon resonance production and
its effects, and perhaps in studying subhadronic spin dis-
tributions, helicity effects, etc. The new response func-
tions listed in Table I can also be divided into two
categories according to their behavior under time reversal
in the limit where dependence on the boundary conditions
is ignored: those which are then allowed under the com-
bination of parity and time reversal (I1.77) and those
which are not. In the context of the distorted wave im-
pulse approximation, and for restricted four-momentum
transfer, the interpretation of the physics of these two
classes of response functions is straightforward. The first
class of response functions, which are 1.7 allowed, all
arise from the antisymmetric part of the nuclear response
tensor W4". As a result, these response functions, R;%,
R{'t, R{'r, R}y, and Ri, are all directly dependent on
the electron helicity and are all interference response func-
tions. Since these response functions survive in the plane

wave limit, where the FSI’s vanish, the main source of
ejected nucleon polarization is the electromagnetic current
operator. In particular, the polarization derives from the
spin dependence of the magnetization current, which is
purely transverse and in the usual nonrelativistic models
has the form J,,,=i[Gu;(g?)/2m]oxq. The polariza-
tion process in the plane wave limit is essentially the re-
sult of a transfer of the intrinsic angular momentum (heli-
city) of the virtual photon to the target nucleon. The an-
tisymmetric combinations of the currents in W4 preserve
this spin dependence, while the symmetric combinations,
which give rise to the remaining spin dependent response
functions, tend to eliminate this explicit spin dependence
due to the fact that they vanish in the plane wave limit.
Of course, once the FSI’s are included this first class of
response functions is also affected by the properties of the
FSI's. In particular, any relative variation in a class of
response functions after the introduction of FSI’s must be
the result of the spin dependence of the final state interac-
tion. It is interesting to note that two members of the
first class, Ry and Ry, are relatively large and have no
spin independent analog. From this point of view, these
response functions represent an entirely new feature of
electroproduction which is inaccessible through the usual
complement of response functions.

The second class of response functions, those which are
not allowed under I1.77 when boundary condition effects
are ignored, vanish in the limit of no FSI scattering. Thus
they depend directly on the outgoing scattered flux and
hence on the unitarity properties of the optical potential
and the truncation of the many-body problem. The out-
going scattered flux (at infinity) in the optical model
directly involves only the on-shell projectile-target elastic
T matrix, which is measured in elastic proton scattering.
Thus some of these response functions may be insensitive
to off-shell effects, and others may show varying degrees
of sensitivity. At any rate, the ability to isolate FSI ef-
fects from other mechanisms and target structure is enor-
mously advantageous for the study of them all. The
response functions R; and R7 are closely related to the
usual longitudinal and transverse response functions.
Currently, the apparent relative quenching of the longitu-
dinal response function in inclusive scattering has generat-
ed considerable interest.>* Studies of their spin-dependent
analogs, R{ and R7, might shed some light on the under-
lying mechanism at work; such studies would certainly
provide more stringent tests of models which are devised
to describe the spin-independent response functions. The
remaining response functions of this category, Ryr and
R+ (i =n,l,t), are interference response functions in the
sense that they arise from interference of the different
components of the hadronic current. Interference
response functions seem to be very sensitive to the off-
shell behavior of the FSI’s;> thus the present ones may be
complementary to the other members of the second
category in this regard. Moreover, the usual interference
response functions seem to be insensitive to relativistic ef-
fects. Thus, such sensitivity in the spin-dependent in-
terference response functions would provide a new versa-
tility in separating off-shell from relativistic effects. On
the other hand, a lack of sensitivity would also be interest-



278 A. PICKLESIMER AND J. W. VAN ORDEN 35

ing since it would indicate substantial spin effects which
are independent of relativistic issues and thus might be
useful in isolating other spin-dependent mechanisms for
study, such as virtual resonance production, for example.

The main point here is, of course, that the different
dependences of the response functions on the target
dynamics, the many-body problem and the associated
FSI's, as well as the elementary interactions and currents,
provide a substantial opportunity for sorting out the basic
physics puzzle. The fact that the crucial ingredients of
the elementary interactions and currents will change as
the four-momentum transfer varies both complicates
matters and is the source of considerable versatility for
unraveling the underlying physics of the electroproduction
process. It should be stressed that the present characteri-
zation of the physics content of the spin-dependent
response functions given above is certainly incomplete.
Much further work is needed to adequately uncover the
physics of these new response functions, even in a qualita-
tive fashion.

VII. SUMMARY

In this paper we have developed a complete theoretical
framework for the description of the electroproduction of
polarized nucleons from nuclei. By careful consideration
of the applicable symmetries, general forms for the
(€,e'N) cross section and polarization projections have
been obtained. Extensions of this systematic construction
to the general (€,e’X) reaction, to the case of polarized
targets, and to more general current and/or parity non-
conserving processes, have been indicated. The (€,e'N)
physical observables are expressed in terms of 18 response
functions, the 13 new members of which are intimately
connected to the spin of the ejectile. These new response
functions appear to provide a host of interesting oppor-
tunities. Since both the electromagnetic current operator
and the nucleon-nucleon interaction are spin dependent, it
is likely that the spin-dependent response functions will
show special sensitivity to this quantity. The availability
of a complete (or at least large) set of experimentally
determined response functions with which to determine
the underlying hadronic electromagnetic current would
provide a much more rigorous test of theoretical models.
Moreover, this is expected to be especially valuable due to

the variety of dynamical circumstances which can be
probed via electroproduction. By varying the four-
momentum transfer carried by the virtual photon, one can
move among the natural domains of nonrelativistic poten-
tial theory, relativistic and boson exchange models (in-
cluding a variety of resonance excitations and subhadronic
models), as well as the interfaces between them. The
variety of conceptual physics issues which are intertwined
with the properties of the response functions further
enhances their versatility as a dynamical probe. These in-
clude questions concerning the appropriate elementary
off-shell current operator, current conservation violations,
consistency between currents and dynamical mechanisms,
and the important aspects of truncating the many-body
problem to a manageable level; many of the answers to
these questions will be intertwined with the particular
dynamical circumstance. The differing behaviors of the
response functions in limiting circumstances, partly 4s a
consequence of their symmetry properties (see Table I),
also seem to indicate versatility in focusing on, and isolat-
ing, some of the general subdivisions of the reaction; for
example, the host of distinct dynamics-dependent spin
features, the importance of FSI’s, on- versus off-shell
FSI’s, dependences on uncertainties associated with the ef-
fective current operator, and models of the initial target
dynamics.

Preliminary results suggest that it will be possible to ex-
tract the new response functions from experimental data,
provided polarized electron beams of sufficiently high
current become available. (The high current is necessary
in order to compensate for the requirement of a nucleon
polarimeter.) Indeed, these preliminary results indicate
that several of the spin-dependent response functions are
surprisingly large (see Table I). The existence of
“switches,” such as the electron spin, the proton spin, and
asymmetry properties under xz-plane reflection, can pro-
vide for the extraction of new, detailed information
without the difficulties associated with angular separa-
tions. A more detailed discussion of the new response
functions will be presented along with a full account of
our numerical results in a subsequent paper.
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